/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" SSL_HANDSHAKE *ssl_handshake_new(enum ssl_hs_wait_t (*do_handshake)(SSL *ssl)) { SSL_HANDSHAKE *hs = OPENSSL_malloc(sizeof(SSL_HANDSHAKE)); if (hs == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return NULL; } memset(hs, 0, sizeof(SSL_HANDSHAKE)); hs->do_handshake = do_handshake; hs->wait = ssl_hs_ok; return hs; } void ssl_handshake_clear_groups(SSL_HANDSHAKE *hs) { if (hs->groups == NULL) { return; } for (size_t i = 0; i < hs->groups_len; i++) { SSL_ECDH_CTX_cleanup(&hs->groups[i]); } OPENSSL_free(hs->groups); hs->groups = NULL; hs->groups_len = 0; } void ssl_handshake_free(SSL_HANDSHAKE *hs) { if (hs == NULL) { return; } OPENSSL_cleanse(hs->secret, sizeof(hs->secret)); OPENSSL_cleanse(hs->traffic_secret_0, sizeof(hs->traffic_secret_0)); ssl_handshake_clear_groups(hs); OPENSSL_free(hs->key_share_bytes); OPENSSL_free(hs->public_key); OPENSSL_free(hs->peer_sigalgs); OPENSSL_free(hs->peer_psk_identity_hint); OPENSSL_free(hs); } /* ssl3_do_write sends |ssl->init_buf| in records of type 'type' * (SSL3_RT_HANDSHAKE or SSL3_RT_CHANGE_CIPHER_SPEC). It returns 1 on success * and <= 0 on error. */ static int ssl3_do_write(SSL *ssl, int type, const uint8_t *data, size_t len) { int ret = ssl3_write_bytes(ssl, type, data, len); if (ret <= 0) { return ret; } /* ssl3_write_bytes writes the data in its entirety. */ assert((size_t)ret == len); ssl_do_msg_callback(ssl, 1 /* write */, ssl->version, type, data, len); return 1; } int ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { CBB_zero(cbb); if (ssl->s3->pending_message != NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } /* Pick a modest size hint to save most of the |realloc| calls. */ if (!CBB_init(cbb, 64) || !CBB_add_u8(cbb, type) || !CBB_add_u24_length_prefixed(cbb, body)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } return 1; } int ssl3_finish_message(SSL *ssl, CBB *cbb) { if (ssl->s3->pending_message != NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } uint8_t *msg = NULL; size_t len; if (!CBB_finish(cbb, &msg, &len) || len > 0xffffffffu) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); OPENSSL_free(msg); return 0; } ssl3_update_handshake_hash(ssl, msg, len); ssl->s3->pending_message = msg; ssl->s3->pending_message_len = (uint32_t)len; return 1; } int ssl3_write_message(SSL *ssl) { if (ssl->s3->pending_message == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } int ret = ssl3_do_write(ssl, SSL3_RT_HANDSHAKE, ssl->s3->pending_message, ssl->s3->pending_message_len); if (ret <= 0) { return ret; } OPENSSL_free(ssl->s3->pending_message); ssl->s3->pending_message = NULL; ssl->s3->pending_message_len = 0; return 1; } int ssl3_send_finished(SSL *ssl, int a, int b) { if (ssl->state == b) { return ssl->method->write_message(ssl); } int n = ssl->s3->enc_method->final_finish_mac(ssl, ssl->server, ssl->s3->tmp.finish_md); if (n == 0) { return 0; } ssl->s3->tmp.finish_md_len = n; /* Log the master secret, if logging is enabled. */ if (!ssl_log_secret(ssl, "CLIENT_RANDOM", SSL_get_session(ssl)->master_key, SSL_get_session(ssl)->master_key_length)) { return 0; } /* Copy the finished so we can use it for renegotiation checks */ if (ssl->server) { assert(n <= EVP_MAX_MD_SIZE); memcpy(ssl->s3->previous_server_finished, ssl->s3->tmp.finish_md, n); ssl->s3->previous_server_finished_len = n; } else { assert(n <= EVP_MAX_MD_SIZE); memcpy(ssl->s3->previous_client_finished, ssl->s3->tmp.finish_md, n); ssl->s3->previous_client_finished_len = n; } CBB cbb, body; if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_FINISHED) || !CBB_add_bytes(&body, ssl->s3->tmp.finish_md, ssl->s3->tmp.finish_md_len) || !ssl->method->finish_message(ssl, &cbb)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); CBB_cleanup(&cbb); return -1; } ssl->state = b; return ssl->method->write_message(ssl); } /* ssl3_take_mac calculates the Finished MAC for the handshakes messages seen * so far. */ static void ssl3_take_mac(SSL *ssl) { /* If no new cipher setup then return immediately: other functions will set * the appropriate error. */ if (ssl->s3->tmp.new_cipher == NULL) { return; } ssl->s3->tmp.peer_finish_md_len = ssl->s3->enc_method->final_finish_mac( ssl, !ssl->server, ssl->s3->tmp.peer_finish_md); } int ssl3_get_finished(SSL *ssl) { int al; int ret = ssl->method->ssl_get_message(ssl, SSL3_MT_FINISHED, ssl_dont_hash_message); if (ret <= 0) { return ret; } /* Snapshot the finished hash before incorporating the new message. */ ssl3_take_mac(ssl); if (!ssl->method->hash_current_message(ssl)) { goto err; } size_t finished_len = ssl->s3->tmp.peer_finish_md_len; int finished_ok = ssl->init_num == finished_len && CRYPTO_memcmp(ssl->init_msg, ssl->s3->tmp.peer_finish_md, finished_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) finished_ok = 1; #endif if (!finished_ok) { al = SSL_AD_DECRYPT_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); goto f_err; } /* Copy the finished so we can use it for renegotiation checks */ if (ssl->server) { assert(finished_len <= EVP_MAX_MD_SIZE); memcpy(ssl->s3->previous_client_finished, ssl->s3->tmp.peer_finish_md, finished_len); ssl->s3->previous_client_finished_len = finished_len; } else { assert(finished_len <= EVP_MAX_MD_SIZE); memcpy(ssl->s3->previous_server_finished, ssl->s3->tmp.peer_finish_md, finished_len); ssl->s3->previous_server_finished_len = finished_len; } return 1; f_err: ssl3_send_alert(ssl, SSL3_AL_FATAL, al); err: return 0; } int ssl3_send_change_cipher_spec(SSL *ssl) { static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; return ssl3_do_write(ssl, SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, sizeof(kChangeCipherSpec)); } int ssl3_output_cert_chain(SSL *ssl) { CBB cbb, body; if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_CERTIFICATE) || !ssl_add_cert_chain(ssl, &body) || !ssl->method->finish_message(ssl, &cbb)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); CBB_cleanup(&cbb); return 0; } return 1; } size_t ssl_max_handshake_message_len(const SSL *ssl) { /* kMaxMessageLen is the default maximum message size for handshakes which do * not accept peer certificate chains. */ static const size_t kMaxMessageLen = 16384; if (SSL_in_init(ssl)) { if ((!ssl->server || (ssl->verify_mode & SSL_VERIFY_PEER)) && kMaxMessageLen < ssl->max_cert_list) { return ssl->max_cert_list; } return kMaxMessageLen; } if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) { /* In TLS 1.2 and below, the largest acceptable post-handshake message is * a HelloRequest. */ return 0; } if (ssl->server) { /* The largest acceptable post-handshake message for a server is a * KeyUpdate. We will never initiate post-handshake auth. */ return 0; } /* Clients must accept NewSessionTicket and CertificateRequest, so allow the * default size. */ return kMaxMessageLen; } static int extend_handshake_buffer(SSL *ssl, size_t length) { if (!BUF_MEM_reserve(ssl->init_buf, length)) { return -1; } while (ssl->init_buf->length < length) { int ret = ssl3_read_handshake_bytes( ssl, (uint8_t *)ssl->init_buf->data + ssl->init_buf->length, length - ssl->init_buf->length); if (ret <= 0) { return ret; } ssl->init_buf->length += (size_t)ret; } return 1; } static int read_v2_client_hello(SSL *ssl, int *out_is_v2_client_hello) { /* Read the first 5 bytes, the size of the TLS record header. This is * sufficient to detect a V2ClientHello and ensures that we never read beyond * the first record. */ int ret = ssl_read_buffer_extend_to(ssl, SSL3_RT_HEADER_LENGTH); if (ret <= 0) { return ret; } const uint8_t *p = ssl_read_buffer(ssl); /* Some dedicated error codes for protocol mixups should the application wish * to interpret them differently. (These do not overlap with ClientHello or * V2ClientHello.) */ if (strncmp("GET ", (const char *)p, 4) == 0 || strncmp("POST ", (const char *)p, 5) == 0 || strncmp("HEAD ", (const char *)p, 5) == 0 || strncmp("PUT ", (const char *)p, 4) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_HTTP_REQUEST); return -1; } if (strncmp("CONNE", (const char *)p, 5) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_HTTPS_PROXY_REQUEST); return -1; } if ((p[0] & 0x80) == 0 || p[2] != SSL2_MT_CLIENT_HELLO || p[3] != SSL3_VERSION_MAJOR) { /* Not a V2ClientHello. */ *out_is_v2_client_hello = 0; return 1; } /* Determine the length of the V2ClientHello. */ size_t msg_length = ((p[0] & 0x7f) << 8) | p[1]; if (msg_length > (1024 * 4)) { OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); return -1; } if (msg_length < SSL3_RT_HEADER_LENGTH - 2) { /* Reject lengths that are too short early. We have already read * |SSL3_RT_HEADER_LENGTH| bytes, so we should not attempt to process an * (invalid) V2ClientHello which would be shorter than that. */ OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_LENGTH_MISMATCH); return -1; } /* Read the remainder of the V2ClientHello. */ ret = ssl_read_buffer_extend_to(ssl, 2 + msg_length); if (ret <= 0) { return ret; } CBS v2_client_hello; CBS_init(&v2_client_hello, ssl_read_buffer(ssl) + 2, msg_length); /* The V2ClientHello without the length is incorporated into the handshake * hash. */ if (!ssl3_update_handshake_hash(ssl, CBS_data(&v2_client_hello), CBS_len(&v2_client_hello))) { return -1; } ssl_do_msg_callback(ssl, 0 /* read */, SSL2_VERSION, 0, CBS_data(&v2_client_hello), CBS_len(&v2_client_hello)); uint8_t msg_type; uint16_t version, cipher_spec_length, session_id_length, challenge_length; CBS cipher_specs, session_id, challenge; if (!CBS_get_u8(&v2_client_hello, &msg_type) || !CBS_get_u16(&v2_client_hello, &version) || !CBS_get_u16(&v2_client_hello, &cipher_spec_length) || !CBS_get_u16(&v2_client_hello, &session_id_length) || !CBS_get_u16(&v2_client_hello, &challenge_length) || !CBS_get_bytes(&v2_client_hello, &cipher_specs, cipher_spec_length) || !CBS_get_bytes(&v2_client_hello, &session_id, session_id_length) || !CBS_get_bytes(&v2_client_hello, &challenge, challenge_length) || CBS_len(&v2_client_hello) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return -1; } /* msg_type has already been checked. */ assert(msg_type == SSL2_MT_CLIENT_HELLO); /* The client_random is the V2ClientHello challenge. Truncate or * left-pad with zeros as needed. */ size_t rand_len = CBS_len(&challenge); if (rand_len > SSL3_RANDOM_SIZE) { rand_len = SSL3_RANDOM_SIZE; } uint8_t random[SSL3_RANDOM_SIZE]; memset(random, 0, SSL3_RANDOM_SIZE); memcpy(random + (SSL3_RANDOM_SIZE - rand_len), CBS_data(&challenge), rand_len); /* Write out an equivalent SSLv3 ClientHello. */ size_t max_v3_client_hello = SSL3_HM_HEADER_LENGTH + 2 /* version */ + SSL3_RANDOM_SIZE + 1 /* session ID length */ + 2 /* cipher list length */ + CBS_len(&cipher_specs) / 3 * 2 + 1 /* compression length */ + 1 /* compression */; CBB client_hello, hello_body, cipher_suites; CBB_zero(&client_hello); if (!BUF_MEM_reserve(ssl->init_buf, max_v3_client_hello) || !CBB_init_fixed(&client_hello, (uint8_t *)ssl->init_buf->data, ssl->init_buf->max) || !CBB_add_u8(&client_hello, SSL3_MT_CLIENT_HELLO) || !CBB_add_u24_length_prefixed(&client_hello, &hello_body) || !CBB_add_u16(&hello_body, version) || !CBB_add_bytes(&hello_body, random, SSL3_RANDOM_SIZE) || /* No session id. */ !CBB_add_u8(&hello_body, 0) || !CBB_add_u16_length_prefixed(&hello_body, &cipher_suites)) { CBB_cleanup(&client_hello); OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return -1; } /* Copy the cipher suites. */ while (CBS_len(&cipher_specs) > 0) { uint32_t cipher_spec; if (!CBS_get_u24(&cipher_specs, &cipher_spec)) { CBB_cleanup(&client_hello); OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return -1; } /* Skip SSLv2 ciphers. */ if ((cipher_spec & 0xff0000) != 0) { continue; } if (!CBB_add_u16(&cipher_suites, cipher_spec)) { CBB_cleanup(&client_hello); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } } /* Add the null compression scheme and finish. */ if (!CBB_add_u8(&hello_body, 1) || !CBB_add_u8(&hello_body, 0) || !CBB_finish(&client_hello, NULL, &ssl->init_buf->length)) { CBB_cleanup(&client_hello); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } /* Consume and discard the V2ClientHello. */ ssl_read_buffer_consume(ssl, 2 + msg_length); ssl_read_buffer_discard(ssl); *out_is_v2_client_hello = 1; return 1; } int ssl3_get_message(SSL *ssl, int msg_type, enum ssl_hash_message_t hash_message) { again: /* Re-create the handshake buffer if needed. */ if (ssl->init_buf == NULL) { ssl->init_buf = BUF_MEM_new(); if (ssl->init_buf == NULL) { return -1; } } if (ssl->server && !ssl->s3->v2_hello_done) { /* Bypass the record layer for the first message to handle V2ClientHello. */ assert(hash_message == ssl_hash_message); int is_v2_client_hello = 0; int ret = read_v2_client_hello(ssl, &is_v2_client_hello); if (ret <= 0) { return ret; } if (is_v2_client_hello) { /* V2ClientHello is hashed separately. */ hash_message = ssl_dont_hash_message; } ssl->s3->v2_hello_done = 1; } if (ssl->s3->tmp.reuse_message) { /* A ssl_dont_hash_message call cannot be combined with reuse_message; the * ssl_dont_hash_message would have to have been applied to the previous * call. */ assert(hash_message == ssl_hash_message); assert(ssl->init_msg != NULL); ssl->s3->tmp.reuse_message = 0; hash_message = ssl_dont_hash_message; } else { ssl3_release_current_message(ssl, 0 /* don't free buffer */); } /* Read the message header, if we haven't yet. */ int ret = extend_handshake_buffer(ssl, SSL3_HM_HEADER_LENGTH); if (ret <= 0) { return ret; } /* Parse out the length. Cap it so the peer cannot force us to buffer up to * 2^24 bytes. */ const uint8_t *p = (uint8_t *)ssl->init_buf->data; size_t msg_len = (((uint32_t)p[1]) << 16) | (((uint32_t)p[2]) << 8) | p[3]; if (msg_len > ssl_max_handshake_message_len(ssl)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); return -1; } /* Read the message body, if we haven't yet. */ ret = extend_handshake_buffer(ssl, SSL3_HM_HEADER_LENGTH + msg_len); if (ret <= 0) { return ret; } /* We have now received a complete message. */ ssl_do_msg_callback(ssl, 0 /* read */, ssl->version, SSL3_RT_HANDSHAKE, ssl->init_buf->data, ssl->init_buf->length); ssl->s3->tmp.message_type = ((const uint8_t *)ssl->init_buf->data)[0]; ssl->init_msg = (uint8_t*)ssl->init_buf->data + SSL3_HM_HEADER_LENGTH; ssl->init_num = ssl->init_buf->length - SSL3_HM_HEADER_LENGTH; /* Ignore stray HelloRequest messages in the handshake before TLS 1.3. Per RFC * 5246, section 7.4.1.1, the server may send HelloRequest at any time. */ if (!ssl->server && SSL_in_init(ssl) && (!ssl->s3->have_version || ssl3_protocol_version(ssl) < TLS1_3_VERSION) && ssl->s3->tmp.message_type == SSL3_MT_HELLO_REQUEST && ssl->init_num == 0) { goto again; } if (msg_type >= 0 && ssl->s3->tmp.message_type != msg_type) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); return -1; } /* Feed this message into MAC computation. */ if (hash_message == ssl_hash_message && !ssl3_hash_current_message(ssl)) { return -1; } return 1; } int ssl3_hash_current_message(SSL *ssl) { return ssl3_update_handshake_hash(ssl, (uint8_t *)ssl->init_buf->data, ssl->init_buf->length); } void ssl3_release_current_message(SSL *ssl, int free_buffer) { if (ssl->init_msg != NULL) { /* |init_buf| never contains data beyond the current message. */ assert(SSL3_HM_HEADER_LENGTH + ssl->init_num == ssl->init_buf->length); /* Clear the current message. */ ssl->init_msg = NULL; ssl->init_num = 0; ssl->init_buf->length = 0; } if (free_buffer) { BUF_MEM_free(ssl->init_buf); ssl->init_buf = NULL; } } int ssl_verify_alarm_type(long type) { int al; switch (type) { case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: case X509_V_ERR_UNABLE_TO_GET_CRL: case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER: al = SSL_AD_UNKNOWN_CA; break; case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: case X509_V_ERR_CERT_NOT_YET_VALID: case X509_V_ERR_CRL_NOT_YET_VALID: case X509_V_ERR_CERT_UNTRUSTED: case X509_V_ERR_CERT_REJECTED: case X509_V_ERR_HOSTNAME_MISMATCH: case X509_V_ERR_EMAIL_MISMATCH: case X509_V_ERR_IP_ADDRESS_MISMATCH: al = SSL_AD_BAD_CERTIFICATE; break; case X509_V_ERR_CERT_SIGNATURE_FAILURE: case X509_V_ERR_CRL_SIGNATURE_FAILURE: al = SSL_AD_DECRYPT_ERROR; break; case X509_V_ERR_CERT_HAS_EXPIRED: case X509_V_ERR_CRL_HAS_EXPIRED: al = SSL_AD_CERTIFICATE_EXPIRED; break; case X509_V_ERR_CERT_REVOKED: al = SSL_AD_CERTIFICATE_REVOKED; break; case X509_V_ERR_UNSPECIFIED: case X509_V_ERR_OUT_OF_MEM: case X509_V_ERR_INVALID_CALL: case X509_V_ERR_STORE_LOOKUP: al = SSL_AD_INTERNAL_ERROR; break; case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: case X509_V_ERR_CERT_CHAIN_TOO_LONG: case X509_V_ERR_PATH_LENGTH_EXCEEDED: case X509_V_ERR_INVALID_CA: al = SSL_AD_UNKNOWN_CA; break; case X509_V_ERR_APPLICATION_VERIFICATION: al = SSL_AD_HANDSHAKE_FAILURE; break; case X509_V_ERR_INVALID_PURPOSE: al = SSL_AD_UNSUPPORTED_CERTIFICATE; break; default: al = SSL_AD_CERTIFICATE_UNKNOWN; break; } return al; }