// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "bytes" "crypto" "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "fmt" "io" "math/big" "net" "strconv" ) type clientHandshakeState struct { c *Conn serverHello *serverHelloMsg hello *clientHelloMsg suite *cipherSuite finishedHash finishedHash keyShares map[CurveID]ecdhCurve masterSecret []byte session *ClientSessionState finishedBytes []byte } func (c *Conn) clientHandshake() error { if c.config == nil { c.config = defaultConfig() } if len(c.config.ServerName) == 0 && !c.config.InsecureSkipVerify { return errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config") } c.sendHandshakeSeq = 0 c.recvHandshakeSeq = 0 nextProtosLength := 0 for _, proto := range c.config.NextProtos { if l := len(proto); l > 255 { return errors.New("tls: invalid NextProtos value") } else { nextProtosLength += 1 + l } } if nextProtosLength > 0xffff { return errors.New("tls: NextProtos values too large") } hello := &clientHelloMsg{ isDTLS: c.isDTLS, vers: c.config.maxVersion(c.isDTLS), compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), ocspStapling: true, sctListSupported: true, serverName: c.config.ServerName, supportedCurves: c.config.curvePreferences(), supportedPoints: []uint8{pointFormatUncompressed}, nextProtoNeg: len(c.config.NextProtos) > 0, secureRenegotiation: []byte{}, alpnProtocols: c.config.NextProtos, duplicateExtension: c.config.Bugs.DuplicateExtension, channelIDSupported: c.config.ChannelID != nil, npnLast: c.config.Bugs.SwapNPNAndALPN, extendedMasterSecret: c.config.maxVersion(c.isDTLS) >= VersionTLS10, srtpProtectionProfiles: c.config.SRTPProtectionProfiles, srtpMasterKeyIdentifier: c.config.Bugs.SRTPMasterKeyIdentifer, customExtension: c.config.Bugs.CustomExtension, } if c.config.Bugs.SendClientVersion != 0 { hello.vers = c.config.Bugs.SendClientVersion } if c.config.Bugs.NoExtendedMasterSecret { hello.extendedMasterSecret = false } if c.config.Bugs.NoSupportedCurves { hello.supportedCurves = nil } if len(c.clientVerify) > 0 && !c.config.Bugs.EmptyRenegotiationInfo { if c.config.Bugs.BadRenegotiationInfo { hello.secureRenegotiation = append(hello.secureRenegotiation, c.clientVerify...) hello.secureRenegotiation[0] ^= 0x80 } else { hello.secureRenegotiation = c.clientVerify } } if c.noRenegotiationInfo() { hello.secureRenegotiation = nil } var keyShares map[CurveID]ecdhCurve if hello.vers >= VersionTLS13 { keyShares = make(map[CurveID]ecdhCurve) hello.hasKeyShares = true curvesToSend := c.config.defaultCurves() for _, curveID := range hello.supportedCurves { if !curvesToSend[curveID] { continue } curve, ok := curveForCurveID(curveID) if !ok { continue } publicKey, err := curve.offer(c.config.rand()) if err != nil { return err } if c.config.Bugs.SendCurve != 0 { curveID = c.config.Bugs.SendCurve } if c.config.Bugs.InvalidECDHPoint { publicKey[0] ^= 0xff } hello.keyShares = append(hello.keyShares, keyShareEntry{ group: curveID, keyExchange: publicKey, }) keyShares[curveID] = curve if c.config.Bugs.DuplicateKeyShares { hello.keyShares = append(hello.keyShares, hello.keyShares[len(hello.keyShares)-1]) } } if c.config.Bugs.MissingKeyShare { hello.hasKeyShares = false } } possibleCipherSuites := c.config.cipherSuites() hello.cipherSuites = make([]uint16, 0, len(possibleCipherSuites)) NextCipherSuite: for _, suiteId := range possibleCipherSuites { for _, suite := range cipherSuites { if suite.id != suiteId { continue } if !c.config.Bugs.EnableAllCiphers { // Don't advertise TLS 1.2-only cipher suites unless // we're attempting TLS 1.2. if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 { continue } // Don't advertise non-DTLS cipher suites in DTLS. if c.isDTLS && suite.flags&suiteNoDTLS != 0 { continue } } hello.cipherSuites = append(hello.cipherSuites, suiteId) continue NextCipherSuite } } if c.config.Bugs.SendRenegotiationSCSV { hello.cipherSuites = append(hello.cipherSuites, renegotiationSCSV) } if c.config.Bugs.SendFallbackSCSV { hello.cipherSuites = append(hello.cipherSuites, fallbackSCSV) } _, err := io.ReadFull(c.config.rand(), hello.random) if err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } if hello.vers >= VersionTLS12 && !c.config.Bugs.NoSignatureAlgorithms { hello.signatureAlgorithms = c.config.verifySignatureAlgorithms() } var session *ClientSessionState var cacheKey string sessionCache := c.config.ClientSessionCache if sessionCache != nil { hello.ticketSupported = !c.config.SessionTicketsDisabled // Try to resume a previously negotiated TLS session, if // available. cacheKey = clientSessionCacheKey(c.conn.RemoteAddr(), c.config) candidateSession, ok := sessionCache.Get(cacheKey) if ok { ticketOk := !c.config.SessionTicketsDisabled || candidateSession.sessionTicket == nil // Check that the ciphersuite/version used for the // previous session are still valid. cipherSuiteOk := false for _, id := range hello.cipherSuites { if id == candidateSession.cipherSuite { cipherSuiteOk = true break } } versOk := candidateSession.vers >= c.config.minVersion(c.isDTLS) && candidateSession.vers <= c.config.maxVersion(c.isDTLS) if ticketOk && versOk && cipherSuiteOk { session = candidateSession } } } if session != nil { ticket := session.sessionTicket if c.config.Bugs.CorruptTicket && len(ticket) > 0 { ticket = make([]byte, len(session.sessionTicket)) copy(ticket, session.sessionTicket) offset := 40 if offset >= len(ticket) { offset = len(ticket) - 1 } ticket[offset] ^= 0x40 } if session.vers >= VersionTLS13 { // TODO(davidben): Offer TLS 1.3 tickets. } else if ticket != nil { hello.sessionTicket = ticket // A random session ID is used to detect when the // server accepted the ticket and is resuming a session // (see RFC 5077). sessionIdLen := 16 if c.config.Bugs.OversizedSessionId { sessionIdLen = 33 } hello.sessionId = make([]byte, sessionIdLen) if _, err := io.ReadFull(c.config.rand(), hello.sessionId); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } } else { hello.sessionId = session.sessionId } } var helloBytes []byte if c.config.Bugs.SendV2ClientHello { // Test that the peer left-pads random. hello.random[0] = 0 v2Hello := &v2ClientHelloMsg{ vers: hello.vers, cipherSuites: hello.cipherSuites, // No session resumption for V2ClientHello. sessionId: nil, challenge: hello.random[1:], } helloBytes = v2Hello.marshal() c.writeV2Record(helloBytes) } else { helloBytes = hello.marshal() if c.config.Bugs.PartialClientFinishedWithClientHello { // Include one byte of Finished. We can compute it // without completing the handshake. This assumes we // negotiate TLS 1.3 with no HelloRetryRequest or // CertificateRequest. toWrite := make([]byte, 0, len(helloBytes)+1) toWrite = append(toWrite, helloBytes...) toWrite = append(toWrite, typeFinished) c.writeRecord(recordTypeHandshake, toWrite) } else { c.writeRecord(recordTypeHandshake, helloBytes) } } c.flushHandshake() if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } if c.isDTLS { helloVerifyRequest, ok := msg.(*helloVerifyRequestMsg) if ok { if helloVerifyRequest.vers != VersionTLS10 { // Per RFC 6347, the version field in // HelloVerifyRequest SHOULD be always DTLS // 1.0. Enforce this for testing purposes. return errors.New("dtls: bad HelloVerifyRequest version") } hello.raw = nil hello.cookie = helloVerifyRequest.cookie helloBytes = hello.marshal() c.writeRecord(recordTypeHandshake, helloBytes) c.flushHandshake() if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err = c.readHandshake() if err != nil { return err } } } var serverVersion uint16 switch m := msg.(type) { case *helloRetryRequestMsg: serverVersion = m.vers case *serverHelloMsg: serverVersion = m.vers default: c.sendAlert(alertUnexpectedMessage) return fmt.Errorf("tls: received unexpected message of type %T when waiting for HelloRetryRequest or ServerHello", msg) } var ok bool c.vers, ok = c.config.mutualVersion(serverVersion, c.isDTLS) if !ok { c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: server selected unsupported protocol version %x", c.vers) } c.haveVers = true helloRetryRequest, haveHelloRetryRequest := msg.(*helloRetryRequestMsg) var secondHelloBytes []byte if haveHelloRetryRequest { var hrrCurveFound bool if c.config.Bugs.MisinterpretHelloRetryRequestCurve != 0 { helloRetryRequest.selectedGroup = c.config.Bugs.MisinterpretHelloRetryRequestCurve } group := helloRetryRequest.selectedGroup for _, curveID := range hello.supportedCurves { if group == curveID { hrrCurveFound = true break } } if !hrrCurveFound || keyShares[group] != nil { c.sendAlert(alertHandshakeFailure) return errors.New("tls: received invalid HelloRetryRequest") } curve, ok := curveForCurveID(group) if !ok { return errors.New("tls: Unable to get curve requested in HelloRetryRequest") } publicKey, err := curve.offer(c.config.rand()) if err != nil { return err } keyShares[group] = curve hello.keyShares = append(hello.keyShares, keyShareEntry{ group: group, keyExchange: publicKey, }) if c.config.Bugs.SecondClientHelloMissingKeyShare { hello.hasKeyShares = false } hello.hasEarlyData = false hello.earlyDataContext = nil hello.raw = nil secondHelloBytes = hello.marshal() c.writeRecord(recordTypeHandshake, secondHelloBytes) c.flushHandshake() msg, err = c.readHandshake() if err != nil { return err } } serverHello, ok := msg.(*serverHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverHello, msg) } if c.vers != serverHello.vers { c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: server sent non-matching version %x vs %x", serverHello.vers, c.vers) } // Check for downgrade signals in the server random, per // draft-ietf-tls-tls13-14, section 6.3.1.2. if c.vers <= VersionTLS12 && c.config.maxVersion(c.isDTLS) >= VersionTLS13 { if bytes.Equal(serverHello.random[len(serverHello.random)-8:], downgradeTLS13) { c.sendAlert(alertProtocolVersion) return errors.New("tls: downgrade from TLS 1.3 detected") } } if c.vers <= VersionTLS11 && c.config.maxVersion(c.isDTLS) >= VersionTLS12 { if bytes.Equal(serverHello.random[len(serverHello.random)-8:], downgradeTLS12) { c.sendAlert(alertProtocolVersion) return errors.New("tls: downgrade from TLS 1.2 detected") } } suite := mutualCipherSuite(c.config.cipherSuites(), serverHello.cipherSuite) if suite == nil { c.sendAlert(alertHandshakeFailure) return fmt.Errorf("tls: server selected an unsupported cipher suite") } if haveHelloRetryRequest && (helloRetryRequest.cipherSuite != serverHello.cipherSuite || helloRetryRequest.selectedGroup != serverHello.keyShare.group) { c.sendAlert(alertHandshakeFailure) return errors.New("tls: ServerHello parameters did not match HelloRetryRequest") } hs := &clientHandshakeState{ c: c, serverHello: serverHello, hello: hello, suite: suite, finishedHash: newFinishedHash(c.vers, suite), keyShares: keyShares, session: session, } hs.writeHash(helloBytes, hs.c.sendHandshakeSeq-1) if haveHelloRetryRequest { hs.writeServerHash(helloRetryRequest.marshal()) hs.writeClientHash(secondHelloBytes) } hs.writeServerHash(hs.serverHello.marshal()) if c.vers >= VersionTLS13 { if err := hs.doTLS13Handshake(); err != nil { return err } } else { if c.config.Bugs.EarlyChangeCipherSpec > 0 { hs.establishKeys() c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) } if hs.serverHello.compressionMethod != compressionNone { c.sendAlert(alertUnexpectedMessage) return errors.New("tls: server selected unsupported compression format") } err = hs.processServerExtensions(&serverHello.extensions) if err != nil { return err } isResume, err := hs.processServerHello() if err != nil { return err } if isResume { if c.config.Bugs.EarlyChangeCipherSpec == 0 { if err := hs.establishKeys(); err != nil { return err } } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(c.firstFinished[:]); err != nil { return err } if err := hs.sendFinished(nil, isResume); err != nil { return err } } else { if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.sendFinished(c.firstFinished[:], isResume); err != nil { return err } // Most retransmits are triggered by a timeout, but the final // leg of the handshake is retransmited upon re-receiving a // Finished. if err := c.simulatePacketLoss(func() { c.writeRecord(recordTypeHandshake, hs.finishedBytes) c.flushHandshake() }); err != nil { return err } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(nil); err != nil { return err } } if sessionCache != nil && hs.session != nil && session != hs.session { if c.config.Bugs.RequireSessionTickets && len(hs.session.sessionTicket) == 0 { return errors.New("tls: new session used session IDs instead of tickets") } sessionCache.Put(cacheKey, hs.session) } c.didResume = isResume c.exporterSecret = hs.masterSecret } c.handshakeComplete = true c.cipherSuite = suite copy(c.clientRandom[:], hs.hello.random) copy(c.serverRandom[:], hs.serverHello.random) return nil } func (hs *clientHandshakeState) doTLS13Handshake() error { c := hs.c // Once the PRF hash is known, TLS 1.3 does not require a handshake // buffer. hs.finishedHash.discardHandshakeBuffer() zeroSecret := hs.finishedHash.zeroSecret() // Resolve PSK and compute the early secret. // // TODO(davidben): This will need to be handled slightly earlier once // 0-RTT is implemented. var psk []byte if hs.suite.flags&suitePSK != 0 { if !hs.serverHello.hasPSKIdentity { c.sendAlert(alertMissingExtension) return errors.New("tls: server omitted the PSK identity extension") } // TODO(davidben): Support PSK ciphers and PSK resumption. Set // the resumption context appropriately if resuming. return errors.New("tls: PSK ciphers not implemented for TLS 1.3") } else { if hs.serverHello.hasPSKIdentity { c.sendAlert(alertUnsupportedExtension) return errors.New("tls: server sent unexpected PSK identity") } psk = zeroSecret hs.finishedHash.setResumptionContext(zeroSecret) } earlySecret := hs.finishedHash.extractKey(zeroSecret, psk) // Resolve ECDHE and compute the handshake secret. var ecdheSecret []byte if hs.suite.flags&suiteECDHE != 0 && !c.config.Bugs.MissingKeyShare && !c.config.Bugs.SecondClientHelloMissingKeyShare { if !hs.serverHello.hasKeyShare { c.sendAlert(alertMissingExtension) return errors.New("tls: server omitted the key share extension") } curve, ok := hs.keyShares[hs.serverHello.keyShare.group] if !ok { c.sendAlert(alertHandshakeFailure) return errors.New("tls: server selected an unsupported group") } c.curveID = hs.serverHello.keyShare.group var err error ecdheSecret, err = curve.finish(hs.serverHello.keyShare.keyExchange) if err != nil { return err } } else { if hs.serverHello.hasKeyShare { c.sendAlert(alertUnsupportedExtension) return errors.New("tls: server sent unexpected key share extension") } ecdheSecret = zeroSecret } // Compute the handshake secret. handshakeSecret := hs.finishedHash.extractKey(earlySecret, ecdheSecret) // Switch to handshake traffic keys. handshakeTrafficSecret := hs.finishedHash.deriveSecret(handshakeSecret, handshakeTrafficLabel) c.out.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, handshakeTrafficSecret, handshakePhase, clientWrite), c.vers) c.in.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, handshakeTrafficSecret, handshakePhase, serverWrite), c.vers) msg, err := c.readHandshake() if err != nil { return err } encryptedExtensions, ok := msg.(*encryptedExtensionsMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(encryptedExtensions, msg) } hs.writeServerHash(encryptedExtensions.marshal()) err = hs.processServerExtensions(&encryptedExtensions.extensions) if err != nil { return err } var chainToSend *Certificate var certReq *certificateRequestMsg if hs.suite.flags&suitePSK != 0 { if encryptedExtensions.extensions.ocspResponse != nil { c.sendAlert(alertUnsupportedExtension) return errors.New("tls: server sent OCSP response without a certificate") } if encryptedExtensions.extensions.sctList != nil { c.sendAlert(alertUnsupportedExtension) return errors.New("tls: server sent SCT list without a certificate") } } else { c.ocspResponse = encryptedExtensions.extensions.ocspResponse c.sctList = encryptedExtensions.extensions.sctList msg, err := c.readHandshake() if err != nil { return err } var ok bool certReq, ok = msg.(*certificateRequestMsg) if ok { if c.config.Bugs.IgnorePeerSignatureAlgorithmPreferences { certReq.signatureAlgorithms = c.config.signSignatureAlgorithms() } hs.writeServerHash(certReq.marshal()) chainToSend, err = selectClientCertificate(c, certReq) if err != nil { return err } msg, err = c.readHandshake() if err != nil { return err } } certMsg, ok := msg.(*certificateMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.writeServerHash(certMsg.marshal()) if err := hs.verifyCertificates(certMsg); err != nil { return err } leaf := c.peerCertificates[0] msg, err = c.readHandshake() if err != nil { return err } certVerifyMsg, ok := msg.(*certificateVerifyMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certVerifyMsg, msg) } c.peerSignatureAlgorithm = certVerifyMsg.signatureAlgorithm input := hs.finishedHash.certificateVerifyInput(serverCertificateVerifyContextTLS13) err = verifyMessage(c.vers, leaf.PublicKey, c.config, certVerifyMsg.signatureAlgorithm, input, certVerifyMsg.signature) if err != nil { return err } hs.writeServerHash(certVerifyMsg.marshal()) } msg, err = c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverFinished, msg) } verify := hs.finishedHash.serverSum(handshakeTrafficSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: server's Finished message was incorrect") } hs.writeServerHash(serverFinished.marshal()) // The various secrets do not incorporate the client's final leg, so // derive them now before updating the handshake context. masterSecret := hs.finishedHash.extractKey(handshakeSecret, zeroSecret) trafficSecret := hs.finishedHash.deriveSecret(masterSecret, applicationTrafficLabel) if certReq != nil && !c.config.Bugs.SkipClientCertificate { certMsg := &certificateMsg{ hasRequestContext: true, requestContext: certReq.requestContext, } if chainToSend != nil { certMsg.certificates = chainToSend.Certificate } hs.writeClientHash(certMsg.marshal()) c.writeRecord(recordTypeHandshake, certMsg.marshal()) if chainToSend != nil { certVerify := &certificateVerifyMsg{ hasSignatureAlgorithm: true, } // Determine the hash to sign. privKey := chainToSend.PrivateKey var err error certVerify.signatureAlgorithm, err = selectSignatureAlgorithm(c.vers, privKey, c.config, certReq.signatureAlgorithms) if err != nil { c.sendAlert(alertInternalError) return err } input := hs.finishedHash.certificateVerifyInput(clientCertificateVerifyContextTLS13) certVerify.signature, err = signMessage(c.vers, privKey, c.config, certVerify.signatureAlgorithm, input) if err != nil { c.sendAlert(alertInternalError) return err } if c.config.Bugs.SendSignatureAlgorithm != 0 { certVerify.signatureAlgorithm = c.config.Bugs.SendSignatureAlgorithm } hs.writeClientHash(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } } // Send a client Finished message. finished := new(finishedMsg) finished.verifyData = hs.finishedHash.clientSum(handshakeTrafficSecret) if c.config.Bugs.BadFinished { finished.verifyData[0]++ } hs.writeClientHash(finished.marshal()) if c.config.Bugs.PartialClientFinishedWithClientHello { // The first byte has already been sent. c.writeRecord(recordTypeHandshake, finished.marshal()[1:]) } else { c.writeRecord(recordTypeHandshake, finished.marshal()) } c.flushHandshake() // Switch to application data keys. c.out.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, trafficSecret, applicationPhase, clientWrite), c.vers) c.in.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, trafficSecret, applicationPhase, serverWrite), c.vers) // TODO(davidben): Save the traffic secret for KeyUpdate. c.exporterSecret = hs.finishedHash.deriveSecret(masterSecret, exporterLabel) c.resumptionSecret = hs.finishedHash.deriveSecret(masterSecret, resumptionLabel) return nil } func (hs *clientHandshakeState) doFullHandshake() error { c := hs.c var leaf *x509.Certificate if hs.suite.flags&suitePSK == 0 { msg, err := c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.writeServerHash(certMsg.marshal()) if err := hs.verifyCertificates(certMsg); err != nil { return err } leaf = c.peerCertificates[0] } if hs.serverHello.extensions.ocspStapling { msg, err := c.readHandshake() if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(cs, msg) } hs.writeServerHash(cs.marshal()) if cs.statusType == statusTypeOCSP { c.ocspResponse = cs.response } } msg, err := c.readHandshake() if err != nil { return err } keyAgreement := hs.suite.ka(c.vers) skx, ok := msg.(*serverKeyExchangeMsg) if ok { hs.writeServerHash(skx.marshal()) err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, leaf, skx) if err != nil { c.sendAlert(alertUnexpectedMessage) return err } if ecdhe, ok := keyAgreement.(*ecdheKeyAgreement); ok { c.curveID = ecdhe.curveID } c.peerSignatureAlgorithm = keyAgreement.peerSignatureAlgorithm() msg, err = c.readHandshake() if err != nil { return err } } var chainToSend *Certificate var certRequested bool certReq, ok := msg.(*certificateRequestMsg) if ok { certRequested = true if c.config.Bugs.IgnorePeerSignatureAlgorithmPreferences { certReq.signatureAlgorithms = c.config.signSignatureAlgorithms() } hs.writeServerHash(certReq.marshal()) chainToSend, err = selectClientCertificate(c, certReq) if err != nil { return err } msg, err = c.readHandshake() if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(shd, msg) } hs.writeServerHash(shd.marshal()) // If the server requested a certificate then we have to send a // Certificate message in TLS, even if it's empty because we don't have // a certificate to send. In SSL 3.0, skip the message and send a // no_certificate warning alert. if certRequested { if c.vers == VersionSSL30 && chainToSend == nil { c.sendAlert(alertNoCertficate) } else if !c.config.Bugs.SkipClientCertificate { certMsg := new(certificateMsg) if chainToSend != nil { certMsg.certificates = chainToSend.Certificate } hs.writeClientHash(certMsg.marshal()) c.writeRecord(recordTypeHandshake, certMsg.marshal()) } } preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, leaf) if err != nil { c.sendAlert(alertInternalError) return err } if ckx != nil { if c.config.Bugs.EarlyChangeCipherSpec < 2 { hs.writeClientHash(ckx.marshal()) } c.writeRecord(recordTypeHandshake, ckx.marshal()) } if hs.serverHello.extensions.extendedMasterSecret && c.vers >= VersionTLS10 { hs.masterSecret = extendedMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.finishedHash) c.extendedMasterSecret = true } else { if c.config.Bugs.RequireExtendedMasterSecret { return errors.New("tls: extended master secret required but not supported by peer") } hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.hello.random, hs.serverHello.random) } if chainToSend != nil { certVerify := &certificateVerifyMsg{ hasSignatureAlgorithm: c.vers >= VersionTLS12, } // Determine the hash to sign. privKey := c.config.Certificates[0].PrivateKey if certVerify.hasSignatureAlgorithm { certVerify.signatureAlgorithm, err = selectSignatureAlgorithm(c.vers, privKey, c.config, certReq.signatureAlgorithms) if err != nil { c.sendAlert(alertInternalError) return err } } if c.vers > VersionSSL30 { certVerify.signature, err = signMessage(c.vers, privKey, c.config, certVerify.signatureAlgorithm, hs.finishedHash.buffer) if err == nil && c.config.Bugs.SendSignatureAlgorithm != 0 { certVerify.signatureAlgorithm = c.config.Bugs.SendSignatureAlgorithm } } else { // SSL 3.0's client certificate construction is // incompatible with signatureAlgorithm. rsaKey, ok := privKey.(*rsa.PrivateKey) if !ok { err = errors.New("unsupported signature type for client certificate") } else { digest := hs.finishedHash.hashForClientCertificateSSL3(hs.masterSecret) if c.config.Bugs.InvalidSignature { digest[0] ^= 0x80 } certVerify.signature, err = rsa.SignPKCS1v15(c.config.rand(), rsaKey, crypto.MD5SHA1, digest) } } if err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to sign handshake with client certificate: " + err.Error()) } hs.writeClientHash(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } // flushHandshake will be called in sendFinished. hs.finishedHash.discardHandshakeBuffer() return nil } func (hs *clientHandshakeState) verifyCertificates(certMsg *certificateMsg) error { c := hs.c if len(certMsg.certificates) == 0 { c.sendAlert(alertIllegalParameter) return errors.New("tls: no certificates sent") } certs := make([]*x509.Certificate, len(certMsg.certificates)) for i, asn1Data := range certMsg.certificates { cert, err := x509.ParseCertificate(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return errors.New("tls: failed to parse certificate from server: " + err.Error()) } certs[i] = cert } if !c.config.InsecureSkipVerify { opts := x509.VerifyOptions{ Roots: c.config.RootCAs, CurrentTime: c.config.time(), DNSName: c.config.ServerName, Intermediates: x509.NewCertPool(), } for i, cert := range certs { if i == 0 { continue } opts.Intermediates.AddCert(cert) } var err error c.verifiedChains, err = certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return err } } switch certs[0].PublicKey.(type) { case *rsa.PublicKey, *ecdsa.PublicKey: break default: c.sendAlert(alertUnsupportedCertificate) return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey) } c.peerCertificates = certs return nil } func (hs *clientHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen(c.vers)) var clientCipher, serverCipher interface{} var clientHash, serverHash macFunction if hs.suite.cipher != nil { clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */) clientHash = hs.suite.mac(c.vers, clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */) serverHash = hs.suite.mac(c.vers, serverMAC) } else { clientCipher = hs.suite.aead(c.vers, clientKey, clientIV) serverCipher = hs.suite.aead(c.vers, serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, serverCipher, serverHash) c.out.prepareCipherSpec(c.vers, clientCipher, clientHash) return nil } func (hs *clientHandshakeState) processServerExtensions(serverExtensions *serverExtensions) error { c := hs.c if c.vers < VersionTLS13 { if c.config.Bugs.RequireRenegotiationInfo && serverExtensions.secureRenegotiation == nil { return errors.New("tls: renegotiation extension missing") } if len(c.clientVerify) > 0 && !c.noRenegotiationInfo() { var expectedRenegInfo []byte expectedRenegInfo = append(expectedRenegInfo, c.clientVerify...) expectedRenegInfo = append(expectedRenegInfo, c.serverVerify...) if !bytes.Equal(serverExtensions.secureRenegotiation, expectedRenegInfo) { c.sendAlert(alertHandshakeFailure) return fmt.Errorf("tls: renegotiation mismatch") } } } else if serverExtensions.secureRenegotiation != nil { return errors.New("tls: renegotiation info sent in TLS 1.3") } if expected := c.config.Bugs.ExpectedCustomExtension; expected != nil { if serverExtensions.customExtension != *expected { return fmt.Errorf("tls: bad custom extension contents %q", serverExtensions.customExtension) } } clientDidNPN := hs.hello.nextProtoNeg clientDidALPN := len(hs.hello.alpnProtocols) > 0 serverHasNPN := serverExtensions.nextProtoNeg serverHasALPN := len(serverExtensions.alpnProtocol) > 0 if !clientDidNPN && serverHasNPN { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised unrequested NPN extension") } if !clientDidALPN && serverHasALPN { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised unrequested ALPN extension") } if serverHasNPN && serverHasALPN { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised both NPN and ALPN extensions") } if serverHasALPN { c.clientProtocol = serverExtensions.alpnProtocol c.clientProtocolFallback = false c.usedALPN = true } if serverHasNPN && c.vers >= VersionTLS13 { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised NPN over TLS 1.3") } if !hs.hello.channelIDSupported && serverExtensions.channelIDRequested { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised unrequested Channel ID extension") } if serverExtensions.channelIDRequested && c.vers >= VersionTLS13 { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised Channel ID over TLS 1.3") } if serverExtensions.extendedMasterSecret && c.vers >= VersionTLS13 { return errors.New("tls: server advertised extended master secret over TLS 1.3") } if serverExtensions.ticketSupported && c.vers >= VersionTLS13 { return errors.New("tls: server advertised ticket extension over TLS 1.3") } if serverExtensions.srtpProtectionProfile != 0 { if serverExtensions.srtpMasterKeyIdentifier != "" { return errors.New("tls: server selected SRTP MKI value") } found := false for _, p := range c.config.SRTPProtectionProfiles { if p == serverExtensions.srtpProtectionProfile { found = true break } } if !found { return errors.New("tls: server advertised unsupported SRTP profile") } c.srtpProtectionProfile = serverExtensions.srtpProtectionProfile } return nil } func (hs *clientHandshakeState) serverResumedSession() bool { // If the server responded with the same sessionId then it means the // sessionTicket is being used to resume a TLS session. return hs.session != nil && hs.hello.sessionId != nil && bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId) } func (hs *clientHandshakeState) processServerHello() (bool, error) { c := hs.c if hs.serverResumedSession() { // For test purposes, assert that the server never accepts the // resumption offer on renegotiation. if c.cipherSuite != nil && c.config.Bugs.FailIfResumeOnRenego { return false, errors.New("tls: server resumed session on renegotiation") } if hs.serverHello.extensions.sctList != nil { return false, errors.New("tls: server sent SCT extension on session resumption") } if hs.serverHello.extensions.ocspStapling { return false, errors.New("tls: server sent OCSP extension on session resumption") } // Restore masterSecret and peerCerts from previous state hs.masterSecret = hs.session.masterSecret c.peerCertificates = hs.session.serverCertificates c.extendedMasterSecret = hs.session.extendedMasterSecret c.sctList = hs.session.sctList c.ocspResponse = hs.session.ocspResponse hs.finishedHash.discardHandshakeBuffer() return true, nil } if hs.serverHello.extensions.sctList != nil { c.sctList = hs.serverHello.extensions.sctList } return false, nil } func (hs *clientHandshakeState) readFinished(out []byte) error { c := hs.c c.readRecord(recordTypeChangeCipherSpec) if err := c.in.error(); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverFinished, msg) } if c.config.Bugs.EarlyChangeCipherSpec == 0 { verify := hs.finishedHash.serverSum(hs.masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: server's Finished message was incorrect") } } c.serverVerify = append(c.serverVerify[:0], serverFinished.verifyData...) copy(out, serverFinished.verifyData) hs.writeServerHash(serverFinished.marshal()) return nil } func (hs *clientHandshakeState) readSessionTicket() error { c := hs.c // Create a session with no server identifier. Either a // session ID or session ticket will be attached. session := &ClientSessionState{ vers: c.vers, cipherSuite: hs.suite.id, masterSecret: hs.masterSecret, handshakeHash: hs.finishedHash.server.Sum(nil), serverCertificates: c.peerCertificates, sctList: c.sctList, ocspResponse: c.ocspResponse, } if !hs.serverHello.extensions.ticketSupported { if c.config.Bugs.ExpectNewTicket { return errors.New("tls: expected new ticket") } if hs.session == nil && len(hs.serverHello.sessionId) > 0 { session.sessionId = hs.serverHello.sessionId hs.session = session } return nil } if c.vers == VersionSSL30 { return errors.New("tls: negotiated session tickets in SSL 3.0") } msg, err := c.readHandshake() if err != nil { return err } sessionTicketMsg, ok := msg.(*newSessionTicketMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(sessionTicketMsg, msg) } session.sessionTicket = sessionTicketMsg.ticket hs.session = session hs.writeServerHash(sessionTicketMsg.marshal()) return nil } func (hs *clientHandshakeState) sendFinished(out []byte, isResume bool) error { c := hs.c var postCCSMsgs [][]byte seqno := hs.c.sendHandshakeSeq if hs.serverHello.extensions.nextProtoNeg { nextProto := new(nextProtoMsg) proto, fallback := mutualProtocol(c.config.NextProtos, hs.serverHello.extensions.nextProtos) nextProto.proto = proto c.clientProtocol = proto c.clientProtocolFallback = fallback nextProtoBytes := nextProto.marshal() hs.writeHash(nextProtoBytes, seqno) seqno++ postCCSMsgs = append(postCCSMsgs, nextProtoBytes) } if hs.serverHello.extensions.channelIDRequested { channelIDMsg := new(channelIDMsg) if c.config.ChannelID.Curve != elliptic.P256() { return fmt.Errorf("tls: Channel ID is not on P-256.") } var resumeHash []byte if isResume { resumeHash = hs.session.handshakeHash } r, s, err := ecdsa.Sign(c.config.rand(), c.config.ChannelID, hs.finishedHash.hashForChannelID(resumeHash)) if err != nil { return err } channelID := make([]byte, 128) writeIntPadded(channelID[0:32], c.config.ChannelID.X) writeIntPadded(channelID[32:64], c.config.ChannelID.Y) writeIntPadded(channelID[64:96], r) writeIntPadded(channelID[96:128], s) channelIDMsg.channelID = channelID c.channelID = &c.config.ChannelID.PublicKey channelIDMsgBytes := channelIDMsg.marshal() hs.writeHash(channelIDMsgBytes, seqno) seqno++ postCCSMsgs = append(postCCSMsgs, channelIDMsgBytes) } finished := new(finishedMsg) if c.config.Bugs.EarlyChangeCipherSpec == 2 { finished.verifyData = hs.finishedHash.clientSum(nil) } else { finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret) } copy(out, finished.verifyData) if c.config.Bugs.BadFinished { finished.verifyData[0]++ } c.clientVerify = append(c.clientVerify[:0], finished.verifyData...) hs.finishedBytes = finished.marshal() hs.writeHash(hs.finishedBytes, seqno) postCCSMsgs = append(postCCSMsgs, hs.finishedBytes) if c.config.Bugs.FragmentAcrossChangeCipherSpec { c.writeRecord(recordTypeHandshake, postCCSMsgs[0][:5]) postCCSMsgs[0] = postCCSMsgs[0][5:] } else if c.config.Bugs.SendUnencryptedFinished { c.writeRecord(recordTypeHandshake, postCCSMsgs[0]) postCCSMsgs = postCCSMsgs[1:] } c.flushHandshake() if !c.config.Bugs.SkipChangeCipherSpec && c.config.Bugs.EarlyChangeCipherSpec == 0 { ccs := []byte{1} if c.config.Bugs.BadChangeCipherSpec != nil { ccs = c.config.Bugs.BadChangeCipherSpec } c.writeRecord(recordTypeChangeCipherSpec, ccs) } if c.config.Bugs.AppDataAfterChangeCipherSpec != nil { c.writeRecord(recordTypeApplicationData, c.config.Bugs.AppDataAfterChangeCipherSpec) } if c.config.Bugs.AlertAfterChangeCipherSpec != 0 { c.sendAlert(c.config.Bugs.AlertAfterChangeCipherSpec) return errors.New("tls: simulating post-CCS alert") } if !c.config.Bugs.SkipFinished { for _, msg := range postCCSMsgs { c.writeRecord(recordTypeHandshake, msg) } c.flushHandshake() } return nil } func (hs *clientHandshakeState) writeClientHash(msg []byte) { // writeClientHash is called before writeRecord. hs.writeHash(msg, hs.c.sendHandshakeSeq) } func (hs *clientHandshakeState) writeServerHash(msg []byte) { // writeServerHash is called after readHandshake. hs.writeHash(msg, hs.c.recvHandshakeSeq-1) } func (hs *clientHandshakeState) writeHash(msg []byte, seqno uint16) { if hs.c.isDTLS { // This is somewhat hacky. DTLS hashes a slightly different format. // First, the TLS header. hs.finishedHash.Write(msg[:4]) // Then the sequence number and reassembled fragment offset (always 0). hs.finishedHash.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) // Then the reassembled fragment (always equal to the message length). hs.finishedHash.Write(msg[1:4]) // And then the message body. hs.finishedHash.Write(msg[4:]) } else { hs.finishedHash.Write(msg) } } // selectClientCertificate selects a certificate for use with the given // certificate, or none if none match. It may return a particular certificate or // nil on success, or an error on internal error. func selectClientCertificate(c *Conn, certReq *certificateRequestMsg) (*Certificate, error) { // RFC 4346 on the certificateAuthorities field: // A list of the distinguished names of acceptable certificate // authorities. These distinguished names may specify a desired // distinguished name for a root CA or for a subordinate CA; thus, this // message can be used to describe both known roots and a desired // authorization space. If the certificate_authorities list is empty // then the client MAY send any certificate of the appropriate // ClientCertificateType, unless there is some external arrangement to // the contrary. var rsaAvail, ecdsaAvail bool if !certReq.hasRequestContext { for _, certType := range certReq.certificateTypes { switch certType { case CertTypeRSASign: rsaAvail = true case CertTypeECDSASign: ecdsaAvail = true } } } // We need to search our list of client certs for one // where SignatureAlgorithm is RSA and the Issuer is in // certReq.certificateAuthorities findCert: for i, chain := range c.config.Certificates { if !certReq.hasRequestContext && !rsaAvail && !ecdsaAvail { continue } // Ensure the private key supports one of the advertised // signature algorithms. if certReq.hasSignatureAlgorithm { if _, err := selectSignatureAlgorithm(c.vers, chain.PrivateKey, c.config, certReq.signatureAlgorithms); err != nil { continue } } for j, cert := range chain.Certificate { x509Cert := chain.Leaf // parse the certificate if this isn't the leaf // node, or if chain.Leaf was nil if j != 0 || x509Cert == nil { var err error if x509Cert, err = x509.ParseCertificate(cert); err != nil { c.sendAlert(alertInternalError) return nil, errors.New("tls: failed to parse client certificate #" + strconv.Itoa(i) + ": " + err.Error()) } } if !certReq.hasRequestContext { switch { case rsaAvail && x509Cert.PublicKeyAlgorithm == x509.RSA: case ecdsaAvail && x509Cert.PublicKeyAlgorithm == x509.ECDSA: default: continue findCert } } if len(certReq.certificateAuthorities) == 0 { // They gave us an empty list, so just take the // first certificate of valid type from // c.config.Certificates. return &chain, nil } for _, ca := range certReq.certificateAuthorities { if bytes.Equal(x509Cert.RawIssuer, ca) { return &chain, nil } } } } return nil, nil } // clientSessionCacheKey returns a key used to cache sessionTickets that could // be used to resume previously negotiated TLS sessions with a server. func clientSessionCacheKey(serverAddr net.Addr, config *Config) string { if len(config.ServerName) > 0 { return config.ServerName } return serverAddr.String() } // mutualProtocol finds the mutual Next Protocol Negotiation or ALPN protocol // given list of possible protocols and a list of the preference order. The // first list must not be empty. It returns the resulting protocol and flag // indicating if the fallback case was reached. func mutualProtocol(protos, preferenceProtos []string) (string, bool) { for _, s := range preferenceProtos { for _, c := range protos { if s == c { return s, false } } } return protos[0], true } // writeIntPadded writes x into b, padded up with leading zeros as // needed. func writeIntPadded(b []byte, x *big.Int) { for i := range b { b[i] = 0 } xb := x.Bytes() copy(b[len(b)-len(xb):], xb) }