/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // A 64-bit implementation of the NIST P-256 elliptic curve point // multiplication // // OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. // Otherwise based on Emilia's P224 work, which was inspired by my curve25519 // work which got its smarts from Daniel J. Bernstein's work on the same. #include #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include "../delocate.h" #include "../../internal.h" #include "internal.h" // The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We // can serialise an element of this field into 32 bytes. We call this an // felem_bytearray. typedef uint8_t felem_bytearray[32]; // The representation of field elements. // ------------------------------------ // // We represent field elements with either four 128-bit values, eight 128-bit // values, or four 64-bit values. The field element represented is: // v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) // or: // v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) // // 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits // apart, but are 128-bits wide, the most significant bits of each limb overlap // with the least significant bits of the next. // // A field element with four limbs is an 'felem'. One with eight limbs is a // 'longfelem' // // A field element with four, 64-bit values is called a 'smallfelem'. Small // values are used as intermediate values before multiplication. #define NLIMBS 4 typedef uint128_t limb; typedef limb felem[NLIMBS]; typedef limb longfelem[NLIMBS * 2]; typedef uint64_t smallfelem[NLIMBS]; // This is the value of the prime as four 64-bit words, little-endian. static const uint64_t kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul}; static const uint64_t bottom63bits = 0x7ffffffffffffffful; static uint64_t load_u64(const uint8_t in[8]) { uint64_t ret; OPENSSL_memcpy(&ret, in, sizeof(ret)); return ret; } static void store_u64(uint8_t out[8], uint64_t in) { OPENSSL_memcpy(out, &in, sizeof(in)); } // bin32_to_felem takes a little-endian byte array and converts it into felem // form. This assumes that the CPU is little-endian. static void bin32_to_felem(felem out, const uint8_t in[32]) { out[0] = load_u64(&in[0]); out[1] = load_u64(&in[8]); out[2] = load_u64(&in[16]); out[3] = load_u64(&in[24]); } // smallfelem_to_bin32 takes a smallfelem and serialises into a little endian, // 32 byte array. This assumes that the CPU is little-endian. static void smallfelem_to_bin32(uint8_t out[32], const smallfelem in) { store_u64(&out[0], in[0]); store_u64(&out[8], in[1]); store_u64(&out[16], in[2]); store_u64(&out[24], in[3]); } // To preserve endianness when using BN_bn2bin and BN_bin2bn. static void flip_endian(uint8_t *out, const uint8_t *in, size_t len) { for (size_t i = 0; i < len; ++i) { out[i] = in[len - 1 - i]; } } // BN_to_felem converts an OpenSSL BIGNUM into an felem. static int BN_to_felem(felem out, const BIGNUM *bn) { if (BN_is_negative(bn)) { OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } felem_bytearray b_out; // BN_bn2bin eats leading zeroes OPENSSL_memset(b_out, 0, sizeof(b_out)); size_t num_bytes = BN_num_bytes(bn); if (num_bytes > sizeof(b_out)) { OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } felem_bytearray b_in; num_bytes = BN_bn2bin(bn, b_in); flip_endian(b_out, b_in, num_bytes); bin32_to_felem(out, b_out); return 1; } // felem_to_BN converts an felem into an OpenSSL BIGNUM. static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) { felem_bytearray b_in, b_out; smallfelem_to_bin32(b_in, in); flip_endian(b_out, b_in, sizeof(b_out)); return BN_bin2bn(b_out, sizeof(b_out), out); } // Field operations. static void felem_assign(felem out, const felem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } // felem_sum sets out = out + in. static void felem_sum(felem out, const felem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } // felem_small_sum sets out = out + in. static void felem_small_sum(felem out, const smallfelem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } // felem_scalar sets out = out * scalar static void felem_scalar(felem out, const uint64_t scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; } // longfelem_scalar sets out = out * scalar static void longfelem_scalar(longfelem out, const uint64_t scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; out[7] *= scalar; } #define two105m41m9 ((((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)) #define two105 (((limb)1) << 105) #define two105m41p9 ((((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)) // zero105 is 0 mod p static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9}; // smallfelem_neg sets |out| to |-small| // On exit: // out[i] < out[i] + 2^105 static void smallfelem_neg(felem out, const smallfelem small) { // In order to prevent underflow, we subtract from 0 mod p. out[0] = zero105[0] - small[0]; out[1] = zero105[1] - small[1]; out[2] = zero105[2] - small[2]; out[3] = zero105[3] - small[3]; } // felem_diff subtracts |in| from |out| // On entry: // in[i] < 2^104 // On exit: // out[i] < out[i] + 2^105. static void felem_diff(felem out, const felem in) { // In order to prevent underflow, we add 0 mod p before subtracting. out[0] += zero105[0]; out[1] += zero105[1]; out[2] += zero105[2]; out[3] += zero105[3]; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } #define two107m43m11 \ ((((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)) #define two107 (((limb)1) << 107) #define two107m43p11 \ ((((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)) // zero107 is 0 mod p static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11}; // An alternative felem_diff for larger inputs |in| // felem_diff_zero107 subtracts |in| from |out| // On entry: // in[i] < 2^106 // On exit: // out[i] < out[i] + 2^107. static void felem_diff_zero107(felem out, const felem in) { // In order to prevent underflow, we add 0 mod p before subtracting. out[0] += zero107[0]; out[1] += zero107[1]; out[2] += zero107[2]; out[3] += zero107[3]; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } // longfelem_diff subtracts |in| from |out| // On entry: // in[i] < 7*2^67 // On exit: // out[i] < out[i] + 2^70 + 2^40. static void longfelem_diff(longfelem out, const longfelem in) { static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6); static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40); static const limb two70 = (((limb)1) << 70); static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6); static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6); // add 0 mod p to avoid underflow out[0] += two70m8p6; out[1] += two70p40; out[2] += two70; out[3] += two70m40m38p6; out[4] += two70m6; out[5] += two70m6; out[6] += two70m6; out[7] += two70m6; // in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; out[7] -= in[7]; } #define two64m0 ((((limb)1) << 64) - 1) #define two110p32m0 ((((limb)1) << 110) + (((limb)1) << 32) - 1) #define two64m46 ((((limb)1) << 64) - (((limb)1) << 46)) #define two64m32 ((((limb)1) << 64) - (((limb)1) << 32)) // zero110 is 0 mod p. static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32}; // felem_shrink converts an felem into a smallfelem. The result isn't quite // minimal as the value may be greater than p. // // On entry: // in[i] < 2^109 // On exit: // out[i] < 2^64. static void felem_shrink(smallfelem out, const felem in) { felem tmp; uint64_t a, b, mask; int64_t high, low; static const uint64_t kPrime3Test = 0x7fffffff00000001ul; // 2^63 - 2^32 + 1 // Carry 2->3 tmp[3] = zero110[3] + in[3] + ((uint64_t)(in[2] >> 64)); // tmp[3] < 2^110 tmp[2] = zero110[2] + (uint64_t)in[2]; tmp[0] = zero110[0] + in[0]; tmp[1] = zero110[1] + in[1]; // tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 // We perform two partial reductions where we eliminate the high-word of // tmp[3]. We don't update the other words till the end. a = tmp[3] >> 64; // a < 2^46 tmp[3] = (uint64_t)tmp[3]; tmp[3] -= a; tmp[3] += ((limb)a) << 32; // tmp[3] < 2^79 b = a; a = tmp[3] >> 64; // a < 2^15 b += a; // b < 2^46 + 2^15 < 2^47 tmp[3] = (uint64_t)tmp[3]; tmp[3] -= a; tmp[3] += ((limb)a) << 32; // tmp[3] < 2^64 + 2^47 // This adjusts the other two words to complete the two partial // reductions. tmp[0] += b; tmp[1] -= (((limb)b) << 32); // In order to make space in tmp[3] for the carry from 2 -> 3, we // conditionally subtract kPrime if tmp[3] is large enough. high = tmp[3] >> 64; // As tmp[3] < 2^65, high is either 1 or 0 high = ~(high - 1); // high is: // all ones if the high word of tmp[3] is 1 // all zeros if the high word of tmp[3] if 0 low = tmp[3]; mask = low >> 63; // mask is: // all ones if the MSB of low is 1 // all zeros if the MSB of low if 0 low &= bottom63bits; low -= kPrime3Test; // if low was greater than kPrime3Test then the MSB is zero low = ~low; low >>= 63; // low is: // all ones if low was > kPrime3Test // all zeros if low was <= kPrime3Test mask = (mask & low) | high; tmp[0] -= mask & kPrime[0]; tmp[1] -= mask & kPrime[1]; // kPrime[2] is zero, so omitted tmp[3] -= mask & kPrime[3]; // tmp[3] < 2**64 - 2**32 + 1 tmp[1] += ((uint64_t)(tmp[0] >> 64)); tmp[0] = (uint64_t)tmp[0]; tmp[2] += ((uint64_t)(tmp[1] >> 64)); tmp[1] = (uint64_t)tmp[1]; tmp[3] += ((uint64_t)(tmp[2] >> 64)); tmp[2] = (uint64_t)tmp[2]; // tmp[i] < 2^64 out[0] = tmp[0]; out[1] = tmp[1]; out[2] = tmp[2]; out[3] = tmp[3]; } // smallfelem_expand converts a smallfelem to an felem static void smallfelem_expand(felem out, const smallfelem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } // smallfelem_square sets |out| = |small|^2 // On entry: // small[i] < 2^64 // On exit: // out[i] < 7 * 2^64 < 2^67 static void smallfelem_square(longfelem out, const smallfelem small) { limb a; uint64_t high, low; a = ((uint128_t)small[0]) * small[0]; low = a; high = a >> 64; out[0] = low; out[1] = high; a = ((uint128_t)small[0]) * small[1]; low = a; high = a >> 64; out[1] += low; out[1] += low; out[2] = high; a = ((uint128_t)small[0]) * small[2]; low = a; high = a >> 64; out[2] += low; out[2] *= 2; out[3] = high; a = ((uint128_t)small[0]) * small[3]; low = a; high = a >> 64; out[3] += low; out[4] = high; a = ((uint128_t)small[1]) * small[2]; low = a; high = a >> 64; out[3] += low; out[3] *= 2; out[4] += high; a = ((uint128_t)small[1]) * small[1]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t)small[1]) * small[3]; low = a; high = a >> 64; out[4] += low; out[4] *= 2; out[5] = high; a = ((uint128_t)small[2]) * small[3]; low = a; high = a >> 64; out[5] += low; out[5] *= 2; out[6] = high; out[6] += high; a = ((uint128_t)small[2]) * small[2]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t)small[3]) * small[3]; low = a; high = a >> 64; out[6] += low; out[7] = high; } //felem_square sets |out| = |in|^2 // On entry: // in[i] < 2^109 // On exit: // out[i] < 7 * 2^64 < 2^67. static void felem_square(longfelem out, const felem in) { uint64_t small[4]; felem_shrink(small, in); smallfelem_square(out, small); } // smallfelem_mul sets |out| = |small1| * |small2| // On entry: // small1[i] < 2^64 // small2[i] < 2^64 // On exit: // out[i] < 7 * 2^64 < 2^67. static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) { limb a; uint64_t high, low; a = ((uint128_t)small1[0]) * small2[0]; low = a; high = a >> 64; out[0] = low; out[1] = high; a = ((uint128_t)small1[0]) * small2[1]; low = a; high = a >> 64; out[1] += low; out[2] = high; a = ((uint128_t)small1[1]) * small2[0]; low = a; high = a >> 64; out[1] += low; out[2] += high; a = ((uint128_t)small1[0]) * small2[2]; low = a; high = a >> 64; out[2] += low; out[3] = high; a = ((uint128_t)small1[1]) * small2[1]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t)small1[2]) * small2[0]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t)small1[0]) * small2[3]; low = a; high = a >> 64; out[3] += low; out[4] = high; a = ((uint128_t)small1[1]) * small2[2]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t)small1[2]) * small2[1]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t)small1[3]) * small2[0]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t)small1[1]) * small2[3]; low = a; high = a >> 64; out[4] += low; out[5] = high; a = ((uint128_t)small1[2]) * small2[2]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t)small1[3]) * small2[1]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t)small1[2]) * small2[3]; low = a; high = a >> 64; out[5] += low; out[6] = high; a = ((uint128_t)small1[3]) * small2[2]; low = a; high = a >> 64; out[5] += low; out[6] += high; a = ((uint128_t)small1[3]) * small2[3]; low = a; high = a >> 64; out[6] += low; out[7] = high; } // felem_mul sets |out| = |in1| * |in2| // On entry: // in1[i] < 2^109 // in2[i] < 2^109 // On exit: // out[i] < 7 * 2^64 < 2^67 static void felem_mul(longfelem out, const felem in1, const felem in2) { smallfelem small1, small2; felem_shrink(small1, in1); felem_shrink(small2, in2); smallfelem_mul(out, small1, small2); } // felem_small_mul sets |out| = |small1| * |in2| // On entry: // small1[i] < 2^64 // in2[i] < 2^109 // On exit: // out[i] < 7 * 2^64 < 2^67 static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2) { smallfelem small2; felem_shrink(small2, in2); smallfelem_mul(out, small1, small2); } #define two100m36m4 ((((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)) #define two100 (((limb)1) << 100) #define two100m36p4 ((((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)) // zero100 is 0 mod p static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4}; // Internal function for the different flavours of felem_reduce. // felem_reduce_ reduces the higher coefficients in[4]-in[7]. // On entry: // out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] // out[1] >= in[7] + 2^32*in[4] // out[2] >= in[5] + 2^32*in[5] // out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] // On exit: // out[0] <= out[0] + in[4] + 2^32*in[5] // out[1] <= out[1] + in[5] + 2^33*in[6] // out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] // out[3] <= out[3] + 2^32*in[4] + 3*in[7] static void felem_reduce_(felem out, const longfelem in) { int128_t c; // combine common terms from below c = in[4] + (in[5] << 32); out[0] += c; out[3] -= c; c = in[5] - in[7]; out[1] += c; out[2] -= c; // the remaining terms // 256: [(0,1),(96,-1),(192,-1),(224,1)] out[1] -= (in[4] << 32); out[3] += (in[4] << 32); // 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] out[2] -= (in[5] << 32); // 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] out[0] -= in[6]; out[0] -= (in[6] << 32); out[1] += (in[6] << 33); out[2] += (in[6] * 2); out[3] -= (in[6] << 32); // 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] out[0] -= in[7]; out[0] -= (in[7] << 32); out[2] += (in[7] << 33); out[3] += (in[7] * 3); } // felem_reduce converts a longfelem into an felem. // To be called directly after felem_square or felem_mul. // On entry: // in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 // in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 // On exit: // out[i] < 2^101 static void felem_reduce(felem out, const longfelem in) { out[0] = zero100[0] + in[0]; out[1] = zero100[1] + in[1]; out[2] = zero100[2] + in[2]; out[3] = zero100[3] + in[3]; felem_reduce_(out, in); // out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 // out[1] > 2^100 - 2^64 - 7*2^96 > 0 // out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 // out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 // // out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 // out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 // out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 // out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 } // felem_reduce_zero105 converts a larger longfelem into an felem. // On entry: // in[0] < 2^71 // On exit: // out[i] < 2^106 static void felem_reduce_zero105(felem out, const longfelem in) { out[0] = zero105[0] + in[0]; out[1] = zero105[1] + in[1]; out[2] = zero105[2] + in[2]; out[3] = zero105[3] + in[3]; felem_reduce_(out, in); // out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 // out[1] > 2^105 - 2^71 - 2^103 > 0 // out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 // out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 // // out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 // out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 // out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 // out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 } // subtract_u64 sets *result = *result - v and *carry to one if the // subtraction underflowed. static void subtract_u64(uint64_t *result, uint64_t *carry, uint64_t v) { uint128_t r = *result; r -= v; *carry = (r >> 64) & 1; *result = (uint64_t)r; } // felem_contract converts |in| to its unique, minimal representation. On // entry: in[i] < 2^109. static void felem_contract(smallfelem out, const felem in) { uint64_t all_equal_so_far = 0, result = 0; felem_shrink(out, in); // small is minimal except that the value might be > p all_equal_so_far--; // We are doing a constant time test if out >= kPrime. We need to compare // each uint64_t, from most-significant to least significant. For each one, if // all words so far have been equal (m is all ones) then a non-equal // result is the answer. Otherwise we continue. for (size_t i = 3; i < 4; i--) { uint64_t equal; uint128_t a = ((uint128_t)kPrime[i]) - out[i]; // if out[i] > kPrime[i] then a will underflow and the high 64-bits // will all be set. result |= all_equal_so_far & ((uint64_t)(a >> 64)); // if kPrime[i] == out[i] then |equal| will be all zeros and the // decrement will make it all ones. equal = kPrime[i] ^ out[i]; equal--; equal &= equal << 32; equal &= equal << 16; equal &= equal << 8; equal &= equal << 4; equal &= equal << 2; equal &= equal << 1; equal = ((int64_t)equal) >> 63; all_equal_so_far &= equal; } // if all_equal_so_far is still all ones then the two values are equal // and so out >= kPrime is true. result |= all_equal_so_far; // if out >= kPrime then we subtract kPrime. uint64_t carry; subtract_u64(&out[0], &carry, result & kPrime[0]); subtract_u64(&out[1], &carry, carry); subtract_u64(&out[2], &carry, carry); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[1], &carry, result & kPrime[1]); subtract_u64(&out[2], &carry, carry); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[2], &carry, result & kPrime[2]); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[3], &carry, result & kPrime[3]); } // felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 // otherwise. // On entry: // small[i] < 2^64 static limb smallfelem_is_zero(const smallfelem small) { limb result; uint64_t is_p; uint64_t is_zero = small[0] | small[1] | small[2] | small[3]; is_zero--; is_zero &= is_zero << 32; is_zero &= is_zero << 16; is_zero &= is_zero << 8; is_zero &= is_zero << 4; is_zero &= is_zero << 2; is_zero &= is_zero << 1; is_zero = ((int64_t)is_zero) >> 63; is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]); is_p--; is_p &= is_p << 32; is_p &= is_p << 16; is_p &= is_p << 8; is_p &= is_p << 4; is_p &= is_p << 2; is_p &= is_p << 1; is_p = ((int64_t)is_p) >> 63; is_zero |= is_p; result = is_zero; result |= ((limb)is_zero) << 64; return result; } // felem_inv calculates |out| = |in|^{-1} // // Based on Fermat's Little Theorem: // a^p = a (mod p) // a^{p-1} = 1 (mod p) // a^{p-2} = a^{-1} (mod p) static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2; // each e_I will hold |in|^{2^I - 1} felem e2, e4, e8, e16, e32, e64; longfelem tmp; felem_square(tmp, in); felem_reduce(ftmp, tmp); // 2^1 felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); // 2^2 - 2^0 felem_assign(e2, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // 2^3 - 2^1 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // 2^4 - 2^2 felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); // 2^4 - 2^0 felem_assign(e4, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // 2^5 - 2^1 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // 2^6 - 2^2 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // 2^7 - 2^3 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // 2^8 - 2^4 felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); // 2^8 - 2^0 felem_assign(e8, ftmp); for (size_t i = 0; i < 8; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } // 2^16 - 2^8 felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); // 2^16 - 2^0 felem_assign(e16, ftmp); for (size_t i = 0; i < 16; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } // 2^32 - 2^16 felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); // 2^32 - 2^0 felem_assign(e32, ftmp); for (size_t i = 0; i < 32; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } // 2^64 - 2^32 felem_assign(e64, ftmp); felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); // 2^64 - 2^32 + 2^0 for (size_t i = 0; i < 192; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } // 2^256 - 2^224 + 2^192 felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); // 2^64 - 2^0 for (size_t i = 0; i < 16; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } // 2^80 - 2^16 felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); // 2^80 - 2^0 for (size_t i = 0; i < 8; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } // 2^88 - 2^8 felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); // 2^88 - 2^0 for (size_t i = 0; i < 4; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } // 2^92 - 2^4 felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); // 2^92 - 2^0 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); // 2^93 - 2^1 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); // 2^94 - 2^2 felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); // 2^94 - 2^0 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); // 2^95 - 2^1 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); // 2^96 - 2^2 felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); // 2^96 - 3 felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); // 2^256 - 2^224 + 2^192 + 2^96 - 3 } // Group operations // ---------------- // // Building on top of the field operations we have the operations on the // elliptic curve group itself. Points on the curve are represented in Jacobian // coordinates. // point_double calculates 2*(x_in, y_in, z_in) // // The method is taken from: // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b // // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. // while x_out == y_in is not (maybe this works, but it's not tested). static void point_double(felem x_out, felem y_out, felem z_out, const felem x_in, const felem y_in, const felem z_in) { longfelem tmp, tmp2; felem delta, gamma, beta, alpha, ftmp, ftmp2; smallfelem small1, small2; felem_assign(ftmp, x_in); // ftmp[i] < 2^106 felem_assign(ftmp2, x_in); // ftmp2[i] < 2^106 // delta = z^2 felem_square(tmp, z_in); felem_reduce(delta, tmp); // delta[i] < 2^101 // gamma = y^2 felem_square(tmp, y_in); felem_reduce(gamma, tmp); // gamma[i] < 2^101 felem_shrink(small1, gamma); // beta = x*gamma felem_small_mul(tmp, small1, x_in); felem_reduce(beta, tmp); // beta[i] < 2^101 // alpha = 3*(x-delta)*(x+delta) felem_diff(ftmp, delta); // ftmp[i] < 2^105 + 2^106 < 2^107 felem_sum(ftmp2, delta); // ftmp2[i] < 2^105 + 2^106 < 2^107 felem_scalar(ftmp2, 3); // ftmp2[i] < 3 * 2^107 < 2^109 felem_mul(tmp, ftmp, ftmp2); felem_reduce(alpha, tmp); // alpha[i] < 2^101 felem_shrink(small2, alpha); // x' = alpha^2 - 8*beta smallfelem_square(tmp, small2); felem_reduce(x_out, tmp); felem_assign(ftmp, beta); felem_scalar(ftmp, 8); // ftmp[i] < 8 * 2^101 = 2^104 felem_diff(x_out, ftmp); // x_out[i] < 2^105 + 2^101 < 2^106 // z' = (y + z)^2 - gamma - delta felem_sum(delta, gamma); // delta[i] < 2^101 + 2^101 = 2^102 felem_assign(ftmp, y_in); felem_sum(ftmp, z_in); // ftmp[i] < 2^106 + 2^106 = 2^107 felem_square(tmp, ftmp); felem_reduce(z_out, tmp); felem_diff(z_out, delta); // z_out[i] < 2^105 + 2^101 < 2^106 // y' = alpha*(4*beta - x') - 8*gamma^2 felem_scalar(beta, 4); // beta[i] < 4 * 2^101 = 2^103 felem_diff_zero107(beta, x_out); // beta[i] < 2^107 + 2^103 < 2^108 felem_small_mul(tmp, small2, beta); // tmp[i] < 7 * 2^64 < 2^67 smallfelem_square(tmp2, small1); // tmp2[i] < 7 * 2^64 longfelem_scalar(tmp2, 8); // tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 longfelem_diff(tmp, tmp2); // tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 felem_reduce_zero105(y_out, tmp); // y_out[i] < 2^106 } // point_double_small is the same as point_double, except that it operates on // smallfelems. static void point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) { felem felem_x_out, felem_y_out, felem_z_out; felem felem_x_in, felem_y_in, felem_z_in; smallfelem_expand(felem_x_in, x_in); smallfelem_expand(felem_y_in, y_in); smallfelem_expand(felem_z_in, z_in); point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in, felem_z_in); felem_shrink(x_out, felem_x_out); felem_shrink(y_out, felem_y_out); felem_shrink(z_out, felem_z_out); } // p256_copy_conditional copies in to out iff mask is all ones. static void p256_copy_conditional(felem out, const felem in, limb mask) { for (size_t i = 0; i < NLIMBS; ++i) { const limb tmp = mask & (in[i] ^ out[i]); out[i] ^= tmp; } } // copy_small_conditional copies in to out iff mask is all ones. static void copy_small_conditional(felem out, const smallfelem in, limb mask) { const uint64_t mask64 = mask; for (size_t i = 0; i < NLIMBS; ++i) { out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask); } } // point_add calcuates (x1, y1, z1) + (x2, y2, z2) // // The method is taken from: // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). // // This function includes a branch for checking whether the two input points // are equal, (while not equal to the point at infinity). This case never // happens during single point multiplication, so there is no timing leak for // ECDH or ECDSA signing. static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) { felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; longfelem tmp, tmp2; smallfelem small1, small2, small3, small4, small5; limb x_equal, y_equal, z1_is_zero, z2_is_zero; felem_shrink(small3, z1); z1_is_zero = smallfelem_is_zero(small3); z2_is_zero = smallfelem_is_zero(z2); // ftmp = z1z1 = z1**2 smallfelem_square(tmp, small3); felem_reduce(ftmp, tmp); // ftmp[i] < 2^101 felem_shrink(small1, ftmp); if (!mixed) { // ftmp2 = z2z2 = z2**2 smallfelem_square(tmp, z2); felem_reduce(ftmp2, tmp); // ftmp2[i] < 2^101 felem_shrink(small2, ftmp2); felem_shrink(small5, x1); // u1 = ftmp3 = x1*z2z2 smallfelem_mul(tmp, small5, small2); felem_reduce(ftmp3, tmp); // ftmp3[i] < 2^101 // ftmp5 = z1 + z2 felem_assign(ftmp5, z1); felem_small_sum(ftmp5, z2); // ftmp5[i] < 2^107 // ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 felem_square(tmp, ftmp5); felem_reduce(ftmp5, tmp); // ftmp2 = z2z2 + z1z1 felem_sum(ftmp2, ftmp); // ftmp2[i] < 2^101 + 2^101 = 2^102 felem_diff(ftmp5, ftmp2); // ftmp5[i] < 2^105 + 2^101 < 2^106 // ftmp2 = z2 * z2z2 smallfelem_mul(tmp, small2, z2); felem_reduce(ftmp2, tmp); // s1 = ftmp2 = y1 * z2**3 felem_mul(tmp, y1, ftmp2); felem_reduce(ftmp6, tmp); // ftmp6[i] < 2^101 } else { // We'll assume z2 = 1 (special case z2 = 0 is handled later). // u1 = ftmp3 = x1*z2z2 felem_assign(ftmp3, x1); // ftmp3[i] < 2^106 // ftmp5 = 2z1z2 felem_assign(ftmp5, z1); felem_scalar(ftmp5, 2); // ftmp5[i] < 2*2^106 = 2^107 // s1 = ftmp2 = y1 * z2**3 felem_assign(ftmp6, y1); // ftmp6[i] < 2^106 } // u2 = x2*z1z1 smallfelem_mul(tmp, x2, small1); felem_reduce(ftmp4, tmp); // h = ftmp4 = u2 - u1 felem_diff_zero107(ftmp4, ftmp3); // ftmp4[i] < 2^107 + 2^101 < 2^108 felem_shrink(small4, ftmp4); x_equal = smallfelem_is_zero(small4); // z_out = ftmp5 * h felem_small_mul(tmp, small4, ftmp5); felem_reduce(z_out, tmp); // z_out[i] < 2^101 // ftmp = z1 * z1z1 smallfelem_mul(tmp, small1, small3); felem_reduce(ftmp, tmp); // s2 = tmp = y2 * z1**3 felem_small_mul(tmp, y2, ftmp); felem_reduce(ftmp5, tmp); // r = ftmp5 = (s2 - s1)*2 felem_diff_zero107(ftmp5, ftmp6); // ftmp5[i] < 2^107 + 2^107 = 2^108 felem_scalar(ftmp5, 2); // ftmp5[i] < 2^109 felem_shrink(small1, ftmp5); y_equal = smallfelem_is_zero(small1); if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { point_double(x3, y3, z3, x1, y1, z1); return; } // I = ftmp = (2h)**2 felem_assign(ftmp, ftmp4); felem_scalar(ftmp, 2); // ftmp[i] < 2*2^108 = 2^109 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); // J = ftmp2 = h * I felem_mul(tmp, ftmp4, ftmp); felem_reduce(ftmp2, tmp); // V = ftmp4 = U1 * I felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp); // x_out = r**2 - J - 2V smallfelem_square(tmp, small1); felem_reduce(x_out, tmp); felem_assign(ftmp3, ftmp4); felem_scalar(ftmp4, 2); felem_sum(ftmp4, ftmp2); // ftmp4[i] < 2*2^101 + 2^101 < 2^103 felem_diff(x_out, ftmp4); // x_out[i] < 2^105 + 2^101 // y_out = r(V-x_out) - 2 * s1 * J felem_diff_zero107(ftmp3, x_out); // ftmp3[i] < 2^107 + 2^101 < 2^108 felem_small_mul(tmp, small1, ftmp3); felem_mul(tmp2, ftmp6, ftmp2); longfelem_scalar(tmp2, 2); // tmp2[i] < 2*2^67 = 2^68 longfelem_diff(tmp, tmp2); // tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 felem_reduce_zero105(y_out, tmp); // y_out[i] < 2^106 copy_small_conditional(x_out, x2, z1_is_zero); p256_copy_conditional(x_out, x1, z2_is_zero); copy_small_conditional(y_out, y2, z1_is_zero); p256_copy_conditional(y_out, y1, z2_is_zero); copy_small_conditional(z_out, z2, z1_is_zero); p256_copy_conditional(z_out, z1, z2_is_zero); felem_assign(x3, x_out); felem_assign(y3, y_out); felem_assign(z3, z_out); } // point_add_small is the same as point_add, except that it operates on // smallfelems. static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, smallfelem x1, smallfelem y1, smallfelem z1, smallfelem x2, smallfelem y2, smallfelem z2) { felem felem_x3, felem_y3, felem_z3; felem felem_x1, felem_y1, felem_z1; smallfelem_expand(felem_x1, x1); smallfelem_expand(felem_y1, y1); smallfelem_expand(felem_z1, z1); point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2); felem_shrink(x3, felem_x3); felem_shrink(y3, felem_y3); felem_shrink(z3, felem_z3); } // Base point pre computation // -------------------------- // // Two different sorts of precomputed tables are used in the following code. // Each contain various points on the curve, where each point is three field // elements (x, y, z). // // For the base point table, z is usually 1 (0 for the point at infinity). // This table has 2 * 16 elements, starting with the following: // index | bits | point // ------+---------+------------------------------ // 0 | 0 0 0 0 | 0G // 1 | 0 0 0 1 | 1G // 2 | 0 0 1 0 | 2^64G // 3 | 0 0 1 1 | (2^64 + 1)G // 4 | 0 1 0 0 | 2^128G // 5 | 0 1 0 1 | (2^128 + 1)G // 6 | 0 1 1 0 | (2^128 + 2^64)G // 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G // 8 | 1 0 0 0 | 2^192G // 9 | 1 0 0 1 | (2^192 + 1)G // 10 | 1 0 1 0 | (2^192 + 2^64)G // 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G // 12 | 1 1 0 0 | (2^192 + 2^128)G // 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G // 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G // 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G // followed by a copy of this with each element multiplied by 2^32. // // The reason for this is so that we can clock bits into four different // locations when doing simple scalar multiplies against the base point, // and then another four locations using the second 16 elements. // // Tables for other points have table[i] = iG for i in 0 .. 16. // g_pre_comp is the table of precomputed base points static const smallfelem g_pre_comp[2][16][3] = { {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247}, {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b}, {1, 0, 0, 0}}, {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5}, {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d}, {1, 0, 0, 0}}, {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f}, {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644}, {1, 0, 0, 0}}, {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67}, {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee}, {1, 0, 0, 0}}, {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff}, {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b}, {1, 0, 0, 0}}, {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8}, {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851}, {1, 0, 0, 0}}, {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea}, {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b}, {1, 0, 0, 0}}, {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276}, {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816}, {1, 0, 0, 0}}, {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad}, {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663}, {1, 0, 0, 0}}, {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d}, {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321}, {1, 0, 0, 0}}, {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287}, {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6}, {1, 0, 0, 0}}, {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466}, {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20}, {1, 0, 0, 0}}, {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9}, {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61}, {1, 0, 0, 0}}, {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a}, {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc}, {1, 0, 0, 0}}, {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c}, {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab}, {1, 0, 0, 0}}}, {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89}, {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624}, {1, 0, 0, 0}}, {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6}, {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1}, {1, 0, 0, 0}}, {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a}, {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593}, {1, 0, 0, 0}}, {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617}, {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7}, {1, 0, 0, 0}}, {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276}, {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a}, {1, 0, 0, 0}}, {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908}, {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e}, {1, 0, 0, 0}}, {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7}, {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec}, {1, 0, 0, 0}}, {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee}, {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6}, {1, 0, 0, 0}}, {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109}, {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5}, {1, 0, 0, 0}}, {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba}, {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44}, {1, 0, 0, 0}}, {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b}, {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc}, {1, 0, 0, 0}}, {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107}, {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387}, {1, 0, 0, 0}}, {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503}, {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be}, {1, 0, 0, 0}}, {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9}, {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a}, {1, 0, 0, 0}}, {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6}, {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81}, {1, 0, 0, 0}}}}; // select_point selects the |idx|th point from a precomputation table and // copies it to out. static void select_point(const uint64_t idx, size_t size, const smallfelem pre_comp[/*size*/][3], smallfelem out[3]) { uint64_t *outlimbs = &out[0][0]; OPENSSL_memset(outlimbs, 0, 3 * sizeof(smallfelem)); for (size_t i = 0; i < size; i++) { const uint64_t *inlimbs = (const uint64_t *)&pre_comp[i][0][0]; uint64_t mask = i ^ idx; mask |= mask >> 4; mask |= mask >> 2; mask |= mask >> 1; mask &= 1; mask--; for (size_t j = 0; j < NLIMBS * 3; j++) { outlimbs[j] |= inlimbs[j] & mask; } } } // get_bit returns the |i|th bit in |in| static char get_bit(const felem_bytearray in, int i) { if (i < 0 || i >= 256) { return 0; } return (in[i >> 3] >> (i & 7)) & 1; } // Interleaved point multiplication using precomputed point multiples: The // small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar // in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple // of the generator, using certain (large) precomputed multiples in g_pre_comp. // Output point (X, Y, Z) is stored in x_out, y_out, z_out. static void batch_mul(felem x_out, felem y_out, felem z_out, const uint8_t *p_scalar, const uint8_t *g_scalar, const smallfelem p_pre_comp[17][3]) { felem nq[3], ftmp; smallfelem tmp[3]; uint64_t bits; uint8_t sign, digit; // set nq to the point at infinity OPENSSL_memset(nq, 0, 3 * sizeof(felem)); // Loop over both scalars msb-to-lsb, interleaving additions of multiples // of the generator (two in each of the last 32 rounds) and additions of p // (every 5th round). int skip = 1; // save two point operations in the first round size_t i = p_scalar != NULL ? 255 : 31; for (;;) { // double if (!skip) { point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); } // add multiples of the generator if (g_scalar != NULL && i <= 31) { // first, look 32 bits upwards bits = get_bit(g_scalar, i + 224) << 3; bits |= get_bit(g_scalar, i + 160) << 2; bits |= get_bit(g_scalar, i + 96) << 1; bits |= get_bit(g_scalar, i + 32); // select the point to add, in constant time select_point(bits, 16, g_pre_comp[1], tmp); if (!skip) { point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0], tmp[1], tmp[2]); } else { smallfelem_expand(nq[0], tmp[0]); smallfelem_expand(nq[1], tmp[1]); smallfelem_expand(nq[2], tmp[2]); skip = 0; } // second, look at the current position bits = get_bit(g_scalar, i + 192) << 3; bits |= get_bit(g_scalar, i + 128) << 2; bits |= get_bit(g_scalar, i + 64) << 1; bits |= get_bit(g_scalar, i); // select the point to add, in constant time select_point(bits, 16, g_pre_comp[0], tmp); point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0], tmp[1], tmp[2]); } // do other additions every 5 doublings if (p_scalar != NULL && i % 5 == 0) { bits = get_bit(p_scalar, i + 4) << 5; bits |= get_bit(p_scalar, i + 3) << 4; bits |= get_bit(p_scalar, i + 2) << 3; bits |= get_bit(p_scalar, i + 1) << 2; bits |= get_bit(p_scalar, i) << 1; bits |= get_bit(p_scalar, i - 1); ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); // select the point to add or subtract, in constant time. select_point(digit, 17, p_pre_comp, tmp); smallfelem_neg(ftmp, tmp[1]); // (X, -Y, Z) is the negative // point copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1)); felem_contract(tmp[1], ftmp); if (!skip) { point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */, tmp[0], tmp[1], tmp[2]); } else { smallfelem_expand(nq[0], tmp[0]); smallfelem_expand(nq[1], tmp[1]); smallfelem_expand(nq[2], tmp[2]); skip = 0; } } if (i == 0) { break; } --i; } felem_assign(x_out, nq[0]); felem_assign(y_out, nq[1]); felem_assign(z_out, nq[2]); } // OPENSSL EC_METHOD FUNCTIONS // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = // (X/Z^2, Y/Z^3). static int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { felem z1, z2, x_in, y_in; smallfelem x_out, y_out; longfelem tmp; if (EC_POINT_is_at_infinity(group, point)) { OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); return 0; } if (!BN_to_felem(x_in, &point->X) || !BN_to_felem(y_in, &point->Y) || !BN_to_felem(z1, &point->Z)) { return 0; } felem_inv(z2, z1); felem_square(tmp, z2); felem_reduce(z1, tmp); if (x != NULL) { felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); felem_contract(x_out, x_in); if (!smallfelem_to_BN(x, x_out)) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); return 0; } } if (y != NULL) { felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); felem_contract(y_out, y_in); if (!smallfelem_to_BN(y, y_out)) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); return 0; } } return 1; } static int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar, const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *x, *y, *z, *tmp_scalar; smallfelem p_pre_comp[17][3]; smallfelem x_in, y_in, z_in; felem x_out, y_out, z_out; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); if ((x = BN_CTX_get(ctx)) == NULL || (y = BN_CTX_get(ctx)) == NULL || (z = BN_CTX_get(ctx)) == NULL || (tmp_scalar = BN_CTX_get(ctx)) == NULL) { goto err; } if (p != NULL && p_scalar != NULL) { // We treat NULL scalars as 0, and NULL points as points at infinity, i.e., // they contribute nothing to the linear combination. OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp)); // Precompute multiples. if (!BN_to_felem(x_out, &p->X) || !BN_to_felem(y_out, &p->Y) || !BN_to_felem(z_out, &p->Z)) { goto err; } felem_shrink(p_pre_comp[1][0], x_out); felem_shrink(p_pre_comp[1][1], y_out); felem_shrink(p_pre_comp[1][2], z_out); for (size_t j = 2; j <= 16; ++j) { if (j & 1) { point_add_small(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2], p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2], p_pre_comp[j - 1][0], p_pre_comp[j - 1][1], p_pre_comp[j - 1][2]); } else { point_double_small(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2], p_pre_comp[j / 2][0], p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]); } } } batch_mul(x_out, y_out, z_out, (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL, g_scalar != NULL ? g_scalar->bytes : NULL, (const smallfelem(*)[3]) & p_pre_comp); // reduce the output to its unique minimal representation felem_contract(x_in, x_out); felem_contract(y_in, y_out); felem_contract(z_in, z_out); if (!smallfelem_to_BN(x, x_in) || !smallfelem_to_BN(y, y_in) || !smallfelem_to_BN(z, z_in)) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); goto err; } ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) { out->group_init = ec_GFp_simple_group_init; out->group_finish = ec_GFp_simple_group_finish; out->group_set_curve = ec_GFp_simple_group_set_curve; out->point_get_affine_coordinates = ec_GFp_nistp256_point_get_affine_coordinates; out->mul = ec_GFp_nistp256_points_mul; out->field_mul = ec_GFp_simple_field_mul; out->field_sqr = ec_GFp_simple_field_sqr; out->field_encode = NULL; out->field_decode = NULL; }; #endif // 64_BIT && !WINDOWS