/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * ECC cipher suite support in OpenSSL originally written by * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/dh/internal.h" int ssl3_connect(SSL *ssl) { BUF_MEM *buf = NULL; void (*cb)(const SSL *ssl, int type, int value) = NULL; int ret = -1; int new_state, state, skip = 0; assert(ssl->handshake_func == ssl3_connect); assert(!ssl->server); assert(!SSL_IS_DTLS(ssl)); ERR_clear_system_error(); if (ssl->info_callback != NULL) { cb = ssl->info_callback; } else if (ssl->ctx->info_callback != NULL) { cb = ssl->ctx->info_callback; } for (;;) { state = ssl->state; switch (ssl->state) { case SSL_ST_CONNECT: if (cb != NULL) { cb(ssl, SSL_CB_HANDSHAKE_START, 1); } if (ssl->init_buf == NULL) { buf = BUF_MEM_new(); if (buf == NULL || !BUF_MEM_grow(buf, SSL3_RT_MAX_PLAIN_LENGTH)) { ret = -1; goto end; } ssl->init_buf = buf; buf = NULL; } if (!ssl_init_wbio_buffer(ssl, 0)) { ret = -1; goto end; } /* don't push the buffering BIO quite yet */ if (!ssl3_init_handshake_buffer(ssl)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); ret = -1; goto end; } ssl->state = SSL3_ST_CW_CLNT_HELLO_A; ssl->init_num = 0; break; case SSL3_ST_CW_CLNT_HELLO_A: case SSL3_ST_CW_CLNT_HELLO_B: ssl->shutdown = 0; ret = ssl3_send_client_hello(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CR_SRVR_HELLO_A; ssl->init_num = 0; /* turn on buffering for the next lot of output */ if (ssl->bbio != ssl->wbio) { ssl->wbio = BIO_push(ssl->bbio, ssl->wbio); } break; case SSL3_ST_CR_SRVR_HELLO_A: case SSL3_ST_CR_SRVR_HELLO_B: ret = ssl3_get_server_hello(ssl); if (ret <= 0) { goto end; } if (ssl->hit) { ssl->state = SSL3_ST_CR_CHANGE; if (ssl->tlsext_ticket_expected) { /* receive renewed session ticket */ ssl->state = SSL3_ST_CR_SESSION_TICKET_A; } } else { ssl->state = SSL3_ST_CR_CERT_A; } ssl->init_num = 0; break; case SSL3_ST_CR_CERT_A: case SSL3_ST_CR_CERT_B: if (ssl_cipher_has_server_public_key(ssl->s3->tmp.new_cipher)) { ret = ssl3_get_server_certificate(ssl); if (ret <= 0) { goto end; } if (ssl->s3->tmp.certificate_status_expected) { ssl->state = SSL3_ST_CR_CERT_STATUS_A; } else { ssl->state = SSL3_ST_VERIFY_SERVER_CERT; } } else { skip = 1; ssl->state = SSL3_ST_CR_KEY_EXCH_A; } ssl->init_num = 0; break; case SSL3_ST_VERIFY_SERVER_CERT: ret = ssl3_verify_server_cert(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CR_KEY_EXCH_A; ssl->init_num = 0; break; case SSL3_ST_CR_KEY_EXCH_A: case SSL3_ST_CR_KEY_EXCH_B: ret = ssl3_get_server_key_exchange(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CR_CERT_REQ_A; ssl->init_num = 0; break; case SSL3_ST_CR_CERT_REQ_A: case SSL3_ST_CR_CERT_REQ_B: ret = ssl3_get_certificate_request(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CR_SRVR_DONE_A; ssl->init_num = 0; break; case SSL3_ST_CR_SRVR_DONE_A: case SSL3_ST_CR_SRVR_DONE_B: ret = ssl3_get_server_done(ssl); if (ret <= 0) { goto end; } if (ssl->s3->tmp.cert_req) { ssl->state = SSL3_ST_CW_CERT_A; } else { ssl->state = SSL3_ST_CW_KEY_EXCH_A; } ssl->init_num = 0; break; case SSL3_ST_CW_CERT_A: case SSL3_ST_CW_CERT_B: case SSL3_ST_CW_CERT_C: case SSL3_ST_CW_CERT_D: ret = ssl3_send_client_certificate(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CW_KEY_EXCH_A; ssl->init_num = 0; break; case SSL3_ST_CW_KEY_EXCH_A: case SSL3_ST_CW_KEY_EXCH_B: ret = ssl3_send_client_key_exchange(ssl); if (ret <= 0) { goto end; } /* For TLS, cert_req is set to 2, so a cert chain * of nothing is sent, but no verify packet is sent */ if (ssl->s3->tmp.cert_req == 1) { ssl->state = SSL3_ST_CW_CERT_VRFY_A; } else { ssl->state = SSL3_ST_CW_CHANGE_A; } ssl->init_num = 0; break; case SSL3_ST_CW_CERT_VRFY_A: case SSL3_ST_CW_CERT_VRFY_B: case SSL3_ST_CW_CERT_VRFY_C: ret = ssl3_send_cert_verify(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CW_CHANGE_A; ssl->init_num = 0; break; case SSL3_ST_CW_CHANGE_A: case SSL3_ST_CW_CHANGE_B: ret = ssl3_send_change_cipher_spec(ssl, SSL3_ST_CW_CHANGE_A, SSL3_ST_CW_CHANGE_B); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CW_FINISHED_A; if (ssl->s3->tlsext_channel_id_valid) { ssl->state = SSL3_ST_CW_CHANNEL_ID_A; } if (ssl->s3->next_proto_neg_seen) { ssl->state = SSL3_ST_CW_NEXT_PROTO_A; } ssl->init_num = 0; if (!tls1_change_cipher_state(ssl, SSL3_CHANGE_CIPHER_CLIENT_WRITE)) { ret = -1; goto end; } break; case SSL3_ST_CW_NEXT_PROTO_A: case SSL3_ST_CW_NEXT_PROTO_B: ret = ssl3_send_next_proto(ssl); if (ret <= 0) { goto end; } if (ssl->s3->tlsext_channel_id_valid) { ssl->state = SSL3_ST_CW_CHANNEL_ID_A; } else { ssl->state = SSL3_ST_CW_FINISHED_A; } break; case SSL3_ST_CW_CHANNEL_ID_A: case SSL3_ST_CW_CHANNEL_ID_B: ret = ssl3_send_channel_id(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CW_FINISHED_A; break; case SSL3_ST_CW_FINISHED_A: case SSL3_ST_CW_FINISHED_B: ret = ssl3_send_finished(ssl, SSL3_ST_CW_FINISHED_A, SSL3_ST_CW_FINISHED_B); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CW_FLUSH; if (ssl->hit) { ssl->s3->tmp.next_state = SSL_ST_OK; } else { /* This is a non-resumption handshake. If it involves ChannelID, then * record the handshake hashes at this point in the session so that * any resumption of this session with ChannelID can sign those * hashes. */ ret = tls1_record_handshake_hashes_for_channel_id(ssl); if (ret <= 0) { goto end; } if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) && ssl3_can_false_start(ssl) && /* No False Start on renegotiation (would complicate the state * machine). */ !ssl->s3->initial_handshake_complete) { ssl->s3->tmp.next_state = SSL3_ST_FALSE_START; } else { /* Allow NewSessionTicket if ticket expected */ if (ssl->tlsext_ticket_expected) { ssl->s3->tmp.next_state = SSL3_ST_CR_SESSION_TICKET_A; } else { ssl->s3->tmp.next_state = SSL3_ST_CR_CHANGE; } } } ssl->init_num = 0; break; case SSL3_ST_CR_SESSION_TICKET_A: case SSL3_ST_CR_SESSION_TICKET_B: ret = ssl3_get_new_session_ticket(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_CR_CHANGE; ssl->init_num = 0; break; case SSL3_ST_CR_CERT_STATUS_A: case SSL3_ST_CR_CERT_STATUS_B: ret = ssl3_get_cert_status(ssl); if (ret <= 0) { goto end; } ssl->state = SSL3_ST_VERIFY_SERVER_CERT; ssl->init_num = 0; break; case SSL3_ST_CR_CHANGE: ret = ssl->method->ssl_read_change_cipher_spec(ssl); if (ret <= 0) { goto end; } if (!tls1_change_cipher_state(ssl, SSL3_CHANGE_CIPHER_CLIENT_READ)) { ret = -1; goto end; } ssl->state = SSL3_ST_CR_FINISHED_A; break; case SSL3_ST_CR_FINISHED_A: case SSL3_ST_CR_FINISHED_B: ret = ssl3_get_finished(ssl, SSL3_ST_CR_FINISHED_A, SSL3_ST_CR_FINISHED_B); if (ret <= 0) { goto end; } if (ssl->hit) { ssl->state = SSL3_ST_CW_CHANGE_A; } else { ssl->state = SSL_ST_OK; } ssl->init_num = 0; break; case SSL3_ST_CW_FLUSH: ssl->rwstate = SSL_WRITING; if (BIO_flush(ssl->wbio) <= 0) { ret = -1; goto end; } ssl->rwstate = SSL_NOTHING; ssl->state = ssl->s3->tmp.next_state; break; case SSL3_ST_FALSE_START: /* Allow NewSessionTicket if ticket expected */ if (ssl->tlsext_ticket_expected) { ssl->state = SSL3_ST_CR_SESSION_TICKET_A; } else { ssl->state = SSL3_ST_CR_CHANGE; } ssl->s3->tmp.in_false_start = 1; ssl_free_wbio_buffer(ssl); ret = 1; goto end; case SSL_ST_OK: /* clean a few things up */ ssl3_cleanup_key_block(ssl); BUF_MEM_free(ssl->init_buf); ssl->init_buf = NULL; /* Remove write buffering now. */ ssl_free_wbio_buffer(ssl); const int is_initial_handshake = !ssl->s3->initial_handshake_complete; ssl->init_num = 0; ssl->s3->tmp.in_false_start = 0; ssl->s3->initial_handshake_complete = 1; if (is_initial_handshake) { /* Renegotiations do not participate in session resumption. */ ssl_update_cache(ssl, SSL_SESS_CACHE_CLIENT); } ret = 1; /* ssl->server=0; */ if (cb != NULL) { cb(ssl, SSL_CB_HANDSHAKE_DONE, 1); } goto end; default: OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE); ret = -1; goto end; } if (!ssl->s3->tmp.reuse_message && !skip) { if (cb != NULL && ssl->state != state) { new_state = ssl->state; ssl->state = state; cb(ssl, SSL_CB_CONNECT_LOOP, 1); ssl->state = new_state; } } skip = 0; } end: BUF_MEM_free(buf); if (cb != NULL) { cb(ssl, SSL_CB_CONNECT_EXIT, ret); } return ret; } static int ssl3_write_client_cipher_list(SSL *ssl, CBB *out) { /* Prepare disabled cipher masks. */ ssl_set_client_disabled(ssl); CBB child; if (!CBB_add_u16_length_prefixed(out, &child)) { return 0; } STACK_OF(SSL_CIPHER) *ciphers = SSL_get_ciphers(ssl); int any_enabled = 0; size_t i; for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); /* Skip disabled ciphers */ if ((cipher->algorithm_mkey & ssl->cert->mask_k) || (cipher->algorithm_auth & ssl->cert->mask_a)) { continue; } if (SSL_CIPHER_get_min_version(cipher) > ssl3_version_from_wire(ssl, ssl->client_version)) { continue; } any_enabled = 1; if (!CBB_add_u16(&child, ssl_cipher_get_value(cipher))) { return 0; } } /* If all ciphers were disabled, return the error to the caller. */ if (!any_enabled) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE); return 0; } /* For SSLv3, the SCSV is added. Otherwise the renegotiation extension is * added. */ if (ssl->client_version == SSL3_VERSION && !ssl->s3->initial_handshake_complete) { if (!CBB_add_u16(&child, SSL3_CK_SCSV & 0xffff)) { return 0; } /* The renegotiation extension is required to be at index zero. */ ssl->s3->tmp.extensions.sent |= (1u << 0); } if ((ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) && !CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) { return 0; } return CBB_flush(out); } int ssl3_send_client_hello(SSL *ssl) { if (ssl->state == SSL3_ST_CW_CLNT_HELLO_B) { return ssl_do_write(ssl); } /* In DTLS, reset the handshake buffer each time a new ClientHello is * assembled. We may send multiple if we receive HelloVerifyRequest. */ if (SSL_IS_DTLS(ssl) && !ssl3_init_handshake_buffer(ssl)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } CBB cbb; CBB_zero(&cbb); assert(ssl->state == SSL3_ST_CW_CLNT_HELLO_A); if (!ssl->s3->have_version) { uint16_t max_version = ssl3_get_max_client_version(ssl); /* Disabling all versions is silly: return an error. */ if (max_version == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); goto err; } ssl->version = max_version; /* Only set |ssl->client_version| on the initial handshake. Renegotiations, * although locked to a version, reuse the value. When using the plain RSA * key exchange, the ClientHello version is checked in the premaster secret. * Some servers fail when this value changes. */ ssl->client_version = max_version; } /* If the configured session has expired or was created at a disabled * version, drop it. */ if (ssl->session != NULL && (ssl->session->session_id_length == 0 || ssl->session->not_resumable || ssl->session->timeout < (long)(time(NULL) - ssl->session->time) || !ssl3_is_version_enabled(ssl, ssl->session->ssl_version))) { SSL_set_session(ssl, NULL); } /* If resending the ClientHello in DTLS after a HelloVerifyRequest, don't * renegerate the client_random. The random must be reused. */ if ((!SSL_IS_DTLS(ssl) || !ssl->d1->send_cookie) && !ssl_fill_hello_random(ssl->s3->client_random, sizeof(ssl->s3->client_random), 0 /* client */)) { goto err; } /* Renegotiations do not participate in session resumption. */ int has_session = ssl->session != NULL && !ssl->s3->initial_handshake_complete; CBB child; if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl), ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl)) || !CBB_add_u16(&cbb, ssl->client_version) || !CBB_add_bytes(&cbb, ssl->s3->client_random, SSL3_RANDOM_SIZE) || !CBB_add_u8_length_prefixed(&cbb, &child) || (has_session && !CBB_add_bytes(&child, ssl->session->session_id, ssl->session->session_id_length))) { goto err; } if (SSL_IS_DTLS(ssl)) { if (!CBB_add_u8_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, ssl->d1->cookie, ssl->d1->cookie_len)) { goto err; } } size_t length; if (!ssl3_write_client_cipher_list(ssl, &cbb) || !CBB_add_u8(&cbb, 1 /* one compression method */) || !CBB_add_u8(&cbb, 0 /* null compression */) || !ssl_add_clienthello_tlsext(ssl, &cbb, CBB_len(&cbb) + SSL_HM_HEADER_LENGTH(ssl)) || !CBB_finish(&cbb, NULL, &length) || !ssl_set_handshake_header(ssl, SSL3_MT_CLIENT_HELLO, length)) { goto err; } ssl->state = SSL3_ST_CW_CLNT_HELLO_B; return ssl_do_write(ssl); err: CBB_cleanup(&cbb); return -1; } int ssl3_get_server_hello(SSL *ssl) { STACK_OF(SSL_CIPHER) *sk; const SSL_CIPHER *c; CERT *ct = ssl->cert; int al = SSL_AD_INTERNAL_ERROR, ok; long n; CBS server_hello, server_random, session_id; uint16_t server_version, cipher_suite; uint8_t compression_method; n = ssl->method->ssl_get_message(ssl, SSL3_ST_CR_SRVR_HELLO_A, SSL3_ST_CR_SRVR_HELLO_B, SSL3_MT_SERVER_HELLO, 20000, /* ?? */ ssl_hash_message, &ok); if (!ok) { uint32_t err = ERR_peek_error(); if (ERR_GET_LIB(err) == ERR_LIB_SSL && ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) { /* Add a dedicated error code to the queue for a handshake_failure alert * in response to ClientHello. This matches NSS's client behavior and * gives a better error on a (probable) failure to negotiate initial * parameters. Note: this error code comes after the original one. * * See https://crbug.com/446505. */ OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO); } return n; } CBS_init(&server_hello, ssl->init_msg, n); if (!CBS_get_u16(&server_hello, &server_version) || !CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) || !CBS_get_u8_length_prefixed(&server_hello, &session_id) || CBS_len(&session_id) > SSL3_SESSION_ID_SIZE || !CBS_get_u16(&server_hello, &cipher_suite) || !CBS_get_u8(&server_hello, &compression_method)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete); if (!ssl->s3->have_version) { if (!ssl3_is_version_enabled(ssl, server_version)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); ssl->version = server_version; /* Mark the version as fixed so the record-layer version is not clamped * to TLS 1.0. */ ssl->s3->have_version = 1; al = SSL_AD_PROTOCOL_VERSION; goto f_err; } ssl->version = server_version; ssl->s3->enc_method = ssl3_get_enc_method(server_version); assert(ssl->s3->enc_method != NULL); /* At this point, the connection's version is known and ssl->version is * fixed. Begin enforcing the record-layer version. */ ssl->s3->have_version = 1; } else if (server_version != ssl->version) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); al = SSL_AD_PROTOCOL_VERSION; goto f_err; } /* Copy over the server random. */ memcpy(ssl->s3->server_random, CBS_data(&server_random), SSL3_RANDOM_SIZE); assert(ssl->session == NULL || ssl->session->session_id_length > 0); if (!ssl->s3->initial_handshake_complete && ssl->session != NULL && CBS_mem_equal(&session_id, ssl->session->session_id, ssl->session->session_id_length)) { if (ssl->sid_ctx_length != ssl->session->sid_ctx_length || memcmp(ssl->session->sid_ctx, ssl->sid_ctx, ssl->sid_ctx_length)) { /* actually a client application bug */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT); goto f_err; } ssl->hit = 1; } else { /* The session wasn't resumed. Create a fresh SSL_SESSION to * fill out. */ ssl->hit = 0; if (!ssl_get_new_session(ssl, 0 /* client */)) { goto f_err; } /* Note: session_id could be empty. */ ssl->session->session_id_length = CBS_len(&session_id); memcpy(ssl->session->session_id, CBS_data(&session_id), CBS_len(&session_id)); } c = SSL_get_cipher_by_value(cipher_suite); if (c == NULL) { /* unknown cipher */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED); goto f_err; } /* If the cipher is disabled then we didn't sent it in the ClientHello, so if * the server selected it, it's an error. */ if ((c->algorithm_mkey & ct->mask_k) || (c->algorithm_auth & ct->mask_a) || SSL_CIPHER_get_min_version(c) > ssl3_protocol_version(ssl)) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); goto f_err; } sk = ssl_get_ciphers_by_id(ssl); if (!sk_SSL_CIPHER_find(sk, NULL, c)) { /* we did not say we would use this cipher */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); goto f_err; } if (ssl->hit) { if (ssl->session->cipher != c) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED); goto f_err; } if (ssl->session->ssl_version != ssl->version) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED); goto f_err; } } else { ssl->session->cipher = c; } ssl->s3->tmp.new_cipher = c; /* Now that the cipher is known, initialize the handshake hash. */ if (!ssl3_init_handshake_hash(ssl)) { goto f_err; } /* If doing a full handshake with TLS 1.2, the server may request a client * certificate which requires hashing the handshake transcript under a * different hash. Otherwise, the handshake buffer may be released. */ if (ssl->hit || ssl3_protocol_version(ssl) < TLS1_2_VERSION) { ssl3_free_handshake_buffer(ssl); } /* Only the NULL compression algorithm is supported. */ if (compression_method != 0) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM); goto f_err; } /* TLS extensions */ if (!ssl_parse_serverhello_tlsext(ssl, &server_hello)) { OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); goto err; } /* There should be nothing left over in the record. */ if (CBS_len(&server_hello) != 0) { /* wrong packet length */ al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); goto f_err; } if (ssl->hit && ssl->s3->tmp.extended_master_secret != ssl->session->extended_master_secret) { al = SSL_AD_HANDSHAKE_FAILURE; if (ssl->session->extended_master_secret) { OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); } else { OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION); } goto f_err; } return 1; f_err: ssl3_send_alert(ssl, SSL3_AL_FATAL, al); err: return -1; } /* ssl3_check_leaf_certificate returns one if |leaf| is a suitable leaf server * certificate for |ssl|. Otherwise, it returns zero and pushes an error on the * error queue. */ static int ssl3_check_leaf_certificate(SSL *ssl, X509 *leaf) { int ret = 0; EVP_PKEY *pkey = X509_get_pubkey(leaf); if (pkey == NULL) { goto err; } /* Check the certificate's type matches the cipher. */ const SSL_CIPHER *cipher = ssl->s3->tmp.new_cipher; int expected_type = ssl_cipher_get_key_type(cipher); assert(expected_type != EVP_PKEY_NONE); if (pkey->type != expected_type) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE); goto err; } if (cipher->algorithm_auth & SSL_aECDSA) { /* TODO(davidben): This behavior is preserved from upstream. Should key * usages be checked in other cases as well? */ /* This call populates the ex_flags field correctly */ X509_check_purpose(leaf, -1, 0); if ((leaf->ex_flags & EXFLAG_KUSAGE) && !(leaf->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)) { OPENSSL_PUT_ERROR(SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING); goto err; } if (!tls1_check_ec_cert(ssl, leaf)) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT); goto err; } } ret = 1; err: EVP_PKEY_free(pkey); return ret; } int ssl3_get_server_certificate(SSL *ssl) { int al, ok, ret = -1; unsigned long n; X509 *x = NULL; STACK_OF(X509) *sk = NULL; EVP_PKEY *pkey = NULL; CBS cbs, certificate_list; const uint8_t *data; n = ssl->method->ssl_get_message(ssl, SSL3_ST_CR_CERT_A, SSL3_ST_CR_CERT_B, SSL3_MT_CERTIFICATE, (long)ssl->max_cert_list, ssl_hash_message, &ok); if (!ok) { return n; } CBS_init(&cbs, ssl->init_msg, n); sk = sk_X509_new_null(); if (sk == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } if (!CBS_get_u24_length_prefixed(&cbs, &certificate_list) || CBS_len(&certificate_list) == 0 || CBS_len(&cbs) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } while (CBS_len(&certificate_list) > 0) { CBS certificate; if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); goto f_err; } /* A u24 length cannot overflow a long. */ data = CBS_data(&certificate); x = d2i_X509(NULL, &data, (long)CBS_len(&certificate)); if (x == NULL) { al = SSL_AD_BAD_CERTIFICATE; OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); goto f_err; } if (data != CBS_data(&certificate) + CBS_len(&certificate)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); goto f_err; } if (!sk_X509_push(sk, x)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } x = NULL; } X509 *leaf = sk_X509_value(sk, 0); if (!ssl3_check_leaf_certificate(ssl, leaf)) { al = SSL_AD_ILLEGAL_PARAMETER; goto f_err; } /* NOTE: Unlike the server half, the client's copy of |cert_chain| includes * the leaf. */ sk_X509_pop_free(ssl->session->cert_chain, X509_free); ssl->session->cert_chain = sk; sk = NULL; X509_free(ssl->session->peer); ssl->session->peer = X509_up_ref(leaf); ssl->session->verify_result = ssl->verify_result; ret = 1; if (0) { f_err: ssl3_send_alert(ssl, SSL3_AL_FATAL, al); } err: EVP_PKEY_free(pkey); X509_free(x); sk_X509_pop_free(sk, X509_free); return ret; } int ssl3_get_server_key_exchange(SSL *ssl) { EVP_MD_CTX md_ctx; int al, ok; EVP_PKEY *pkey = NULL; DH *dh = NULL; EC_KEY *ecdh = NULL; EC_POINT *srvr_ecpoint = NULL; /* use same message size as in ssl3_get_certificate_request() as * ServerKeyExchange message may be skipped */ long n = ssl->method->ssl_get_message( ssl, SSL3_ST_CR_KEY_EXCH_A, SSL3_ST_CR_KEY_EXCH_B, -1, ssl->max_cert_list, ssl_hash_message, &ok); if (!ok) { return n; } if (ssl->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE) { if (ssl_cipher_requires_server_key_exchange(ssl->s3->tmp.new_cipher)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); return -1; } /* In plain PSK ciphersuite, ServerKeyExchange may be omitted to send no * identity hint. */ if (ssl->s3->tmp.new_cipher->algorithm_auth & SSL_aPSK) { /* TODO(davidben): This should be reset in one place with the rest of the * handshake state. */ OPENSSL_free(ssl->s3->tmp.peer_psk_identity_hint); ssl->s3->tmp.peer_psk_identity_hint = NULL; } ssl->s3->tmp.reuse_message = 1; return 1; } /* Retain a copy of the original CBS to compute the signature over. */ CBS server_key_exchange; CBS_init(&server_key_exchange, ssl->init_msg, n); CBS server_key_exchange_orig = server_key_exchange; uint32_t alg_k = ssl->s3->tmp.new_cipher->algorithm_mkey; uint32_t alg_a = ssl->s3->tmp.new_cipher->algorithm_auth; EVP_MD_CTX_init(&md_ctx); if (alg_a & SSL_aPSK) { CBS psk_identity_hint; /* Each of the PSK key exchanges begins with a psk_identity_hint. */ if (!CBS_get_u16_length_prefixed(&server_key_exchange, &psk_identity_hint)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } /* Store PSK identity hint for later use, hint is used in * ssl3_send_client_key_exchange. Assume that the maximum length of a PSK * identity hint can be as long as the maximum length of a PSK identity. * Also do not allow NULL characters; identities are saved as C strings. * * TODO(davidben): Should invalid hints be ignored? It's a hint rather than * a specific identity. */ if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN || CBS_contains_zero_byte(&psk_identity_hint)) { al = SSL_AD_HANDSHAKE_FAILURE; OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); goto f_err; } /* Save the identity hint as a C string. */ if (!CBS_strdup(&psk_identity_hint, &ssl->s3->tmp.peer_psk_identity_hint)) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto f_err; } } if (alg_k & SSL_kDHE) { CBS dh_p, dh_g, dh_Ys; if (!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_p) || CBS_len(&dh_p) == 0 || !CBS_get_u16_length_prefixed(&server_key_exchange, &dh_g) || CBS_len(&dh_g) == 0 || !CBS_get_u16_length_prefixed(&server_key_exchange, &dh_Ys) || CBS_len(&dh_Ys) == 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } dh = DH_new(); if (dh == NULL) { goto err; } dh->p = BN_bin2bn(CBS_data(&dh_p), CBS_len(&dh_p), NULL); dh->g = BN_bin2bn(CBS_data(&dh_g), CBS_len(&dh_g), NULL); if (dh->p == NULL || dh->g == NULL) { goto err; } ssl->session->key_exchange_info = DH_num_bits(dh); if (ssl->session->key_exchange_info < 1024) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_DH_P_LENGTH); goto err; } else if (ssl->session->key_exchange_info > 4096) { /* Overly large DHE groups are prohibitively expensive, so enforce a limit * to prevent a server from causing us to perform too expensive of a * computation. */ OPENSSL_PUT_ERROR(SSL, SSL_R_DH_P_TOO_LONG); goto err; } SSL_ECDH_CTX_init_for_dhe(&ssl->s3->tmp.ecdh_ctx, dh); dh = NULL; /* Save the peer public key for later. */ size_t peer_key_len; if (!CBS_stow(&dh_Ys, &ssl->s3->tmp.peer_key, &peer_key_len)) { goto err; } /* |dh_Ys| has a u16 length prefix, so this fits in a |uint16_t|. */ assert(sizeof(ssl->s3->tmp.peer_key_len) == 2 && peer_key_len <= 0xffff); ssl->s3->tmp.peer_key_len = (uint16_t)peer_key_len; } else if (alg_k & SSL_kECDHE) { /* Parse the server parameters. */ uint8_t curve_type; uint16_t curve_id; CBS point; if (!CBS_get_u8(&server_key_exchange, &curve_type) || curve_type != NAMED_CURVE_TYPE || !CBS_get_u16(&server_key_exchange, &curve_id) || !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } ssl->session->key_exchange_info = curve_id; /* Ensure the curve is consistent with preferences. */ if (!tls1_check_curve_id(ssl, curve_id)) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); goto f_err; } /* Initialize ECDH and save the peer public key for later. */ size_t peer_key_len; if (!SSL_ECDH_CTX_init(&ssl->s3->tmp.ecdh_ctx, curve_id) || !CBS_stow(&point, &ssl->s3->tmp.peer_key, &peer_key_len)) { goto err; } /* |point| has a u8 length prefix, so this fits in a |uint16_t|. */ assert(sizeof(ssl->s3->tmp.peer_key_len) == 2 && peer_key_len <= 0xffff); ssl->s3->tmp.peer_key_len = (uint16_t)peer_key_len; } else if (!(alg_k & SSL_kPSK)) { al = SSL_AD_UNEXPECTED_MESSAGE; OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } /* At this point, |server_key_exchange| contains the signature, if any, while * |server_key_exchange_orig| contains the entire message. From that, derive * a CBS containing just the parameter. */ CBS parameter; CBS_init(¶meter, CBS_data(&server_key_exchange_orig), CBS_len(&server_key_exchange_orig) - CBS_len(&server_key_exchange)); /* ServerKeyExchange should be signed by the server's public key. */ if (ssl_cipher_has_server_public_key(ssl->s3->tmp.new_cipher)) { pkey = X509_get_pubkey(ssl->session->peer); if (pkey == NULL) { goto err; } const EVP_MD *md = NULL; if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) { uint8_t hash, signature; if (!CBS_get_u8(&server_key_exchange, &hash) || !CBS_get_u8(&server_key_exchange, &signature)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (!tls12_check_peer_sigalg(ssl, &md, &al, hash, signature, pkey)) { goto f_err; } ssl->s3->tmp.server_key_exchange_hash = hash; } else if (pkey->type == EVP_PKEY_RSA) { md = EVP_md5_sha1(); } else { md = EVP_sha1(); } /* The last field in |server_key_exchange| is the signature. */ CBS signature; if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) || CBS_len(&server_key_exchange) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } int sig_ok = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) && EVP_DigestVerifyUpdate(&md_ctx, ssl->s3->client_random, SSL3_RANDOM_SIZE) && EVP_DigestVerifyUpdate(&md_ctx, ssl->s3->server_random, SSL3_RANDOM_SIZE) && EVP_DigestVerifyUpdate(&md_ctx, CBS_data(¶meter), CBS_len(¶meter)) && EVP_DigestVerifyFinal(&md_ctx, CBS_data(&signature), CBS_len(&signature)); #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) sig_ok = 1; ERR_clear_error(); #endif if (!sig_ok) { /* bad signature */ al = SSL_AD_DECRYPT_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); goto f_err; } } else { /* PSK ciphers are the only supported certificate-less ciphers. */ assert(alg_a == SSL_aPSK); if (CBS_len(&server_key_exchange) > 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE); goto f_err; } } EVP_PKEY_free(pkey); EVP_MD_CTX_cleanup(&md_ctx); return 1; f_err: ssl3_send_alert(ssl, SSL3_AL_FATAL, al); err: EVP_PKEY_free(pkey); DH_free(dh); EC_POINT_free(srvr_ecpoint); EC_KEY_free(ecdh); EVP_MD_CTX_cleanup(&md_ctx); return -1; } static int ca_dn_cmp(const X509_NAME **a, const X509_NAME **b) { return X509_NAME_cmp(*a, *b); } int ssl3_get_certificate_request(SSL *ssl) { int ok, ret = 0; X509_NAME *xn = NULL; STACK_OF(X509_NAME) *ca_sk = NULL; long n = ssl->method->ssl_get_message( ssl, SSL3_ST_CR_CERT_REQ_A, SSL3_ST_CR_CERT_REQ_B, -1, ssl->max_cert_list, ssl_hash_message, &ok); if (!ok) { return n; } ssl->s3->tmp.cert_req = 0; if (ssl->s3->tmp.message_type == SSL3_MT_SERVER_DONE) { ssl->s3->tmp.reuse_message = 1; /* If we get here we don't need the handshake buffer as we won't be doing * client auth. */ ssl3_free_handshake_buffer(ssl); return 1; } if (ssl->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); goto err; } CBS cbs; CBS_init(&cbs, ssl->init_msg, n); ca_sk = sk_X509_NAME_new(ca_dn_cmp); if (ca_sk == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } /* get the certificate types */ CBS certificate_types; if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto err; } if (!CBS_stow(&certificate_types, &ssl->s3->tmp.certificate_types, &ssl->s3->tmp.num_certificate_types)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); goto err; } if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) { CBS supported_signature_algorithms; if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms) || !tls1_parse_peer_sigalgs(ssl, &supported_signature_algorithms)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto err; } } /* get the CA RDNs */ CBS certificate_authorities; if (!CBS_get_u16_length_prefixed(&cbs, &certificate_authorities)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH); goto err; } while (CBS_len(&certificate_authorities) > 0) { CBS distinguished_name; if (!CBS_get_u16_length_prefixed(&certificate_authorities, &distinguished_name)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG); goto err; } const uint8_t *data = CBS_data(&distinguished_name); /* A u16 length cannot overflow a long. */ xn = d2i_X509_NAME(NULL, &data, (long)CBS_len(&distinguished_name)); if (xn == NULL || data != CBS_data(&distinguished_name) + CBS_len(&distinguished_name)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto err; } if (!sk_X509_NAME_push(ca_sk, xn)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } xn = NULL; } /* we should setup a certificate to return.... */ ssl->s3->tmp.cert_req = 1; sk_X509_NAME_pop_free(ssl->s3->tmp.ca_names, X509_NAME_free); ssl->s3->tmp.ca_names = ca_sk; ca_sk = NULL; ret = 1; err: X509_NAME_free(xn); sk_X509_NAME_pop_free(ca_sk, X509_NAME_free); return ret; } int ssl3_get_new_session_ticket(SSL *ssl) { int ok, al; long n = ssl->method->ssl_get_message( ssl, SSL3_ST_CR_SESSION_TICKET_A, SSL3_ST_CR_SESSION_TICKET_B, SSL3_MT_NEWSESSION_TICKET, 16384, ssl_hash_message, &ok); if (!ok) { return n; } CBS new_session_ticket, ticket; uint32_t ticket_lifetime_hint; CBS_init(&new_session_ticket, ssl->init_msg, n); if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) || !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) || CBS_len(&new_session_ticket) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (CBS_len(&ticket) == 0) { /* RFC 5077 allows a server to change its mind and send no ticket after * negotiating the extension. The value of |tlsext_ticket_expected| is * checked in |ssl_update_cache| so is cleared here to avoid an unnecessary * update. */ ssl->tlsext_ticket_expected = 0; return 1; } if (ssl->hit) { /* The server is sending a new ticket for an existing session. Sessions are * immutable once established, so duplicate all but the ticket of the * existing session. */ uint8_t *bytes; size_t bytes_len; if (!SSL_SESSION_to_bytes_for_ticket(ssl->session, &bytes, &bytes_len)) { goto err; } SSL_SESSION *new_session = SSL_SESSION_from_bytes(bytes, bytes_len); OPENSSL_free(bytes); if (new_session == NULL) { /* This should never happen. */ OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } SSL_SESSION_free(ssl->session); ssl->session = new_session; } if (!CBS_stow(&ticket, &ssl->session->tlsext_tick, &ssl->session->tlsext_ticklen)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } ssl->session->tlsext_tick_lifetime_hint = ticket_lifetime_hint; /* Generate a session ID for this session based on the session ticket. We use * the session ID mechanism for detecting ticket resumption. This also fits in * with assumptions elsewhere in OpenSSL.*/ if (!EVP_Digest(CBS_data(&ticket), CBS_len(&ticket), ssl->session->session_id, &ssl->session->session_id_length, EVP_sha256(), NULL)) { goto err; } return 1; f_err: ssl3_send_alert(ssl, SSL3_AL_FATAL, al); err: return -1; } int ssl3_get_cert_status(SSL *ssl) { int ok, al; long n; CBS certificate_status, ocsp_response; uint8_t status_type; n = ssl->method->ssl_get_message( ssl, SSL3_ST_CR_CERT_STATUS_A, SSL3_ST_CR_CERT_STATUS_B, -1, 16384, ssl_hash_message, &ok); if (!ok) { return n; } if (ssl->s3->tmp.message_type != SSL3_MT_CERTIFICATE_STATUS) { /* A server may send status_request in ServerHello and then change * its mind about sending CertificateStatus. */ ssl->s3->tmp.reuse_message = 1; return 1; } CBS_init(&certificate_status, ssl->init_msg, n); if (!CBS_get_u8(&certificate_status, &status_type) || status_type != TLSEXT_STATUSTYPE_ocsp || !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || CBS_len(&ocsp_response) == 0 || CBS_len(&certificate_status) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); goto f_err; } if (!CBS_stow(&ocsp_response, &ssl->session->ocsp_response, &ssl->session->ocsp_response_length)) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto f_err; } return 1; f_err: ssl3_send_alert(ssl, SSL3_AL_FATAL, al); return -1; } int ssl3_get_server_done(SSL *ssl) { int ok; long n; n = ssl->method->ssl_get_message(ssl, SSL3_ST_CR_SRVR_DONE_A, SSL3_ST_CR_SRVR_DONE_B, SSL3_MT_SERVER_DONE, 30, /* should be very small, like 0 :-) */ ssl_hash_message, &ok); if (!ok) { return n; } if (n > 0) { /* should contain no data */ ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH); return -1; } return 1; } OPENSSL_COMPILE_ASSERT(sizeof(size_t) >= sizeof(unsigned), SIZE_T_IS_SMALLER_THAN_UNSIGNED); int ssl3_send_client_key_exchange(SSL *ssl) { if (ssl->state == SSL3_ST_CW_KEY_EXCH_B) { return ssl_do_write(ssl); } assert(ssl->state == SSL3_ST_CW_KEY_EXCH_A); uint8_t *pms = NULL; size_t pms_len = 0; CBB cbb; if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl), ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl))) { goto err; } uint32_t alg_k = ssl->s3->tmp.new_cipher->algorithm_mkey; uint32_t alg_a = ssl->s3->tmp.new_cipher->algorithm_auth; /* If using a PSK key exchange, prepare the pre-shared key. */ unsigned psk_len = 0; uint8_t psk[PSK_MAX_PSK_LEN]; if (alg_a & SSL_aPSK) { if (ssl->psk_client_callback == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB); goto err; } char identity[PSK_MAX_IDENTITY_LEN + 1]; memset(identity, 0, sizeof(identity)); psk_len = ssl->psk_client_callback( ssl, ssl->s3->tmp.peer_psk_identity_hint, identity, sizeof(identity), psk, sizeof(psk)); if (psk_len == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); goto err; } assert(psk_len <= PSK_MAX_PSK_LEN); OPENSSL_free(ssl->session->psk_identity); ssl->session->psk_identity = BUF_strdup(identity); if (ssl->session->psk_identity == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } /* Write out psk_identity. */ CBB child; if (!CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, (const uint8_t *)identity, OPENSSL_strnlen(identity, sizeof(identity))) || !CBB_flush(&cbb)) { goto err; } } /* Depending on the key exchange method, compute |pms| and |pms_len|. */ if (alg_k & SSL_kRSA) { pms_len = SSL_MAX_MASTER_KEY_LENGTH; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } EVP_PKEY *pkey = X509_get_pubkey(ssl->session->peer); if (pkey == NULL) { goto err; } RSA *rsa = EVP_PKEY_get0_RSA(pkey); if (rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); EVP_PKEY_free(pkey); goto err; } ssl->session->key_exchange_info = EVP_PKEY_bits(pkey); EVP_PKEY_free(pkey); pms[0] = ssl->client_version >> 8; pms[1] = ssl->client_version & 0xff; if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) { goto err; } CBB child, *enc_pms = &cbb; size_t enc_pms_len; /* In TLS, there is a length prefix. */ if (ssl->version > SSL3_VERSION) { if (!CBB_add_u16_length_prefixed(&cbb, &child)) { goto err; } enc_pms = &child; } uint8_t *ptr; if (!CBB_reserve(enc_pms, &ptr, RSA_size(rsa)) || !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms, pms_len, RSA_PKCS1_PADDING) || /* Log the premaster secret, if logging is enabled. */ !ssl_log_rsa_client_key_exchange(ssl, ptr, enc_pms_len, pms, pms_len) || !CBB_did_write(enc_pms, enc_pms_len) || !CBB_flush(&cbb)) { goto err; } } else if (alg_k & (SSL_kECDHE|SSL_kDHE)) { /* Generate a keypair and serialize the public half. ECDHE uses a u8 length * prefix while DHE uses u16. */ CBB child; int child_ok; if (alg_k & SSL_kECDHE) { child_ok = CBB_add_u8_length_prefixed(&cbb, &child); } else { child_ok = CBB_add_u16_length_prefixed(&cbb, &child); } if (!child_ok || !SSL_ECDH_CTX_generate_keypair(&ssl->s3->tmp.ecdh_ctx, &child) || !CBB_flush(&cbb)) { goto err; } /* Compute the premaster. */ uint8_t alert; if (!SSL_ECDH_CTX_compute_secret(&ssl->s3->tmp.ecdh_ctx, &pms, &pms_len, &alert, ssl->s3->tmp.peer_key, ssl->s3->tmp.peer_key_len)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); goto err; } /* The key exchange state may now be discarded. */ SSL_ECDH_CTX_cleanup(&ssl->s3->tmp.ecdh_ctx); OPENSSL_free(ssl->s3->tmp.peer_key); ssl->s3->tmp.peer_key = NULL; } else if (alg_k & SSL_kPSK) { /* For plain PSK, other_secret is a block of 0s with the same length as * the pre-shared key. */ pms_len = psk_len; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } memset(pms, 0, pms_len); } else { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } /* For a PSK cipher suite, other_secret is combined with the pre-shared * key. */ if (alg_a & SSL_aPSK) { CBB pms_cbb, child; uint8_t *new_pms; size_t new_pms_len; CBB_zero(&pms_cbb); if (!CBB_init(&pms_cbb, 2 + psk_len + 2 + pms_len) || !CBB_add_u16_length_prefixed(&pms_cbb, &child) || !CBB_add_bytes(&child, pms, pms_len) || !CBB_add_u16_length_prefixed(&pms_cbb, &child) || !CBB_add_bytes(&child, psk, psk_len) || !CBB_finish(&pms_cbb, &new_pms, &new_pms_len)) { CBB_cleanup(&pms_cbb); OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); pms = new_pms; pms_len = new_pms_len; } /* The message must be added to the finished hash before calculating the * master secret. */ size_t length; if (!CBB_finish(&cbb, NULL, &length) || !ssl_set_handshake_header(ssl, SSL3_MT_CLIENT_KEY_EXCHANGE, length)) { goto err; } ssl->state = SSL3_ST_CW_KEY_EXCH_B; ssl->session->master_key_length = tls1_generate_master_secret(ssl, ssl->session->master_key, pms, pms_len); if (ssl->session->master_key_length == 0) { goto err; } ssl->session->extended_master_secret = ssl->s3->tmp.extended_master_secret; OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); /* SSL3_ST_CW_KEY_EXCH_B */ return ssl_do_write(ssl); err: CBB_cleanup(&cbb); if (pms != NULL) { OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); } return -1; } int ssl3_send_cert_verify(SSL *ssl) { if (ssl->state == SSL3_ST_CW_CERT_VRFY_C) { return ssl_do_write(ssl); } CBB cbb, child; if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl), ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl))) { goto err; } assert(ssl_has_private_key(ssl)); const size_t max_sig_len = ssl_private_key_max_signature_len(ssl); size_t sig_len; enum ssl_private_key_result_t sign_result; if (ssl->state == SSL3_ST_CW_CERT_VRFY_A) { /* Select and write out the digest type in TLS 1.2. */ const EVP_MD *md = NULL; if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) { md = tls1_choose_signing_digest(ssl); if (!tls12_add_sigandhash(ssl, &cbb, md)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); goto err; } } /* Compute the digest. In TLS 1.1 and below, the digest type is also * selected here. */ uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_len; if (!ssl3_cert_verify_hash(ssl, digest, &digest_len, &md, ssl_private_key_type(ssl))) { goto err; } /* The handshake buffer is no longer necessary. */ ssl3_free_handshake_buffer(ssl); /* Sign the digest. */ uint8_t *ptr; if (!CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_reserve(&child, &ptr, max_sig_len)) { goto err; } sign_result = ssl_private_key_sign(ssl, ptr, &sig_len, max_sig_len, md, digest, digest_len); } else { assert(ssl->state == SSL3_ST_CW_CERT_VRFY_B); /* Skip over the already written signature algorithm and retry the * signature. */ uint8_t *ptr; if ((ssl3_protocol_version(ssl) >= TLS1_2_VERSION && !CBB_did_write(&cbb, 2)) || !CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_reserve(&child, &ptr, max_sig_len)) { goto err; } sign_result = ssl_private_key_sign_complete(ssl, ptr, &sig_len, max_sig_len); } switch (sign_result) { case ssl_private_key_success: ssl->rwstate = SSL_NOTHING; break; case ssl_private_key_failure: ssl->rwstate = SSL_NOTHING; goto err; case ssl_private_key_retry: ssl->rwstate = SSL_PRIVATE_KEY_OPERATION; ssl->state = SSL3_ST_CW_CERT_VRFY_B; goto err; } size_t length; if (!CBB_did_write(&child, sig_len) || !CBB_finish(&cbb, NULL, &length) || !ssl_set_handshake_header(ssl, SSL3_MT_CERTIFICATE_VERIFY, length)) { goto err; } ssl->state = SSL3_ST_CW_CERT_VRFY_C; return ssl_do_write(ssl); err: CBB_cleanup(&cbb); return -1; } /* ssl3_has_client_certificate returns true if a client certificate is * configured. */ static int ssl3_has_client_certificate(SSL *ssl) { return ssl->cert && ssl->cert->x509 && ssl_has_private_key(ssl); } int ssl3_send_client_certificate(SSL *ssl) { if (ssl->state == SSL3_ST_CW_CERT_A) { /* Call cert_cb to update the certificate. */ if (ssl->cert->cert_cb) { int ret = ssl->cert->cert_cb(ssl, ssl->cert->cert_cb_arg); if (ret < 0) { ssl->rwstate = SSL_X509_LOOKUP; return -1; } if (ret == 0) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); return -1; } ssl->rwstate = SSL_NOTHING; } if (ssl3_has_client_certificate(ssl)) { ssl->state = SSL3_ST_CW_CERT_C; } else { ssl->state = SSL3_ST_CW_CERT_B; } } if (ssl->state == SSL3_ST_CW_CERT_B) { /* Call client_cert_cb to update the certificate. */ X509 *x509 = NULL; EVP_PKEY *pkey = NULL; int ret = ssl_do_client_cert_cb(ssl, &x509, &pkey); if (ret < 0) { ssl->rwstate = SSL_X509_LOOKUP; return -1; } ssl->rwstate = SSL_NOTHING; int setup_error = ret == 1 && (!SSL_use_certificate(ssl, x509) || !SSL_use_PrivateKey(ssl, pkey)); X509_free(x509); EVP_PKEY_free(pkey); if (setup_error) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); return -1; } ssl->state = SSL3_ST_CW_CERT_C; } if (ssl->state == SSL3_ST_CW_CERT_C) { if (!ssl3_has_client_certificate(ssl)) { /* Without a client certificate, the handshake buffer may be released. */ ssl3_free_handshake_buffer(ssl); if (ssl->version == SSL3_VERSION) { /* In SSL 3.0, send no certificate by skipping both messages. */ ssl->s3->tmp.cert_req = 0; ssl3_send_alert(ssl, SSL3_AL_WARNING, SSL_AD_NO_CERTIFICATE); return 1; } /* In TLS, send an empty Certificate message. */ ssl->s3->tmp.cert_req = 2; uint8_t *p = ssl_handshake_start(ssl); l2n3(0, p); if (!ssl_set_handshake_header(ssl, SSL3_MT_CERTIFICATE, 3)) { return -1; } } else if (!ssl3_output_cert_chain(ssl)) { return -1; } ssl->state = SSL3_ST_CW_CERT_D; } assert(ssl->state == SSL3_ST_CW_CERT_D); return ssl_do_write(ssl); } int ssl3_send_next_proto(SSL *ssl) { if (ssl->state == SSL3_ST_CW_NEXT_PROTO_B) { return ssl_do_write(ssl); } assert(ssl->state == SSL3_ST_CW_NEXT_PROTO_A); static const uint8_t kZero[32] = {0}; size_t padding_len = 32 - ((ssl->s3->next_proto_negotiated_len + 2) % 32); CBB cbb, child; size_t length; CBB_zero(&cbb); if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl), ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl)) || !CBB_add_u8_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated, ssl->s3->next_proto_negotiated_len) || !CBB_add_u8_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, kZero, padding_len) || !CBB_finish(&cbb, NULL, &length) || !ssl_set_handshake_header(ssl, SSL3_MT_NEXT_PROTO, length)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); CBB_cleanup(&cbb); return -1; } ssl->state = SSL3_ST_CW_NEXT_PROTO_B; return ssl_do_write(ssl); } int ssl3_send_channel_id(SSL *ssl) { if (ssl->state == SSL3_ST_CW_CHANNEL_ID_B) { return ssl_do_write(ssl); } assert(ssl->state == SSL3_ST_CW_CHANNEL_ID_A); if (ssl->tlsext_channel_id_private == NULL && ssl->ctx->channel_id_cb != NULL) { EVP_PKEY *key = NULL; ssl->ctx->channel_id_cb(ssl, &key); if (key != NULL && !SSL_set1_tls_channel_id(ssl, key)) { EVP_PKEY_free(key); return -1; } EVP_PKEY_free(key); } if (ssl->tlsext_channel_id_private == NULL) { ssl->rwstate = SSL_CHANNEL_ID_LOOKUP; return -1; } ssl->rwstate = SSL_NOTHING; EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->tlsext_channel_id_private); if (ec_key == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } int ret = -1; BIGNUM *x = BN_new(); BIGNUM *y = BN_new(); ECDSA_SIG *sig = NULL; if (x == NULL || y == NULL || !EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key), EC_KEY_get0_public_key(ec_key), x, y, NULL)) { goto err; } uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_len; if (!tls1_channel_id_hash(ssl, digest, &digest_len)) { goto err; } sig = ECDSA_do_sign(digest, digest_len, ec_key); if (sig == NULL) { goto err; } CBB cbb, child; size_t length; CBB_zero(&cbb); if (!CBB_init_fixed(&cbb, ssl_handshake_start(ssl), ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl)) || !CBB_add_u16(&cbb, TLSEXT_TYPE_channel_id) || !CBB_add_u16_length_prefixed(&cbb, &child) || !BN_bn2cbb_padded(&child, 32, x) || !BN_bn2cbb_padded(&child, 32, y) || !BN_bn2cbb_padded(&child, 32, sig->r) || !BN_bn2cbb_padded(&child, 32, sig->s) || !CBB_finish(&cbb, NULL, &length) || !ssl_set_handshake_header(ssl, SSL3_MT_ENCRYPTED_EXTENSIONS, length)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); CBB_cleanup(&cbb); goto err; } ssl->state = SSL3_ST_CW_CHANNEL_ID_B; ret = ssl_do_write(ssl); err: BN_free(x); BN_free(y); ECDSA_SIG_free(sig); return ret; } int ssl_do_client_cert_cb(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) { if (ssl->ctx->client_cert_cb == NULL) { return 0; } int ret = ssl->ctx->client_cert_cb(ssl, out_x509, out_pkey); if (ret <= 0) { return ret; } assert(*out_x509 != NULL); assert(*out_pkey != NULL); return 1; } int ssl3_verify_server_cert(SSL *ssl) { int ret = ssl_verify_cert_chain(ssl, ssl->session->cert_chain); if (ssl->verify_mode != SSL_VERIFY_NONE && ret <= 0) { int al = ssl_verify_alarm_type(ssl->verify_result); ssl3_send_alert(ssl, SSL3_AL_FATAL, al); OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED); } else { ret = 1; ERR_clear_error(); /* but we keep ssl->verify_result */ } return ret; }