/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * ECC cipher suite support in OpenSSL originally written by * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include "ssl_locl.h" #define SSL3_NUM_CIPHERS (sizeof(ssl3_ciphers) / sizeof(SSL_CIPHER)) /* FIXED_NONCE_LEN is a macro that results in the correct value to set the * fixed nonce length in SSL_CIPHER.algorithms2. It's the inverse of * SSL_CIPHER_AEAD_FIXED_NONCE_LEN. */ #define FIXED_NONCE_LEN(x) ((x / 2) << 24) /* list of available SSLv3 ciphers (sorted by id) */ const SSL_CIPHER ssl3_ciphers[] = { /* The RSA ciphers */ /* Cipher 04 */ { 1, SSL3_TXT_RSA_RC4_128_MD5, SSL3_CK_RSA_RC4_128_MD5, SSL_kRSA, SSL_aRSA, SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF | SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD, 128, 128, }, /* Cipher 05 */ { 1, SSL3_TXT_RSA_RC4_128_SHA, SSL3_CK_RSA_RC4_128_SHA, SSL_kRSA, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL_SSLV3, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 0A */ { 1, SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168, }, /* The Ephemeral DH ciphers */ /* Cipher 18 */ { 1, SSL3_TXT_ADH_RC4_128_MD5, SSL3_CK_ADH_RC4_128_MD5, SSL_kEDH, SSL_aNULL, SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* New AES ciphersuites */ /* Cipher 2F */ { 1, TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 33 */ { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA, SSL_kEDH, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 34 */ { 1, TLS1_TXT_ADH_WITH_AES_128_SHA, TLS1_CK_ADH_WITH_AES_128_SHA, SSL_kEDH, SSL_aNULL, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 35 */ { 1, TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher 39 */ { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA, SSL_kEDH, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher 3A */ { 1, TLS1_TXT_ADH_WITH_AES_256_SHA, TLS1_CK_ADH_WITH_AES_256_SHA, SSL_kEDH, SSL_aNULL, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* TLS v1.2 ciphersuites */ /* Cipher 3C */ { 1, TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 3D */ { 1, TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher 67 */ { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256, TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kEDH, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 6B */ { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256, TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kEDH, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher 6C */ { 1, TLS1_TXT_ADH_WITH_AES_128_SHA256, TLS1_CK_ADH_WITH_AES_128_SHA256, SSL_kEDH, SSL_aNULL, SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 6D */ { 1, TLS1_TXT_ADH_WITH_AES_256_SHA256, TLS1_CK_ADH_WITH_AES_256_SHA256, SSL_kEDH, SSL_aNULL, SSL_AES256, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher 8A */ { 1, TLS1_TXT_PSK_WITH_RC4_128_SHA, TLS1_CK_PSK_WITH_RC4_128_SHA, SSL_kPSK, SSL_aPSK, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 8C */ { 1, TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher 8D */ { 1, TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* GCM ciphersuites from RFC5288 */ /* Cipher 9C */ { 1, TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 128, 128, }, /* Cipher 9D */ { 1, TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 256, 256, }, /* Cipher 9E */ { 1, TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kEDH, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 128, 128, }, /* Cipher 9F */ { 1, TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kEDH, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 256, 256, }, /* Cipher A6 */ { 1, TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256, TLS1_CK_ADH_WITH_AES_128_GCM_SHA256, SSL_kEDH, SSL_aNULL, SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 128, 128, }, /* Cipher A7 */ { 1, TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384, TLS1_CK_ADH_WITH_AES_256_GCM_SHA384, SSL_kEDH, SSL_aNULL, SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 256, 256, }, /* Cipher C007 */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_kEECDH, SSL_aECDSA, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher C009 */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kEECDH, SSL_aECDSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher C00A */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kEECDH, SSL_aECDSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher C011 */ { 1, TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA, SSL_kEECDH, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher C013 */ { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kEECDH, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher C014 */ { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kEECDH, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* Cipher C016 */ { 1, TLS1_TXT_ECDH_anon_WITH_RC4_128_SHA, TLS1_CK_ECDH_anon_WITH_RC4_128_SHA, SSL_kEECDH, SSL_aNULL, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher C018 */ { 1, TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA, TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA, SSL_kEECDH, SSL_aNULL, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128, }, /* Cipher C019 */ { 1, TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA, TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA, SSL_kEECDH, SSL_aNULL, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256, }, /* HMAC based TLS v1.2 ciphersuites from RFC5289 */ /* Cipher C023 */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kEECDH, SSL_aECDSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, /* Cipher C024 */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kEECDH, SSL_aECDSA, SSL_AES256, SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, /* Cipher C027 */ { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256, TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kEECDH, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128, }, /* Cipher C028 */ { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384, TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kEECDH, SSL_aRSA, SSL_AES256, SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256, }, /* GCM based TLS v1.2 ciphersuites from RFC5289 */ /* Cipher C02B */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kEECDH, SSL_aECDSA, SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 128, 128, }, /* Cipher C02C */ { 1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kEECDH, SSL_aECDSA, SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 256, 256, }, /* Cipher C02F */ { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kEECDH, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 128, 128, }, /* Cipher C030 */ { 1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kEECDH, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 256, 256, }, /* ECDH PSK ciphersuites */ /* Cipher CAFE */ { 1, TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256, TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256, SSL_kEECDH, SSL_aPSK, SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(4) | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD, 128, 128, }, { 1, TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305, TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305, SSL_kEECDH, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(0), 256, 0, }, { 1, TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305, SSL_kEECDH, SSL_aECDSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(0), 256, 0, }, { 1, TLS1_TXT_DHE_RSA_WITH_CHACHA20_POLY1305, TLS1_CK_DHE_RSA_CHACHA20_POLY1305, SSL_kEDH, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD | FIXED_NONCE_LEN(0), 256, 0, }, }; const SSL3_ENC_METHOD SSLv3_enc_data = { ssl3_enc, n_ssl3_mac, ssl3_setup_key_block, ssl3_generate_master_secret, ssl3_change_cipher_state, ssl3_final_finish_mac, MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH, ssl3_cert_verify_mac, SSL3_MD_CLIENT_FINISHED_CONST, 4, SSL3_MD_SERVER_FINISHED_CONST, 4, ssl3_alert_code, (int (*)(SSL *, uint8_t *, size_t, const char *, size_t, const uint8_t *, size_t, int use_context)) ssl_undefined_function, 0, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write, }; int ssl3_num_ciphers(void) { return SSL3_NUM_CIPHERS; } const SSL_CIPHER *ssl3_get_cipher(unsigned int u) { if (u >= SSL3_NUM_CIPHERS) { return NULL; } return &ssl3_ciphers[SSL3_NUM_CIPHERS - 1 - u]; } int ssl3_pending(const SSL *s) { if (s->rstate == SSL_ST_READ_BODY) { return 0; } return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length : 0; } void ssl3_set_handshake_header(SSL *s, int htype, unsigned long len) { uint8_t *p = (uint8_t *)s->init_buf->data; *(p++) = htype; l2n3(len, p); s->init_num = (int)len + SSL3_HM_HEADER_LENGTH; s->init_off = 0; /* Add the message to the handshake hash. */ ssl3_finish_mac(s, (uint8_t *)s->init_buf->data, s->init_num); } int ssl3_handshake_write(SSL *s) { return ssl3_do_write(s, SSL3_RT_HANDSHAKE); } int ssl3_new(SSL *s) { SSL3_STATE *s3; s3 = OPENSSL_malloc(sizeof *s3); if (s3 == NULL) { goto err; } memset(s3, 0, sizeof *s3); memset(s3->rrec.seq_num, 0, sizeof(s3->rrec.seq_num)); memset(s3->wrec.seq_num, 0, sizeof(s3->wrec.seq_num)); s->s3 = s3; /* Set the version to the highest supported version for TLS. This controls the * initial state of |s->enc_method| and what the API reports as the version * prior to negotiation. * * TODO(davidben): This is fragile and confusing. */ s->version = TLS1_2_VERSION; return 1; err: return 0; } void ssl3_free(SSL *s) { if (s == NULL || s->s3 == NULL) { return; } if (s->s3->sniff_buffer != NULL) { BUF_MEM_free(s->s3->sniff_buffer); } ssl3_cleanup_key_block(s); if (s->s3->rbuf.buf != NULL) { ssl3_release_read_buffer(s); } if (s->s3->wbuf.buf != NULL) { ssl3_release_write_buffer(s); } if (s->s3->tmp.dh != NULL) { DH_free(s->s3->tmp.dh); } if (s->s3->tmp.ecdh != NULL) { EC_KEY_free(s->s3->tmp.ecdh); } if (s->s3->tmp.ca_names != NULL) { sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free); } if (s->s3->tmp.certificate_types != NULL) { OPENSSL_free(s->s3->tmp.certificate_types); } if (s->s3->tmp.peer_ecpointformatlist) { OPENSSL_free(s->s3->tmp.peer_ecpointformatlist); } if (s->s3->tmp.peer_ellipticcurvelist) { OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist); } if (s->s3->tmp.peer_psk_identity_hint) { OPENSSL_free(s->s3->tmp.peer_psk_identity_hint); } if (s->s3->handshake_buffer) { BIO_free(s->s3->handshake_buffer); } if (s->s3->handshake_dgst) { ssl3_free_digest_list(s); } if (s->s3->alpn_selected) { OPENSSL_free(s->s3->alpn_selected); } OPENSSL_cleanse(s->s3, sizeof *s->s3); OPENSSL_free(s->s3); s->s3 = NULL; } static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len); long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg) { int ret = 0; if (cmd == SSL_CTRL_SET_TMP_RSA || cmd == SSL_CTRL_SET_TMP_RSA_CB || cmd == SSL_CTRL_SET_TMP_DH || cmd == SSL_CTRL_SET_TMP_DH_CB) { if (!ssl_cert_inst(&s->cert)) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_MALLOC_FAILURE); return 0; } } switch (cmd) { case SSL_CTRL_GET_SESSION_REUSED: ret = s->hit; break; case SSL_CTRL_GET_CLIENT_CERT_REQUEST: break; case SSL_CTRL_GET_NUM_RENEGOTIATIONS: ret = s->s3->num_renegotiations; break; case SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS: ret = s->s3->num_renegotiations; s->s3->num_renegotiations = 0; break; case SSL_CTRL_GET_TOTAL_RENEGOTIATIONS: ret = s->s3->total_renegotiations; break; case SSL_CTRL_GET_FLAGS: ret = (int)(s->s3->flags); break; case SSL_CTRL_NEED_TMP_RSA: /* Temporary RSA keys are never used. */ ret = 0; break; case SSL_CTRL_SET_TMP_RSA: /* Temporary RSA keys are never used. */ OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); break; case SSL_CTRL_SET_TMP_RSA_CB: OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return ret; case SSL_CTRL_SET_TMP_DH: { DH *dh = (DH *)parg; if (dh == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER); return ret; } dh = DHparams_dup(dh); if (dh == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB); return ret; } if (!(s->options & SSL_OP_SINGLE_DH_USE) && !DH_generate_key(dh)) { DH_free(dh); OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB); return ret; } if (s->cert->dh_tmp != NULL) { DH_free(s->cert->dh_tmp); } s->cert->dh_tmp = dh; ret = 1; break; } case SSL_CTRL_SET_TMP_DH_CB: OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return ret; case SSL_CTRL_SET_TMP_ECDH: { EC_KEY *ecdh = NULL; if (parg == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER); return ret; } if (!EC_KEY_up_ref((EC_KEY *)parg)) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_ECDH_LIB); return ret; } ecdh = (EC_KEY *)parg; if (!(s->options & SSL_OP_SINGLE_ECDH_USE) && !EC_KEY_generate_key(ecdh)) { EC_KEY_free(ecdh); OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_ECDH_LIB); return ret; } if (s->cert->ecdh_tmp != NULL) { EC_KEY_free(s->cert->ecdh_tmp); } s->cert->ecdh_tmp = ecdh; ret = 1; break; } case SSL_CTRL_SET_TMP_ECDH_CB: OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return ret; case SSL_CTRL_SET_TLSEXT_HOSTNAME: if (larg == TLSEXT_NAMETYPE_host_name) { if (s->tlsext_hostname != NULL) { OPENSSL_free(s->tlsext_hostname); } s->tlsext_hostname = NULL; ret = 1; if (parg == NULL) { break; } if (strlen((char *)parg) > TLSEXT_MAXLEN_host_name) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_SSL3_EXT_INVALID_SERVERNAME); return 0; } s->tlsext_hostname = BUF_strdup((char *) parg); if (s->tlsext_hostname == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_INTERNAL_ERROR); return 0; } } else { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE); return 0; } break; case SSL_CTRL_SET_TLSEXT_DEBUG_ARG: s->tlsext_debug_arg = parg; ret = 1; break; case SSL_CTRL_CHAIN: if (larg) { return ssl_cert_set1_chain(s->cert, (STACK_OF(X509) *)parg); } else { return ssl_cert_set0_chain(s->cert, (STACK_OF(X509) *)parg); } case SSL_CTRL_CHAIN_CERT: if (larg) { return ssl_cert_add1_chain_cert(s->cert, (X509 *)parg); } else { return ssl_cert_add0_chain_cert(s->cert, (X509 *)parg); } case SSL_CTRL_GET_CHAIN_CERTS: *(STACK_OF(X509) **)parg = s->cert->key->chain; break; case SSL_CTRL_SELECT_CURRENT_CERT: return ssl_cert_select_current(s->cert, (X509 *)parg); case SSL_CTRL_GET_CURVES: { const uint16_t *clist = s->s3->tmp.peer_ellipticcurvelist; size_t clistlen = s->s3->tmp.peer_ellipticcurvelist_length; if (parg) { size_t i; int *cptr = parg; int nid; for (i = 0; i < clistlen; i++) { nid = tls1_ec_curve_id2nid(clist[i]); if (nid != OBJ_undef) { cptr[i] = nid; } else { cptr[i] = TLSEXT_nid_unknown | clist[i]; } } } return (int)clistlen; } case SSL_CTRL_SET_CURVES: return tls1_set_curves(&s->tlsext_ellipticcurvelist, &s->tlsext_ellipticcurvelist_length, parg, larg); case SSL_CTRL_SET_ECDH_AUTO: s->cert->ecdh_tmp_auto = larg; return 1; case SSL_CTRL_SET_SIGALGS: return tls1_set_sigalgs(s->cert, parg, larg, 0); case SSL_CTRL_SET_CLIENT_SIGALGS: return tls1_set_sigalgs(s->cert, parg, larg, 1); case SSL_CTRL_GET_CLIENT_CERT_TYPES: { const uint8_t **pctype = parg; if (s->server || !s->s3->tmp.cert_req) { return 0; } if (pctype) { *pctype = s->s3->tmp.certificate_types; } return (int)s->s3->tmp.num_certificate_types; } case SSL_CTRL_SET_CLIENT_CERT_TYPES: if (!s->server) { return 0; } return ssl3_set_req_cert_type(s->cert, parg, larg); case SSL_CTRL_BUILD_CERT_CHAIN: return ssl_build_cert_chain(s->cert, s->ctx->cert_store, larg); case SSL_CTRL_SET_VERIFY_CERT_STORE: return ssl_cert_set_cert_store(s->cert, parg, 0, larg); case SSL_CTRL_SET_CHAIN_CERT_STORE: return ssl_cert_set_cert_store(s->cert, parg, 1, larg); case SSL_CTRL_GET_SERVER_TMP_KEY: if (s->server || !s->session || !s->session->sess_cert) { return 0; } else { SESS_CERT *sc; EVP_PKEY *ptmp; int rv = 0; sc = s->session->sess_cert; if (!sc->peer_dh_tmp && !sc->peer_ecdh_tmp) { return 0; } ptmp = EVP_PKEY_new(); if (!ptmp) { return 0; } if (sc->peer_dh_tmp) { rv = EVP_PKEY_set1_DH(ptmp, sc->peer_dh_tmp); } else if (sc->peer_ecdh_tmp) { rv = EVP_PKEY_set1_EC_KEY(ptmp, sc->peer_ecdh_tmp); } if (rv) { *(EVP_PKEY **)parg = ptmp; return 1; } EVP_PKEY_free(ptmp); return 0; } case SSL_CTRL_GET_EC_POINT_FORMATS: { const uint8_t **pformat = parg; if (!s->s3->tmp.peer_ecpointformatlist) { return 0; } *pformat = s->s3->tmp.peer_ecpointformatlist; return (int)s->s3->tmp.peer_ecpointformatlist_length; } case SSL_CTRL_CHANNEL_ID: s->tlsext_channel_id_enabled = 1; ret = 1; break; case SSL_CTRL_SET_CHANNEL_ID: s->tlsext_channel_id_enabled = 1; if (EVP_PKEY_bits(parg) != 256) { OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_CHANNEL_ID_NOT_P256); break; } if (s->tlsext_channel_id_private) { EVP_PKEY_free(s->tlsext_channel_id_private); } s->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY *)parg); ret = 1; break; case SSL_CTRL_GET_CHANNEL_ID: if (!s->s3->tlsext_channel_id_valid) { break; } memcpy(parg, s->s3->tlsext_channel_id, larg < 64 ? larg : 64); return 64; case SSL_CTRL_FALLBACK_SCSV: s->fallback_scsv = 1; ret = 1; break; default: break; } return ret; } long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp)(void)) { int ret = 0; if ((cmd == SSL_CTRL_SET_TMP_RSA_CB || cmd == SSL_CTRL_SET_TMP_DH_CB) && !ssl_cert_inst(&s->cert)) { OPENSSL_PUT_ERROR(SSL, ssl3_callback_ctrl, ERR_R_MALLOC_FAILURE); return 0; } switch (cmd) { case SSL_CTRL_SET_TMP_RSA_CB: /* Ignore the callback; temporary RSA keys are never used. */ break; case SSL_CTRL_SET_TMP_DH_CB: s->cert->dh_tmp_cb = (DH * (*)(SSL *, int, int))fp; break; case SSL_CTRL_SET_TMP_ECDH_CB: s->cert->ecdh_tmp_cb = (EC_KEY * (*)(SSL *, int, int))fp; break; case SSL_CTRL_SET_TLSEXT_DEBUG_CB: s->tlsext_debug_cb = (void (*)(SSL *, int, int, uint8_t *, int, void *))fp; break; default: break; } return ret; } long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) { CERT *cert; cert = ctx->cert; switch (cmd) { case SSL_CTRL_NEED_TMP_RSA: /* Temporary RSA keys are never used. */ return 0; case SSL_CTRL_SET_TMP_RSA: OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; case SSL_CTRL_SET_TMP_RSA_CB: OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; case SSL_CTRL_SET_TMP_DH: { DH *new = NULL, *dh; dh = (DH *)parg; new = DHparams_dup(dh); if (new == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB); return 0; } if (!(ctx->options & SSL_OP_SINGLE_DH_USE) && !DH_generate_key(new)) { OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB); DH_free(new); return 0; } if (cert->dh_tmp != NULL) { DH_free(cert->dh_tmp); } cert->dh_tmp = new; return 1; } case SSL_CTRL_SET_TMP_DH_CB: OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; case SSL_CTRL_SET_TMP_ECDH: { EC_KEY *ecdh = NULL; if (parg == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_ECDH_LIB); return 0; } ecdh = EC_KEY_dup((EC_KEY *)parg); if (ecdh == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_EC_LIB); return 0; } if (!(ctx->options & SSL_OP_SINGLE_ECDH_USE) && !EC_KEY_generate_key(ecdh)) { EC_KEY_free(ecdh); OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_ECDH_LIB); return 0; } if (cert->ecdh_tmp != NULL) { EC_KEY_free(cert->ecdh_tmp); } cert->ecdh_tmp = ecdh; return 1; } case SSL_CTRL_SET_TMP_ECDH_CB: OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; case SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG: ctx->tlsext_servername_arg = parg; break; case SSL_CTRL_SET_TLSEXT_TICKET_KEYS: case SSL_CTRL_GET_TLSEXT_TICKET_KEYS: { uint8_t *keys = parg; if (!keys) { return 48; } if (larg != 48) { OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_INVALID_TICKET_KEYS_LENGTH); return 0; } if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS) { memcpy(ctx->tlsext_tick_key_name, keys, 16); memcpy(ctx->tlsext_tick_hmac_key, keys + 16, 16); memcpy(ctx->tlsext_tick_aes_key, keys + 32, 16); } else { memcpy(keys, ctx->tlsext_tick_key_name, 16); memcpy(keys + 16, ctx->tlsext_tick_hmac_key, 16); memcpy(keys + 32, ctx->tlsext_tick_aes_key, 16); } return 1; } case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG: ctx->tlsext_status_arg = parg; return 1; break; case SSL_CTRL_SET_CURVES: return tls1_set_curves(&ctx->tlsext_ellipticcurvelist, &ctx->tlsext_ellipticcurvelist_length, parg, larg); case SSL_CTRL_SET_ECDH_AUTO: ctx->cert->ecdh_tmp_auto = larg; return 1; case SSL_CTRL_SET_SIGALGS: return tls1_set_sigalgs(ctx->cert, parg, larg, 0); case SSL_CTRL_SET_CLIENT_SIGALGS: return tls1_set_sigalgs(ctx->cert, parg, larg, 1); case SSL_CTRL_SET_CLIENT_CERT_TYPES: return ssl3_set_req_cert_type(ctx->cert, parg, larg); case SSL_CTRL_BUILD_CERT_CHAIN: return ssl_build_cert_chain(ctx->cert, ctx->cert_store, larg); case SSL_CTRL_SET_VERIFY_CERT_STORE: return ssl_cert_set_cert_store(ctx->cert, parg, 0, larg); case SSL_CTRL_SET_CHAIN_CERT_STORE: return ssl_cert_set_cert_store(ctx->cert, parg, 1, larg); case SSL_CTRL_EXTRA_CHAIN_CERT: if (ctx->extra_certs == NULL) { ctx->extra_certs = sk_X509_new_null(); if (ctx->extra_certs == NULL) { return 0; } } sk_X509_push(ctx->extra_certs, (X509 *)parg); break; case SSL_CTRL_GET_EXTRA_CHAIN_CERTS: if (ctx->extra_certs == NULL && larg == 0) { *(STACK_OF(X509) **)parg = ctx->cert->key->chain; } else { *(STACK_OF(X509) **)parg = ctx->extra_certs; } break; case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS: if (ctx->extra_certs) { sk_X509_pop_free(ctx->extra_certs, X509_free); ctx->extra_certs = NULL; } break; case SSL_CTRL_CHAIN: if (larg) { return ssl_cert_set1_chain(ctx->cert, (STACK_OF(X509) *)parg); } else { return ssl_cert_set0_chain(ctx->cert, (STACK_OF(X509) *)parg); } case SSL_CTRL_CHAIN_CERT: if (larg) { return ssl_cert_add1_chain_cert(ctx->cert, (X509 *)parg); } else { return ssl_cert_add0_chain_cert(ctx->cert, (X509 *)parg); } case SSL_CTRL_GET_CHAIN_CERTS: *(STACK_OF(X509) **)parg = ctx->cert->key->chain; break; case SSL_CTRL_SELECT_CURRENT_CERT: return ssl_cert_select_current(ctx->cert, (X509 *)parg); case SSL_CTRL_CHANNEL_ID: ctx->tlsext_channel_id_enabled = 1; return 1; case SSL_CTRL_SET_CHANNEL_ID: ctx->tlsext_channel_id_enabled = 1; if (EVP_PKEY_bits(parg) != 256) { OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_CHANNEL_ID_NOT_P256); break; } if (ctx->tlsext_channel_id_private) { EVP_PKEY_free(ctx->tlsext_channel_id_private); } ctx->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY *)parg); break; default: return 0; } return 1; } long ssl3_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void)) { CERT *cert; cert = ctx->cert; switch (cmd) { case SSL_CTRL_SET_TMP_RSA_CB: /* Ignore the callback; temporary RSA keys are never used. */ break; case SSL_CTRL_SET_TMP_DH_CB: cert->dh_tmp_cb = (DH * (*)(SSL *, int, int))fp; break; case SSL_CTRL_SET_TMP_ECDH_CB: cert->ecdh_tmp_cb = (EC_KEY * (*)(SSL *, int, int))fp; break; case SSL_CTRL_SET_TLSEXT_SERVERNAME_CB: ctx->tlsext_servername_callback = (int (*)(SSL *, int *, void *))fp; break; case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB: ctx->tlsext_status_cb = (int (*)(SSL *, void *))fp; break; case SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB: ctx->tlsext_ticket_key_cb = (int ( *)(SSL *, uint8_t *, uint8_t *, EVP_CIPHER_CTX *, HMAC_CTX *, int))fp; break; default: return 0; } return 1; } /* ssl3_get_cipher_by_value returns the SSL_CIPHER with value |value| or NULL * if none exists. * * This function needs to check if the ciphers required are actually * available. */ const SSL_CIPHER *ssl3_get_cipher_by_value(uint16_t value) { SSL_CIPHER c; c.id = 0x03000000L | value; return bsearch(&c, ssl3_ciphers, SSL3_NUM_CIPHERS, sizeof(SSL_CIPHER), ssl_cipher_id_cmp); } /* ssl3_get_cipher_by_value returns the cipher value of |c|. */ uint16_t ssl3_get_cipher_value(const SSL_CIPHER *c) { unsigned long id = c->id; /* All ciphers are SSLv3 now. */ assert((id & 0xff000000) == 0x03000000); return id & 0xffff; } struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(SSL *s) { if (s->cipher_list != NULL) { return s->cipher_list; } if (s->version >= TLS1_1_VERSION && s->ctx != NULL && s->ctx->cipher_list_tls11 != NULL) { return s->ctx->cipher_list_tls11; } if (s->ctx != NULL && s->ctx->cipher_list != NULL) { return s->ctx->cipher_list; } return NULL; } const SSL_CIPHER *ssl3_choose_cipher( SSL *s, STACK_OF(SSL_CIPHER) * clnt, struct ssl_cipher_preference_list_st *server_pref) { const SSL_CIPHER *c, *ret = NULL; STACK_OF(SSL_CIPHER) *srvr = server_pref->ciphers, *prio, *allow; size_t i; int ok; size_t cipher_index; unsigned long alg_k, alg_a, mask_k, mask_a; /* in_group_flags will either be NULL, or will point to an array of bytes * which indicate equal-preference groups in the |prio| stack. See the * comment about |in_group_flags| in the |ssl_cipher_preference_list_st| * struct. */ const uint8_t *in_group_flags; /* group_min contains the minimal index so far found in a group, or -1 if no * such value exists yet. */ int group_min = -1; if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { prio = srvr; in_group_flags = server_pref->in_group_flags; allow = clnt; } else { prio = clnt; in_group_flags = NULL; allow = srvr; } ssl_get_compatible_server_ciphers(s, &mask_k, &mask_a); for (i = 0; i < sk_SSL_CIPHER_num(prio); i++) { c = sk_SSL_CIPHER_value(prio, i); ok = 1; /* Skip TLS v1.2 only ciphersuites if not supported */ if ((c->algorithm_ssl & SSL_TLSV1_2) && !SSL_USE_TLS1_2_CIPHERS(s)) { ok = 0; } alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; ok = ok && (alg_k & mask_k) && (alg_a & mask_a); if (ok && sk_SSL_CIPHER_find(allow, &cipher_index, c)) { if (in_group_flags != NULL && in_group_flags[i] == 1) { /* This element of |prio| is in a group. Update the minimum index found * so far and continue looking. */ if (group_min == -1 || (size_t)group_min > cipher_index) { group_min = cipher_index; } } else { if (group_min != -1 && (size_t)group_min < cipher_index) { cipher_index = group_min; } ret = sk_SSL_CIPHER_value(allow, cipher_index); break; } } if (in_group_flags != NULL && in_group_flags[i] == 0 && group_min != -1) { /* We are about to leave a group, but we found a match in it, so that's * our answer. */ ret = sk_SSL_CIPHER_value(allow, group_min); break; } } return ret; } int ssl3_get_req_cert_type(SSL *s, uint8_t *p) { int ret = 0; const uint8_t *sig; size_t i, siglen; int have_rsa_sign = 0; int have_ecdsa_sign = 0; /* If we have custom certificate types set, use them */ if (s->cert->client_certificate_types) { memcpy(p, s->cert->client_certificate_types, s->cert->num_client_certificate_types); return s->cert->num_client_certificate_types; } /* get configured sigalgs */ siglen = tls12_get_psigalgs(s, &sig); for (i = 0; i < siglen; i += 2, sig += 2) { switch (sig[1]) { case TLSEXT_signature_rsa: have_rsa_sign = 1; break; case TLSEXT_signature_ecdsa: have_ecdsa_sign = 1; break; } } if (have_rsa_sign) { p[ret++] = SSL3_CT_RSA_SIGN; } /* ECDSA certs can be used with RSA cipher suites as well so we don't need to * check for SSL_kECDH or SSL_kEECDH. */ if (s->version >= TLS1_VERSION && have_ecdsa_sign) { p[ret++] = TLS_CT_ECDSA_SIGN; } return ret; } static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len) { if (c->client_certificate_types) { OPENSSL_free(c->client_certificate_types); c->client_certificate_types = NULL; } c->num_client_certificate_types = 0; if (!p || !len) { return 1; } if (len > 0xff) { return 0; } c->client_certificate_types = BUF_memdup(p, len); if (!c->client_certificate_types) { return 0; } c->num_client_certificate_types = len; return 1; } int ssl3_shutdown(SSL *s) { int ret; /* Do nothing if configured not to send a close_notify. */ if (s->quiet_shutdown) { s->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN; return 1; } if (!(s->shutdown & SSL_SENT_SHUTDOWN)) { s->shutdown |= SSL_SENT_SHUTDOWN; ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY); /* our shutdown alert has been sent now, and if it still needs to be * written, s->s3->alert_dispatch will be true */ if (s->s3->alert_dispatch) { return -1; /* return WANT_WRITE */ } } else if (s->s3->alert_dispatch) { /* resend it if not sent */ ret = s->method->ssl_dispatch_alert(s); if (ret == -1) { /* we only get to return -1 here the 2nd/Nth invocation, we must have * already signalled return 0 upon a previous invoation, return * WANT_WRITE */ return ret; } } else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) { /* If we are waiting for a close from our peer, we are closed */ s->method->ssl_read_bytes(s, 0, NULL, 0, 0); if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) { return -1; /* return WANT_READ */ } } if (s->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) && !s->s3->alert_dispatch) { return 1; } else { return 0; } } int ssl3_write(SSL *s, const void *buf, int len) { ERR_clear_system_error(); if (s->s3->renegotiate) { ssl3_renegotiate_check(s); } return s->method->ssl_write_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len); } static int ssl3_read_internal(SSL *s, void *buf, int len, int peek) { int ret; ERR_clear_system_error(); if (s->s3->renegotiate) { ssl3_renegotiate_check(s); } s->s3->in_read_app_data = 1; ret = s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len, peek); if (ret == -1 && s->s3->in_read_app_data == 2) { /* ssl3_read_bytes decided to call s->handshake_func, which called * ssl3_read_bytes to read handshake data. However, ssl3_read_bytes * actually found application data and thinks that application data makes * sense here; so disable handshake processing and try to read application * data again. */ s->in_handshake++; ret = s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len, peek); s->in_handshake--; } else { s->s3->in_read_app_data = 0; } return ret; } int ssl3_read(SSL *s, void *buf, int len) { return ssl3_read_internal(s, buf, len, 0); } int ssl3_peek(SSL *s, void *buf, int len) { return ssl3_read_internal(s, buf, len, 1); } int ssl3_renegotiate(SSL *s) { if (s->handshake_func == NULL) { return 1; } s->s3->renegotiate = 1; return 1; } int ssl3_renegotiate_check(SSL *s) { if (s->s3->renegotiate && s->s3->rbuf.left == 0 && s->s3->wbuf.left == 0 && !SSL_in_init(s)) { /* if we are the server, and we have sent a 'RENEGOTIATE' message, we * need to go to SSL_ST_ACCEPT. */ s->state = SSL_ST_RENEGOTIATE; s->s3->renegotiate = 0; s->s3->num_renegotiations++; s->s3->total_renegotiations++; return 1; } return 0; } /* If we are using default SHA1+MD5 algorithms switch to new SHA256 PRF and * handshake macs if required. */ long ssl_get_algorithm2(SSL *s) { static const unsigned long kMask = SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF; long alg2 = s->s3->tmp.new_cipher->algorithm2; if (s->enc_method->enc_flags & SSL_ENC_FLAG_SHA256_PRF && (alg2 & kMask) == kMask) { return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256; } return alg2; }