/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "../crypto/internal.h" #include "internal.h" #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) #define FUZZER_MODE true #else #define FUZZER_MODE false #endif namespace bssl { SSLAEADContext::SSLAEADContext(uint16_t version_arg, bool is_dtls_arg, const SSL_CIPHER *cipher_arg) : cipher_(cipher_arg), version_(version_arg), is_dtls_(is_dtls_arg), variable_nonce_included_in_record_(false), random_variable_nonce_(false), xor_fixed_nonce_(false), omit_length_in_ad_(false), omit_ad_(false), ad_is_header_(false) { OPENSSL_memset(fixed_nonce_, 0, sizeof(fixed_nonce_)); } SSLAEADContext::~SSLAEADContext() {} UniquePtr SSLAEADContext::CreateNullCipher(bool is_dtls) { return MakeUnique(0 /* version */, is_dtls, nullptr /* cipher */); } UniquePtr SSLAEADContext::Create( enum evp_aead_direction_t direction, uint16_t version, int is_dtls, const SSL_CIPHER *cipher, Span enc_key, Span mac_key, Span fixed_iv) { const EVP_AEAD *aead; uint16_t protocol_version; size_t expected_mac_key_len, expected_fixed_iv_len; if (!ssl_protocol_version_from_wire(&protocol_version, version) || !ssl_cipher_get_evp_aead(&aead, &expected_mac_key_len, &expected_fixed_iv_len, cipher, protocol_version, is_dtls) || // Ensure the caller returned correct key sizes. expected_fixed_iv_len != fixed_iv.size() || expected_mac_key_len != mac_key.size()) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return nullptr; } uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH]; if (!mac_key.empty()) { // This is a "stateful" AEAD (for compatibility with pre-AEAD cipher // suites). if (mac_key.size() + enc_key.size() + fixed_iv.size() > sizeof(merged_key)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return nullptr; } OPENSSL_memcpy(merged_key, mac_key.data(), mac_key.size()); OPENSSL_memcpy(merged_key + mac_key.size(), enc_key.data(), enc_key.size()); OPENSSL_memcpy(merged_key + mac_key.size() + enc_key.size(), fixed_iv.data(), fixed_iv.size()); enc_key = MakeConstSpan(merged_key, enc_key.size() + mac_key.size() + fixed_iv.size()); } UniquePtr aead_ctx = MakeUnique(version, is_dtls, cipher); if (!aead_ctx) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return nullptr; } assert(aead_ctx->ProtocolVersion() == protocol_version); if (!EVP_AEAD_CTX_init_with_direction( aead_ctx->ctx_.get(), aead, enc_key.data(), enc_key.size(), EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) { return nullptr; } assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH); static_assert(EVP_AEAD_MAX_NONCE_LENGTH < 256, "variable_nonce_len doesn't fit in uint8_t"); aead_ctx->variable_nonce_len_ = (uint8_t)EVP_AEAD_nonce_length(aead); if (mac_key.empty()) { assert(fixed_iv.size() <= sizeof(aead_ctx->fixed_nonce_)); OPENSSL_memcpy(aead_ctx->fixed_nonce_, fixed_iv.data(), fixed_iv.size()); aead_ctx->fixed_nonce_len_ = fixed_iv.size(); if (cipher->algorithm_enc & SSL_CHACHA20POLY1305) { // The fixed nonce into the actual nonce (the sequence number). aead_ctx->xor_fixed_nonce_ = true; aead_ctx->variable_nonce_len_ = 8; } else { // The fixed IV is prepended to the nonce. assert(fixed_iv.size() <= aead_ctx->variable_nonce_len_); aead_ctx->variable_nonce_len_ -= fixed_iv.size(); } // AES-GCM uses an explicit nonce. if (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) { aead_ctx->variable_nonce_included_in_record_ = true; } // The TLS 1.3 construction XORs the fixed nonce into the sequence number // and omits the additional data. if (protocol_version >= TLS1_3_VERSION) { aead_ctx->xor_fixed_nonce_ = true; aead_ctx->variable_nonce_len_ = 8; aead_ctx->variable_nonce_included_in_record_ = false; if (ssl_is_draft28(version)) { aead_ctx->ad_is_header_ = true; } else { aead_ctx->omit_ad_ = true; } assert(fixed_iv.size() >= aead_ctx->variable_nonce_len_); } } else { assert(protocol_version < TLS1_3_VERSION); aead_ctx->variable_nonce_included_in_record_ = true; aead_ctx->random_variable_nonce_ = true; aead_ctx->omit_length_in_ad_ = true; } return aead_ctx; } void SSLAEADContext::SetVersionIfNullCipher(uint16_t version) { if (is_null_cipher()) { version_ = version; } } uint16_t SSLAEADContext::ProtocolVersion() const { uint16_t protocol_version; if(!ssl_protocol_version_from_wire(&protocol_version, version_)) { assert(false); return 0; } return protocol_version; } uint16_t SSLAEADContext::RecordVersion() const { if (version_ == 0) { assert(is_null_cipher()); return is_dtls_ ? DTLS1_VERSION : TLS1_VERSION; } if (ProtocolVersion() <= TLS1_2_VERSION) { return version_; } return TLS1_2_VERSION; } size_t SSLAEADContext::ExplicitNonceLen() const { if (!FUZZER_MODE && variable_nonce_included_in_record_) { return variable_nonce_len_; } return 0; } bool SSLAEADContext::SuffixLen(size_t *out_suffix_len, const size_t in_len, const size_t extra_in_len) const { if (is_null_cipher() || FUZZER_MODE) { *out_suffix_len = extra_in_len; return true; } return !!EVP_AEAD_CTX_tag_len(ctx_.get(), out_suffix_len, in_len, extra_in_len); } bool SSLAEADContext::CiphertextLen(size_t *out_len, const size_t in_len, const size_t extra_in_len) const { size_t len; if (!SuffixLen(&len, in_len, extra_in_len)) { return false; } len += ExplicitNonceLen(); len += in_len; if (len < in_len || len >= 0xffff) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return false; } *out_len = len; return true; } size_t SSLAEADContext::MaxOverhead() const { return ExplicitNonceLen() + (is_null_cipher() || FUZZER_MODE ? 0 : EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get()))); } Span SSLAEADContext::GetAdditionalData( uint8_t storage[13], uint8_t type, uint16_t record_version, const uint8_t seqnum[8], size_t plaintext_len, Span header) { if (ad_is_header_) { return header; } if (omit_ad_) { return {}; } OPENSSL_memcpy(storage, seqnum, 8); size_t len = 8; storage[len++] = type; storage[len++] = static_cast((record_version >> 8)); storage[len++] = static_cast(record_version); if (!omit_length_in_ad_) { storage[len++] = static_cast((plaintext_len >> 8)); storage[len++] = static_cast(plaintext_len); } return MakeConstSpan(storage, len); } bool SSLAEADContext::Open(Span *out, uint8_t type, uint16_t record_version, const uint8_t seqnum[8], Span header, Span in) { if (is_null_cipher() || FUZZER_MODE) { // Handle the initial NULL cipher. *out = in; return true; } // TLS 1.2 AEADs include the length in the AD and are assumed to have fixed // overhead. Otherwise the parameter is unused. size_t plaintext_len = 0; if (!omit_length_in_ad_) { size_t overhead = MaxOverhead(); if (in.size() < overhead) { // Publicly invalid. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); return false; } plaintext_len = in.size() - overhead; } uint8_t ad_storage[13]; Span ad = GetAdditionalData(ad_storage, type, record_version, seqnum, plaintext_len, header); // Assemble the nonce. uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; size_t nonce_len = 0; // Prepend the fixed nonce, or left-pad with zeros if XORing. if (xor_fixed_nonce_) { nonce_len = fixed_nonce_len_ - variable_nonce_len_; OPENSSL_memset(nonce, 0, nonce_len); } else { OPENSSL_memcpy(nonce, fixed_nonce_, fixed_nonce_len_); nonce_len += fixed_nonce_len_; } // Add the variable nonce. if (variable_nonce_included_in_record_) { if (in.size() < variable_nonce_len_) { // Publicly invalid. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); return false; } OPENSSL_memcpy(nonce + nonce_len, in.data(), variable_nonce_len_); in = in.subspan(variable_nonce_len_); } else { assert(variable_nonce_len_ == 8); OPENSSL_memcpy(nonce + nonce_len, seqnum, variable_nonce_len_); } nonce_len += variable_nonce_len_; // XOR the fixed nonce, if necessary. if (xor_fixed_nonce_) { assert(nonce_len == fixed_nonce_len_); for (size_t i = 0; i < fixed_nonce_len_; i++) { nonce[i] ^= fixed_nonce_[i]; } } // Decrypt in-place. size_t len; if (!EVP_AEAD_CTX_open(ctx_.get(), in.data(), &len, in.size(), nonce, nonce_len, in.data(), in.size(), ad.data(), ad.size())) { return false; } *out = in.subspan(0, len); return true; } bool SSLAEADContext::SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, uint8_t type, uint16_t record_version, const uint8_t seqnum[8], Span header, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len) { const size_t prefix_len = ExplicitNonceLen(); size_t suffix_len; if (!SuffixLen(&suffix_len, in_len, extra_in_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); return false; } if ((in != out && buffers_alias(in, in_len, out, in_len)) || buffers_alias(in, in_len, out_prefix, prefix_len) || buffers_alias(in, in_len, out_suffix, suffix_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); return false; } if (is_null_cipher() || FUZZER_MODE) { // Handle the initial NULL cipher. OPENSSL_memmove(out, in, in_len); OPENSSL_memmove(out_suffix, extra_in, extra_in_len); return true; } uint8_t ad_storage[13]; Span ad = GetAdditionalData(ad_storage, type, record_version, seqnum, in_len, header); // Assemble the nonce. uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; size_t nonce_len = 0; // Prepend the fixed nonce, or left-pad with zeros if XORing. if (xor_fixed_nonce_) { nonce_len = fixed_nonce_len_ - variable_nonce_len_; OPENSSL_memset(nonce, 0, nonce_len); } else { OPENSSL_memcpy(nonce, fixed_nonce_, fixed_nonce_len_); nonce_len += fixed_nonce_len_; } // Select the variable nonce. if (random_variable_nonce_) { assert(variable_nonce_included_in_record_); if (!RAND_bytes(nonce + nonce_len, variable_nonce_len_)) { return false; } } else { // When sending we use the sequence number as the variable part of the // nonce. assert(variable_nonce_len_ == 8); OPENSSL_memcpy(nonce + nonce_len, seqnum, variable_nonce_len_); } nonce_len += variable_nonce_len_; // Emit the variable nonce if included in the record. if (variable_nonce_included_in_record_) { assert(!xor_fixed_nonce_); if (buffers_alias(in, in_len, out_prefix, variable_nonce_len_)) { OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); return false; } OPENSSL_memcpy(out_prefix, nonce + fixed_nonce_len_, variable_nonce_len_); } // XOR the fixed nonce, if necessary. if (xor_fixed_nonce_) { assert(nonce_len == fixed_nonce_len_); for (size_t i = 0; i < fixed_nonce_len_; i++) { nonce[i] ^= fixed_nonce_[i]; } } size_t written_suffix_len; bool result = !!EVP_AEAD_CTX_seal_scatter( ctx_.get(), out, out_suffix, &written_suffix_len, suffix_len, nonce, nonce_len, in, in_len, extra_in, extra_in_len, ad.data(), ad.size()); assert(!result || written_suffix_len == suffix_len); return result; } bool SSLAEADContext::Seal(uint8_t *out, size_t *out_len, size_t max_out_len, uint8_t type, uint16_t record_version, const uint8_t seqnum[8], Span header, const uint8_t *in, size_t in_len) { const size_t prefix_len = ExplicitNonceLen(); size_t suffix_len; if (!SuffixLen(&suffix_len, in_len, 0)) { OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); return false; } if (in_len + prefix_len < in_len || in_len + prefix_len + suffix_len < in_len + prefix_len) { OPENSSL_PUT_ERROR(CIPHER, SSL_R_RECORD_TOO_LARGE); return false; } if (in_len + prefix_len + suffix_len > max_out_len) { OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); return false; } if (!SealScatter(out, out + prefix_len, out + prefix_len + in_len, type, record_version, seqnum, header, in, in_len, 0, 0)) { return false; } *out_len = prefix_len + in_len + suffix_len; return true; } bool SSLAEADContext::GetIV(const uint8_t **out_iv, size_t *out_iv_len) const { return !is_null_cipher() && EVP_AEAD_CTX_get_iv(ctx_.get(), out_iv, out_iv_len); } } // namespace bssl