/* ssl/s3_clnt.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * ECC cipher suite support in OpenSSL originally written by * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ssl_locl.h" #include "../crypto/dh/internal.h" int ssl3_connect(SSL *s) { BUF_MEM *buf=NULL; void (*cb)(const SSL *ssl,int type,int val)=NULL; int ret= -1; int new_state,state,skip=0; assert(s->handshake_func == ssl3_connect); assert(!s->server); ERR_clear_error(); ERR_clear_system_error(); if (s->info_callback != NULL) cb=s->info_callback; else if (s->ctx->info_callback != NULL) cb=s->ctx->info_callback; s->in_handshake++; for (;;) { state=s->state; switch(s->state) { case SSL_ST_RENEGOTIATE: s->renegotiate=1; s->state=SSL_ST_CONNECT; s->ctx->stats.sess_connect_renegotiate++; /* break */ case SSL_ST_CONNECT: case SSL_ST_BEFORE|SSL_ST_CONNECT: if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1); if ((s->version & 0xff00 ) != 0x0300) { OPENSSL_PUT_ERROR(SSL, ssl3_connect, ERR_R_INTERNAL_ERROR); ret = -1; goto end; } if (s->init_buf == NULL) { if ((buf=BUF_MEM_new()) == NULL) { ret= -1; goto end; } if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH)) { ret= -1; goto end; } s->init_buf=buf; buf=NULL; } if (!ssl3_setup_buffers(s)) { ret= -1; goto end; } /* setup buffing BIO */ if (!ssl_init_wbio_buffer(s,0)) { ret= -1; goto end; } /* don't push the buffering BIO quite yet */ if (!ssl3_init_finished_mac(s)) { OPENSSL_PUT_ERROR(SSL, ssl3_connect, ERR_R_INTERNAL_ERROR); ret = -1; goto end; } s->state=SSL3_ST_CW_CLNT_HELLO_A; s->ctx->stats.sess_connect++; s->init_num=0; break; case SSL3_ST_CW_CLNT_HELLO_A: case SSL3_ST_CW_CLNT_HELLO_B: s->shutdown=0; ret=ssl3_send_client_hello(s); if (ret <= 0) goto end; s->state=SSL3_ST_CR_SRVR_HELLO_A; s->init_num=0; /* turn on buffering for the next lot of output */ if (s->bbio != s->wbio) s->wbio=BIO_push(s->bbio,s->wbio); break; case SSL3_ST_CR_SRVR_HELLO_A: case SSL3_ST_CR_SRVR_HELLO_B: ret=ssl3_get_server_hello(s); if (ret <= 0) goto end; if (s->hit) { s->state=SSL3_ST_CR_CHANGE; if (s->tlsext_ticket_expected) { /* receive renewed session ticket */ s->state=SSL3_ST_CR_SESSION_TICKET_A; } } else { s->state=SSL3_ST_CR_CERT_A; } s->init_num=0; break; case SSL3_ST_CR_CERT_A: case SSL3_ST_CR_CERT_B: if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { ret=ssl3_get_server_certificate(s); if (ret <= 0) goto end; if (s->s3->tmp.certificate_status_expected) s->state=SSL3_ST_CR_CERT_STATUS_A; else s->state=SSL3_ST_CR_KEY_EXCH_A; } else { skip = 1; s->state=SSL3_ST_CR_KEY_EXCH_A; } s->init_num=0; break; case SSL3_ST_CR_KEY_EXCH_A: case SSL3_ST_CR_KEY_EXCH_B: ret=ssl3_get_server_key_exchange(s); if (ret <= 0) goto end; s->state=SSL3_ST_CR_CERT_REQ_A; s->init_num=0; /* at this point we check that we have the * required stuff from the server */ if (!ssl3_check_cert_and_algorithm(s)) { ret= -1; goto end; } break; case SSL3_ST_CR_CERT_REQ_A: case SSL3_ST_CR_CERT_REQ_B: ret=ssl3_get_certificate_request(s); if (ret <= 0) goto end; s->state=SSL3_ST_CR_SRVR_DONE_A; s->init_num=0; break; case SSL3_ST_CR_SRVR_DONE_A: case SSL3_ST_CR_SRVR_DONE_B: ret=ssl3_get_server_done(s); if (ret <= 0) goto end; if (s->s3->tmp.cert_req) s->state=SSL3_ST_CW_CERT_A; else s->state=SSL3_ST_CW_KEY_EXCH_A; s->init_num=0; break; case SSL3_ST_CW_CERT_A: case SSL3_ST_CW_CERT_B: case SSL3_ST_CW_CERT_C: case SSL3_ST_CW_CERT_D: ret=ssl3_send_client_certificate(s); if (ret <= 0) goto end; s->state=SSL3_ST_CW_KEY_EXCH_A; s->init_num=0; break; case SSL3_ST_CW_KEY_EXCH_A: case SSL3_ST_CW_KEY_EXCH_B: ret=ssl3_send_client_key_exchange(s); if (ret <= 0) goto end; /* For TLS, cert_req is set to 2, so a cert chain * of nothing is sent, but no verify packet is sent */ if (s->s3->tmp.cert_req == 1) { s->state=SSL3_ST_CW_CERT_VRFY_A; } else { s->state=SSL3_ST_CW_CHANGE_A; s->s3->change_cipher_spec=0; } s->init_num=0; break; case SSL3_ST_CW_CERT_VRFY_A: case SSL3_ST_CW_CERT_VRFY_B: ret=ssl3_send_cert_verify(s); if (ret <= 0) goto end; s->state=SSL3_ST_CW_CHANGE_A; s->init_num=0; s->s3->change_cipher_spec=0; break; case SSL3_ST_CW_CHANGE_A: case SSL3_ST_CW_CHANGE_B: ret=ssl3_send_change_cipher_spec(s, SSL3_ST_CW_CHANGE_A,SSL3_ST_CW_CHANGE_B); if (ret <= 0) goto end; s->state=SSL3_ST_CW_FINISHED_A; if (s->s3->tlsext_channel_id_valid) s->state=SSL3_ST_CW_CHANNEL_ID_A; if (s->s3->next_proto_neg_seen) s->state=SSL3_ST_CW_NEXT_PROTO_A; s->init_num=0; s->session->cipher=s->s3->tmp.new_cipher; if (!s->method->ssl3_enc->setup_key_block(s)) { ret= -1; goto end; } if (!s->method->ssl3_enc->change_cipher_state(s, SSL3_CHANGE_CIPHER_CLIENT_WRITE)) { ret= -1; goto end; } break; case SSL3_ST_CW_NEXT_PROTO_A: case SSL3_ST_CW_NEXT_PROTO_B: ret=ssl3_send_next_proto(s); if (ret <= 0) goto end; if (s->s3->tlsext_channel_id_valid) s->state=SSL3_ST_CW_CHANNEL_ID_A; else s->state=SSL3_ST_CW_FINISHED_A; break; case SSL3_ST_CW_CHANNEL_ID_A: case SSL3_ST_CW_CHANNEL_ID_B: ret=ssl3_send_channel_id(s); if (ret <= 0) goto end; s->state=SSL3_ST_CW_FINISHED_A; break; case SSL3_ST_CW_FINISHED_A: case SSL3_ST_CW_FINISHED_B: ret=ssl3_send_finished(s, SSL3_ST_CW_FINISHED_A,SSL3_ST_CW_FINISHED_B, s->method->ssl3_enc->client_finished_label, s->method->ssl3_enc->client_finished_label_len); if (ret <= 0) goto end; s->state=SSL3_ST_CW_FLUSH; if (s->hit) { s->s3->tmp.next_state=SSL_ST_OK; } else { /* This is a non-resumption handshake. If it * involves ChannelID, then record the * handshake hashes at this point in the * session so that any resumption of this * session with ChannelID can sign those * hashes. */ if (s->s3->tlsext_channel_id_new) { ret = tls1_record_handshake_hashes_for_channel_id(s); if (ret <= 0) goto end; } if ((SSL_get_mode(s) & SSL_MODE_HANDSHAKE_CUTTHROUGH) && ssl3_can_cutthrough(s) && s->s3->previous_server_finished_len == 0 /* no cutthrough on renegotiation (would complicate the state machine) */ ) { s->s3->tmp.next_state=SSL3_ST_CUTTHROUGH_COMPLETE; } else { /* Allow NewSessionTicket if ticket expected */ if (s->tlsext_ticket_expected) s->s3->tmp.next_state=SSL3_ST_CR_SESSION_TICKET_A; else s->s3->tmp.next_state=SSL3_ST_CR_CHANGE; } } s->init_num=0; break; case SSL3_ST_CR_SESSION_TICKET_A: case SSL3_ST_CR_SESSION_TICKET_B: ret=ssl3_get_new_session_ticket(s); if (ret <= 0) goto end; s->state=SSL3_ST_CR_CHANGE; s->init_num=0; break; case SSL3_ST_CR_CERT_STATUS_A: case SSL3_ST_CR_CERT_STATUS_B: ret=ssl3_get_cert_status(s); if (ret <= 0) goto end; s->state=SSL3_ST_CR_KEY_EXCH_A; s->init_num=0; break; case SSL3_ST_CR_CHANGE: /* At this point, the next message must be entirely * behind a ChangeCipherSpec. */ if (!ssl3_expect_change_cipher_spec(s)) { ret = -1; goto end; } s->state = SSL3_ST_CR_FINISHED_A; break; case SSL3_ST_CR_FINISHED_A: case SSL3_ST_CR_FINISHED_B: ret=ssl3_get_finished(s,SSL3_ST_CR_FINISHED_A, SSL3_ST_CR_FINISHED_B); if (ret <= 0) goto end; if (s->hit) s->state=SSL3_ST_CW_CHANGE_A; else s->state=SSL_ST_OK; s->init_num=0; break; case SSL3_ST_CW_FLUSH: s->rwstate=SSL_WRITING; if (BIO_flush(s->wbio) <= 0) { ret= -1; goto end; } s->rwstate=SSL_NOTHING; s->state=s->s3->tmp.next_state; break; case SSL3_ST_CUTTHROUGH_COMPLETE: /* Allow NewSessionTicket if ticket expected */ if (s->tlsext_ticket_expected) s->state=SSL3_ST_CR_SESSION_TICKET_A; else s->state=SSL3_ST_CR_CHANGE; ssl_free_wbio_buffer(s); ret = 1; goto end; /* break; */ case SSL_ST_OK: /* clean a few things up */ ssl3_cleanup_key_block(s); if (s->init_buf != NULL) { BUF_MEM_free(s->init_buf); s->init_buf=NULL; } /* Remove write buffering now. */ ssl_free_wbio_buffer(s); s->init_num=0; s->renegotiate=0; s->new_session=0; ssl_update_cache(s,SSL_SESS_CACHE_CLIENT); if (s->hit) s->ctx->stats.sess_hit++; ret=1; /* s->server=0; */ s->ctx->stats.sess_connect_good++; if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1); goto end; /* break; */ default: OPENSSL_PUT_ERROR(SSL, ssl3_connect, SSL_R_UNKNOWN_STATE); ret= -1; goto end; /* break; */ } /* did we do anything */ if (!s->s3->tmp.reuse_message && !skip) { if ((cb != NULL) && (s->state != state)) { new_state=s->state; s->state=state; cb(s,SSL_CB_CONNECT_LOOP,1); s->state=new_state; } } skip=0; } end: s->in_handshake--; if (buf != NULL) BUF_MEM_free(buf); if (cb != NULL) cb(s,SSL_CB_CONNECT_EXIT,ret); return(ret); } uint16_t ssl3_get_max_client_version(SSL *s) { unsigned long options = s->options; uint16_t version = 0; /* OpenSSL's API for controlling versions entails blacklisting * individual protocols. This has two problems. First, on the client, * the protocol can only express a contiguous range of versions. Second, * a library consumer trying to set a maximum version cannot disable * protocol versions that get added in a future version of the library. * * To account for both of these, OpenSSL interprets the client-side * bitmask as a min/max range by picking the lowest contiguous non-empty * range of enabled protocols. Note that this means it is impossible to * set a maximum version of TLS 1.2 in a future-proof way. * * By this scheme, the maximum version is the lowest version V such that * V is enabled and V+1 is disabled or unimplemented. * * TODO(davidben): Deprecate this API in favor of more sensible * min_version/max_version settings. */ if (SSL_IS_DTLS(s)) { if (!(options & SSL_OP_NO_DTLSv1_2)) version = DTLS1_2_VERSION; if (!(options & SSL_OP_NO_DTLSv1) && (options & SSL_OP_NO_DTLSv1_2)) version = DTLS1_VERSION; } else { if (!(options & SSL_OP_NO_TLSv1_2)) version = TLS1_2_VERSION; if (!(options & SSL_OP_NO_TLSv1_1) && (options & SSL_OP_NO_TLSv1_2)) version = TLS1_1_VERSION; if (!(options & SSL_OP_NO_TLSv1) && (options & SSL_OP_NO_TLSv1_1)) version = TLS1_VERSION; if (!(options & SSL_OP_NO_SSLv3) && (options & SSL_OP_NO_TLSv1)) version = SSL3_VERSION; } return version; } int ssl3_send_client_hello(SSL *s) { unsigned char *buf; unsigned char *p,*d; int i; unsigned long l; buf=(unsigned char *)s->init_buf->data; if (s->state == SSL3_ST_CW_CLNT_HELLO_A) { if (s->method->version == DTLS_ANY_VERSION) { uint16_t max_version = ssl3_get_max_client_version(s); /* Disabling all versions is silly: return an error. */ if (max_version == 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, SSL_R_WRONG_SSL_VERSION); goto err; } s->version = max_version; s->client_version = max_version; } /* If the configured session was created at a version * higher than our maximum version, drop it. */ if (s->session && (s->session->session_id_length == 0 || s->session->not_resumable || (!SSL_IS_DTLS(s) && s->session->ssl_version > s->version) || (SSL_IS_DTLS(s) && s->session->ssl_version < s->version))) { SSL_set_session(s, NULL); } /* else use the pre-loaded session */ p=s->s3->client_random; /* If resending the ClientHello in DTLS after a * HelloVerifyRequest, don't renegerate the client_random. The * random must be reused. */ if (!SSL_IS_DTLS(s) || !s->d1->send_cookie) { ssl_fill_hello_random(s, 0, p, sizeof(s->s3->client_random)); } /* Do the message type and length last. * Note: the final argument to ssl_add_clienthello_tlsext below * depends on the size of this prefix. */ d=p= ssl_handshake_start(s); /* version indicates the negotiated version: for example from * an SSLv2/v3 compatible client hello). The client_version * field is the maximum version we permit and it is also * used in RSA encrypted premaster secrets. Some servers can * choke if we initially report a higher version then * renegotiate to a lower one in the premaster secret. This * didn't happen with TLS 1.0 as most servers supported it * but it can with TLS 1.1 or later if the server only supports * 1.0. * * Possible scenario with previous logic: * 1. Client hello indicates TLS 1.2 * 2. Server hello says TLS 1.0 * 3. RSA encrypted premaster secret uses 1.2. * 4. Handhaked proceeds using TLS 1.0. * 5. Server sends hello request to renegotiate. * 6. Client hello indicates TLS v1.0 as we now * know that is maximum server supports. * 7. Server chokes on RSA encrypted premaster secret * containing version 1.0. * * For interoperability it should be OK to always use the * maximum version we support in client hello and then rely * on the checking of version to ensure the servers isn't * being inconsistent: for example initially negotiating with * TLS 1.0 and renegotiating with TLS 1.2. We do this by using * client_version in client hello and not resetting it to * the negotiated version. */ *(p++)=s->client_version>>8; *(p++)=s->client_version&0xff; /* Random stuff */ memcpy(p,s->s3->client_random,SSL3_RANDOM_SIZE); p+=SSL3_RANDOM_SIZE; /* Session ID */ if (s->new_session || s->session == NULL) i=0; else i=s->session->session_id_length; *(p++)=i; if (i != 0) { if (i > (int)sizeof(s->session->session_id)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, ERR_R_INTERNAL_ERROR); goto err; } memcpy(p,s->session->session_id,i); p+=i; } /* cookie stuff for DTLS */ if (SSL_IS_DTLS(s)) { if ( s->d1->cookie_len > sizeof(s->d1->cookie)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, ERR_R_INTERNAL_ERROR); goto err; } *(p++) = s->d1->cookie_len; memcpy(p, s->d1->cookie, s->d1->cookie_len); p += s->d1->cookie_len; } /* Ciphers supported */ i = ssl_cipher_list_to_bytes(s, SSL_get_ciphers(s), &p[2]); if (i == 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, SSL_R_NO_CIPHERS_AVAILABLE); goto err; } s2n(i,p); p+=i; /* COMPRESSION */ *(p++)=1; *(p++)=0; /* Add the NULL method */ /* TLS extensions*/ if (ssl_prepare_clienthello_tlsext(s) <= 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, SSL_R_CLIENTHELLO_TLSEXT); goto err; } if ((p = ssl_add_clienthello_tlsext(s, p, buf+SSL3_RT_MAX_PLAIN_LENGTH, p-buf)) == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, ERR_R_INTERNAL_ERROR); goto err; } l= p-d; ssl_set_handshake_header(s, SSL3_MT_CLIENT_HELLO, l); s->state=SSL3_ST_CW_CLNT_HELLO_B; } /* SSL3_ST_CW_CLNT_HELLO_B */ return ssl_do_write(s); err: return(-1); } int ssl3_get_server_hello(SSL *s) { STACK_OF(SSL_CIPHER) *sk; const SSL_CIPHER *c; CERT *ct = s->cert; int al=SSL_AD_INTERNAL_ERROR,ok; long n; CBS server_hello, server_random, session_id; uint16_t server_version, cipher_suite; uint8_t compression_method; unsigned long mask_ssl; n=s->method->ssl_get_message(s, SSL3_ST_CR_SRVR_HELLO_A, SSL3_ST_CR_SRVR_HELLO_B, SSL3_MT_SERVER_HELLO, 20000, /* ?? */ SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); CBS_init(&server_hello, s->init_msg, n); if (!CBS_get_u16(&server_hello, &server_version) || !CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) || !CBS_get_u8_length_prefixed(&server_hello, &session_id) || CBS_len(&session_id) > SSL3_SESSION_ID_SIZE || !CBS_get_u16(&server_hello, &cipher_suite) || !CBS_get_u8(&server_hello, &compression_method)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_DECODE_ERROR); goto f_err; } if (s->method->version == DTLS_ANY_VERSION) { /* Work out correct protocol version to use */ int options = s->options; if (server_version == DTLS1_2_VERSION && !(options & SSL_OP_NO_DTLSv1_2)) s->method = DTLSv1_2_client_method(); else if (server_version == DTLS1_VERSION && !(options & SSL_OP_NO_DTLSv1)) s->method = DTLSv1_client_method(); else { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_SSL_VERSION); s->version = server_version; al = SSL_AD_PROTOCOL_VERSION; goto f_err; } s->version = s->client_version = s->method->version; } if (server_version != s->version) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_SSL_VERSION); s->version = (s->version & 0xff00) | (server_version & 0xff); al = SSL_AD_PROTOCOL_VERSION; goto f_err; } /* At this point, the connection's version is known and s->version is * fixed. Begin enforcing the record-layer version. Note: SSLv23_method * currently determines its version sooner, but it will later be moved * to this point. */ s->s3->have_version = 1; /* Copy over the server random. */ memcpy(s->s3->server_random, CBS_data(&server_random), SSL3_RANDOM_SIZE); assert(s->session == NULL || s->session->session_id_length > 0); if (s->session != NULL && CBS_mem_equal(&session_id, s->session->session_id, s->session->session_id_length)) { if(s->sid_ctx_length != s->session->sid_ctx_length || memcmp(s->session->sid_ctx, s->sid_ctx, s->sid_ctx_length)) { /* actually a client application bug */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT); goto f_err; } s->hit = 1; } else { /* The session wasn't resumed. Create a fresh SSL_SESSION to * fill out. */ s->hit = 0; if (!ssl_get_new_session(s, 0)) { goto f_err; } /* Note: session_id could be empty. */ s->session->session_id_length = CBS_len(&session_id); memcpy(s->session->session_id, CBS_data(&session_id), CBS_len(&session_id)); } c = ssl3_get_cipher_by_value(cipher_suite); if (c == NULL) { /* unknown cipher */ al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_UNKNOWN_CIPHER_RETURNED); goto f_err; } /* ct->mask_ssl was computed from client capabilities. Now * that the final version is known, compute a new mask_ssl. */ if (!SSL_USE_TLS1_2_CIPHERS(s)) mask_ssl = SSL_TLSV1_2; else mask_ssl = 0; /* If it is a disabled cipher we didn't send it in client hello, * so return an error. */ if (c->algorithm_ssl & mask_ssl || c->algorithm_mkey & ct->mask_k || c->algorithm_auth & ct->mask_a) { al=SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_CIPHER_RETURNED); goto f_err; } sk=ssl_get_ciphers_by_id(s); if (!sk_SSL_CIPHER_find(sk, NULL, c)) { /* we did not say we would use this cipher */ al=SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_CIPHER_RETURNED); goto f_err; } /* Depending on the session caching (internal/external), the cipher and/or cipher_id values may not be set. Make sure that cipher_id is set and use it for comparison. */ if (s->session->cipher) s->session->cipher_id = s->session->cipher->id; if (s->hit && (s->session->cipher_id != c->id)) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED); goto f_err; } s->s3->tmp.new_cipher=c; /* Most clients also require that the negotiated version match the * session's version if resuming. However OpenSSL has historically not * had the corresponding logic on the server, so this may not be * compatible, depending on other factors. (Whether the ClientHello * version is clamped to the session's version and whether the session * cache is keyed on IP address.) * * TODO(davidben): See if we can still enforce this? Perhaps for the * future TLS 1.3 and forward if this is fixed upstream. */ /* Don't digest cached records if no sigalgs: we may need them for * client authentication. */ if (!SSL_USE_SIGALGS(s) && !ssl3_digest_cached_records(s, free_handshake_buffer)) goto f_err; /* Only the NULL compression algorithm is supported. */ if (compression_method != 0) { al = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM); goto f_err; } /* TLS extensions */ if (!ssl_parse_serverhello_tlsext(s, &server_hello)) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_PARSE_TLSEXT); goto err; } /* There should be nothing left over in the record. */ if (CBS_len(&server_hello) != 0) { /* wrong packet length */ al=SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_BAD_PACKET_LENGTH); goto f_err; } return(1); f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); err: return(-1); } int ssl3_get_server_certificate(SSL *s) { int al,i,ok,ret= -1; unsigned long n; X509 *x=NULL; STACK_OF(X509) *sk=NULL; SESS_CERT *sc; EVP_PKEY *pkey=NULL; CBS cbs, certificate_list; const uint8_t* data; n=s->method->ssl_get_message(s, SSL3_ST_CR_CERT_A, SSL3_ST_CR_CERT_B, SSL3_MT_CERTIFICATE, s->max_cert_list, SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); CBS_init(&cbs, s->init_msg, n); if ((sk=sk_X509_new_null()) == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_MALLOC_FAILURE); goto err; } if (!CBS_get_u24_length_prefixed(&cbs, &certificate_list) || CBS_len(&cbs) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_LENGTH_MISMATCH); goto f_err; } while (CBS_len(&certificate_list) > 0) { CBS certificate; if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_CERT_LENGTH_MISMATCH); goto f_err; } data = CBS_data(&certificate); x = d2i_X509(NULL, &data, CBS_len(&certificate)); if (x == NULL) { al = SSL_AD_BAD_CERTIFICATE; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_ASN1_LIB); goto f_err; } if (data != CBS_data(&certificate) + CBS_len(&certificate)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_CERT_LENGTH_MISMATCH); goto f_err; } if (!sk_X509_push(sk, x)) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_MALLOC_FAILURE); goto err; } x=NULL; } i=ssl_verify_cert_chain(s,sk); if ((s->verify_mode != SSL_VERIFY_NONE) && (i <= 0) ) { al=ssl_verify_alarm_type(s->verify_result); OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_CERTIFICATE_VERIFY_FAILED); goto f_err; } ERR_clear_error(); /* but we keep s->verify_result */ sc=ssl_sess_cert_new(); if (sc == NULL) goto err; if (s->session->sess_cert) ssl_sess_cert_free(s->session->sess_cert); s->session->sess_cert=sc; sc->cert_chain=sk; /* Inconsistency alert: cert_chain does include the peer's * certificate, which we don't include in s3_srvr.c */ x=sk_X509_value(sk,0); sk=NULL; /* VRS 19990621: possible memory leak; sk=null ==> !sk_pop_free() @end*/ pkey=X509_get_pubkey(x); if ((pkey == NULL) || EVP_PKEY_missing_parameters(pkey)) { x=NULL; al=SSL3_AL_FATAL; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS); goto f_err; } i=ssl_cert_type(x,pkey); if (i < 0) { x=NULL; al=SSL3_AL_FATAL; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_UNKNOWN_CERTIFICATE_TYPE); goto f_err; } int exp_idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher); if (exp_idx >= 0 && i != exp_idx) { x=NULL; al=SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_WRONG_CERTIFICATE_TYPE); goto f_err; } sc->peer_cert_type=i; /* Why would the following ever happen? * We just created sc a couple of lines ago. */ if (sc->peer_pkeys[i].x509 != NULL) X509_free(sc->peer_pkeys[i].x509); sc->peer_pkeys[i].x509 = X509_up_ref(x); sc->peer_key = &(sc->peer_pkeys[i]); if (s->session->peer != NULL) X509_free(s->session->peer); s->session->peer = X509_up_ref(x); s->session->verify_result = s->verify_result; x=NULL; ret=1; if (0) { f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); } err: EVP_PKEY_free(pkey); X509_free(x); sk_X509_pop_free(sk,X509_free); return(ret); } int ssl3_get_server_key_exchange(SSL *s) { EVP_MD_CTX md_ctx; int al,ok; long n,alg_k,alg_a; EVP_PKEY *pkey=NULL; const EVP_MD *md = NULL; RSA *rsa=NULL; DH *dh=NULL; EC_KEY *ecdh = NULL; BN_CTX *bn_ctx = NULL; EC_POINT *srvr_ecpoint = NULL; CBS server_key_exchange, server_key_exchange_orig, parameter; /* use same message size as in ssl3_get_certificate_request() * as ServerKeyExchange message may be skipped */ n=s->method->ssl_get_message(s, SSL3_ST_CR_KEY_EXCH_A, SSL3_ST_CR_KEY_EXCH_B, -1, s->max_cert_list, SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); if (s->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE) { if (ssl_cipher_requires_server_key_exchange(s->s3->tmp.new_cipher)) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_UNEXPECTED_MESSAGE); ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); return -1; } /* In plain PSK ciphersuite, ServerKeyExchange can be omitted if no identity hint is sent. Set session->sess_cert anyway to avoid problems later.*/ if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aPSK) { /* PSK ciphersuites that also send a * Certificate would have already initialized * |sess_cert|. */ if (s->session->sess_cert == NULL) s->session->sess_cert = ssl_sess_cert_new(); /* TODO(davidben): This should be reset in one place * with the rest of the handshake state. */ if (s->s3->tmp.peer_psk_identity_hint) { OPENSSL_free(s->s3->tmp.peer_psk_identity_hint); s->s3->tmp.peer_psk_identity_hint = NULL; } } s->s3->tmp.reuse_message=1; return(1); } /* Retain a copy of the original CBS to compute the signature * over. */ CBS_init(&server_key_exchange, s->init_msg, n); server_key_exchange_orig = server_key_exchange; if (s->session->sess_cert != NULL) { if (s->session->sess_cert->peer_dh_tmp) { DH_free(s->session->sess_cert->peer_dh_tmp); s->session->sess_cert->peer_dh_tmp=NULL; } if (s->session->sess_cert->peer_ecdh_tmp) { EC_KEY_free(s->session->sess_cert->peer_ecdh_tmp); s->session->sess_cert->peer_ecdh_tmp=NULL; } } else { s->session->sess_cert=ssl_sess_cert_new(); } alg_k=s->s3->tmp.new_cipher->algorithm_mkey; alg_a=s->s3->tmp.new_cipher->algorithm_auth; EVP_MD_CTX_init(&md_ctx); if (alg_a & SSL_aPSK) { CBS psk_identity_hint; /* Each of the PSK key exchanges begins with a * psk_identity_hint. */ if (!CBS_get_u16_length_prefixed(&server_key_exchange, &psk_identity_hint)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR); goto f_err; } /* Store PSK identity hint for later use, hint is used in * ssl3_send_client_key_exchange. Assume that the maximum * length of a PSK identity hint can be as long as the maximum * length of a PSK identity. Also do not allow NULL * characters; identities are saved as C strings. * * TODO(davidben): Should invalid hints be ignored? It's a hint * rather than a specific identity. */ if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN || CBS_contains_zero_byte(&psk_identity_hint)) { al = SSL_AD_HANDSHAKE_FAILURE; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DATA_LENGTH_TOO_LONG); goto f_err; } /* Save the identity hint as a C string. */ if (!CBS_strdup(&psk_identity_hint, &s->s3->tmp.peer_psk_identity_hint)) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_MALLOC_FAILURE); goto f_err; } } if (alg_k & SSL_kEDH) { CBS dh_p, dh_g, dh_Ys; if (!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_p) || CBS_len(&dh_p) == 0 || !CBS_get_u16_length_prefixed(&server_key_exchange, &dh_g) || CBS_len(&dh_g) == 0 || !CBS_get_u16_length_prefixed(&server_key_exchange, &dh_Ys) || CBS_len(&dh_Ys) == 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR); goto f_err; } if ((dh=DH_new()) == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_DH_LIB); goto err; } if (!(dh->p = BN_bin2bn(CBS_data(&dh_p), CBS_len(&dh_p), NULL))) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_BN_LIB); goto err; } if (!(dh->g=BN_bin2bn(CBS_data(&dh_g), CBS_len(&dh_g), NULL))) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_BN_LIB); goto err; } if (!(dh->pub_key = BN_bin2bn(CBS_data(&dh_Ys), CBS_len(&dh_Ys), NULL))) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_BN_LIB); goto err; } if (DH_size(dh) < 512/8) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_DH_P_LENGTH); goto err; } if (alg_a & SSL_aRSA) pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_RSA_ENC].x509); /* else anonymous DH, so no certificate or pkey. */ s->session->sess_cert->peer_dh_tmp=dh; dh=NULL; } else if (alg_k & SSL_kEECDH) { uint16_t curve_id; int curve_nid = 0; EC_GROUP *ngroup; const EC_GROUP *group; CBS point; /* Extract elliptic curve parameters and the server's * ephemeral ECDH public key. Check curve is one of * our preferences, if not server has sent an invalid * curve. */ if (!tls1_check_curve(s, &server_key_exchange, &curve_id)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_WRONG_CURVE); goto f_err; } if ((curve_nid = tls1_ec_curve_id2nid(curve_id)) == 0) { al=SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS); goto f_err; } if ((ecdh=EC_KEY_new()) == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } ngroup = EC_GROUP_new_by_curve_name(curve_nid); if (ngroup == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_EC_LIB); goto err; } if (EC_KEY_set_group(ecdh, ngroup) == 0) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_EC_LIB); goto err; } EC_GROUP_free(ngroup); group = EC_KEY_get0_group(ecdh); /* Next, get the encoded ECPoint */ if (!CBS_get_u8_length_prefixed(&server_key_exchange, &point)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR); goto f_err; } if (((srvr_ecpoint = EC_POINT_new(group)) == NULL) || ((bn_ctx = BN_CTX_new()) == NULL)) { OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_oct2point(group, srvr_ecpoint, CBS_data(&point), CBS_len(&point), bn_ctx)) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_ECPOINT); goto f_err; } /* The ECC/TLS specification does not mention * the use of DSA to sign ECParameters in the server * key exchange message. We do support RSA and ECDSA. */ if (0) ; else if (alg_a & SSL_aRSA) pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_RSA_ENC].x509); else if (alg_a & SSL_aECDSA) pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_ECC].x509); /* else anonymous ECDH, so no certificate or pkey. */ EC_KEY_set_public_key(ecdh, srvr_ecpoint); s->session->sess_cert->peer_ecdh_tmp=ecdh; ecdh=NULL; BN_CTX_free(bn_ctx); bn_ctx = NULL; EC_POINT_free(srvr_ecpoint); srvr_ecpoint = NULL; } else if (!(alg_k & SSL_kPSK)) { al=SSL_AD_UNEXPECTED_MESSAGE; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } /* At this point, |server_key_exchange| contains the * signature, if any, while |server_key_exchange_orig| * contains the entire message. From that, derive a CBS * containing just the parameter. */ CBS_init(¶meter, CBS_data(&server_key_exchange_orig), CBS_len(&server_key_exchange_orig) - CBS_len(&server_key_exchange)); /* if it was signed, check the signature */ if (pkey != NULL) { CBS signature; if (SSL_USE_SIGALGS(s)) { if (!tls12_check_peer_sigalg(&md, &al, s, &server_key_exchange, pkey)) goto f_err; } else if (pkey->type == EVP_PKEY_RSA) { md = EVP_md5_sha1(); } else { md = EVP_sha1(); } /* The last field in |server_key_exchange| is the * signature. */ if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) || CBS_len(&server_key_exchange) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR); goto f_err; } if (!EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) || !EVP_DigestVerifyUpdate(&md_ctx, s->s3->client_random, SSL3_RANDOM_SIZE) || !EVP_DigestVerifyUpdate(&md_ctx, s->s3->server_random, SSL3_RANDOM_SIZE) || !EVP_DigestVerifyUpdate(&md_ctx, CBS_data(¶meter), CBS_len(¶meter)) || !EVP_DigestVerifyFinal(&md_ctx, CBS_data(&signature), CBS_len(&signature))) { /* bad signature */ al=SSL_AD_DECRYPT_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_SIGNATURE); goto f_err; } } else { if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { /* Might be wrong key type, check it */ if (ssl3_check_cert_and_algorithm(s)) /* Otherwise this shouldn't happen */ OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } /* still data left over */ if (CBS_len(&server_key_exchange) > 0) { al=SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_EXTRA_DATA_IN_MESSAGE); goto f_err; } } EVP_PKEY_free(pkey); EVP_MD_CTX_cleanup(&md_ctx); return(1); f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); err: EVP_PKEY_free(pkey); if (rsa != NULL) RSA_free(rsa); if (dh != NULL) DH_free(dh); BN_CTX_free(bn_ctx); EC_POINT_free(srvr_ecpoint); if (ecdh != NULL) EC_KEY_free(ecdh); EVP_MD_CTX_cleanup(&md_ctx); return(-1); } static int ca_dn_cmp(const X509_NAME **a, const X509_NAME **b) { return(X509_NAME_cmp(*a,*b)); } int ssl3_get_certificate_request(SSL *s) { int ok,ret=0; unsigned long n; X509_NAME *xn=NULL; STACK_OF(X509_NAME) *ca_sk=NULL; CBS cbs; CBS certificate_types; CBS certificate_authorities; const uint8_t *data; n=s->method->ssl_get_message(s, SSL3_ST_CR_CERT_REQ_A, SSL3_ST_CR_CERT_REQ_B, -1, s->max_cert_list, SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); s->s3->tmp.cert_req=0; if (s->s3->tmp.message_type == SSL3_MT_SERVER_DONE) { s->s3->tmp.reuse_message=1; /* If we get here we don't need any cached handshake records * as we wont be doing client auth. */ if (s->s3->handshake_buffer) { if (!ssl3_digest_cached_records(s, free_handshake_buffer)) goto err; } return(1); } if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_WRONG_MESSAGE_TYPE); goto err; } /* TLS does not like anon-DH with client cert */ if (s->version > SSL3_VERSION) { if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_TLS_CLIENT_CERT_REQ_WITH_ANON_CIPHER); goto err; } } CBS_init(&cbs, s->init_msg, n); ca_sk = sk_X509_NAME_new(ca_dn_cmp); if (ca_sk == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, ERR_R_MALLOC_FAILURE); goto err; } /* get the certificate types */ if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_DECODE_ERROR); goto err; } if (!CBS_stow(&certificate_types, &s->s3->tmp.certificate_types, &s->s3->tmp.num_certificate_types)) { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); goto err; } if (SSL_USE_SIGALGS(s)) { CBS supported_signature_algorithms; if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms)) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_DECODE_ERROR); goto err; } if (!tls1_process_sigalgs(s, &supported_signature_algorithms)) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_SIGNATURE_ALGORITHMS_ERROR); goto err; } } /* get the CA RDNs */ if (!CBS_get_u16_length_prefixed(&cbs, &certificate_authorities)) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_LENGTH_MISMATCH); goto err; } while (CBS_len(&certificate_authorities) > 0) { CBS distinguished_name; if (!CBS_get_u16_length_prefixed(&certificate_authorities, &distinguished_name)) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_CA_DN_TOO_LONG); goto err; } data = CBS_data(&distinguished_name); if ((xn=d2i_X509_NAME(NULL, &data, CBS_len(&distinguished_name))) == NULL) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, ERR_R_ASN1_LIB); goto err; } if (!CBS_skip(&distinguished_name, data - CBS_data(&distinguished_name))) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_INTERNAL_ERROR); goto err; } if (CBS_len(&distinguished_name) != 0) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_CA_DN_LENGTH_MISMATCH); goto err; } if (!sk_X509_NAME_push(ca_sk,xn)) { OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, ERR_R_MALLOC_FAILURE); goto err; } } /* we should setup a certificate to return.... */ s->s3->tmp.cert_req=1; if (s->s3->tmp.ca_names != NULL) sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free); s->s3->tmp.ca_names=ca_sk; ca_sk=NULL; ret=1; err: if (ca_sk != NULL) sk_X509_NAME_pop_free(ca_sk,X509_NAME_free); return(ret); } int ssl3_get_new_session_ticket(SSL *s) { int ok,al,ret=0; long n; CBS new_session_ticket, ticket; n=s->method->ssl_get_message(s, SSL3_ST_CR_SESSION_TICKET_A, SSL3_ST_CR_SESSION_TICKET_B, SSL3_MT_NEWSESSION_TICKET, 16384, SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); CBS_init(&new_session_ticket, s->init_msg, n); if (!CBS_get_u32(&new_session_ticket, &s->session->tlsext_tick_lifetime_hint) || !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) || CBS_len(&new_session_ticket) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_new_session_ticket, SSL_R_DECODE_ERROR); goto f_err; } if (!CBS_stow(&ticket, &s->session->tlsext_tick, &s->session->tlsext_ticklen)) { OPENSSL_PUT_ERROR(SSL, ssl3_get_new_session_ticket, ERR_R_MALLOC_FAILURE); goto err; } /* There are two ways to detect a resumed ticket sesion. * One is to set an appropriate session ID and then the server * must return a match in ServerHello. This allows the normal * client session ID matching to work and we know much * earlier that the ticket has been accepted. * * The other way is to set zero length session ID when the * ticket is presented and rely on the handshake to determine * session resumption. * * We choose the former approach because this fits in with * assumptions elsewhere in OpenSSL. The session ID is set * to the SHA256 (or SHA1 is SHA256 is disabled) hash of the * ticket. */ EVP_Digest(CBS_data(&ticket), CBS_len(&ticket), s->session->session_id, &s->session->session_id_length, EVP_sha256(), NULL); ret=1; return(ret); f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); err: return(-1); } int ssl3_get_cert_status(SSL *s) { int ok, al; long n; CBS certificate_status, ocsp_response; uint8_t status_type; n=s->method->ssl_get_message(s, SSL3_ST_CR_CERT_STATUS_A, SSL3_ST_CR_CERT_STATUS_B, SSL3_MT_CERTIFICATE_STATUS, 16384, SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); CBS_init(&certificate_status, s->init_msg, n); if (!CBS_get_u8(&certificate_status, &status_type) || status_type != TLSEXT_STATUSTYPE_ocsp || !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || CBS_len(&ocsp_response) == 0 || CBS_len(&certificate_status) != 0) { al = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_cert_status, SSL_R_DECODE_ERROR); goto f_err; } if (!CBS_stow(&ocsp_response, &s->session->ocsp_response, &s->session->ocsp_response_length)) { al = SSL_AD_INTERNAL_ERROR; OPENSSL_PUT_ERROR(SSL, ssl3_get_cert_status, ERR_R_MALLOC_FAILURE); goto f_err; } return 1; f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); return(-1); } int ssl3_get_server_done(SSL *s) { int ok,ret=0; long n; n=s->method->ssl_get_message(s, SSL3_ST_CR_SRVR_DONE_A, SSL3_ST_CR_SRVR_DONE_B, SSL3_MT_SERVER_DONE, 30, /* should be very small, like 0 :-) */ SSL_GET_MESSAGE_HASH_MESSAGE, &ok); if (!ok) return((int)n); if (n > 0) { /* should contain no data */ ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, ssl3_get_server_done, SSL_R_LENGTH_MISMATCH); return -1; } ret=1; return(ret); } int ssl3_send_client_key_exchange(SSL *s) { unsigned char *p; int n = 0; unsigned long alg_k; unsigned long alg_a; unsigned char *q; EVP_PKEY *pkey=NULL; EC_KEY *clnt_ecdh = NULL; const EC_POINT *srvr_ecpoint = NULL; EVP_PKEY *srvr_pub_pkey = NULL; unsigned char *encodedPoint = NULL; int encoded_pt_len = 0; BN_CTX * bn_ctx = NULL; unsigned int psk_len = 0; unsigned char psk[PSK_MAX_PSK_LEN]; uint8_t *pms = NULL; size_t pms_len = 0; if (s->state == SSL3_ST_CW_KEY_EXCH_A) { p = ssl_handshake_start(s); alg_k=s->s3->tmp.new_cipher->algorithm_mkey; alg_a=s->s3->tmp.new_cipher->algorithm_auth; /* If using a PSK key exchange, prepare the pre-shared key. */ if (alg_a & SSL_aPSK) { char identity[PSK_MAX_IDENTITY_LEN + 1]; size_t identity_len; if (s->psk_client_callback == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_PSK_NO_CLIENT_CB); goto err; } memset(identity, 0, sizeof(identity)); psk_len = s->psk_client_callback(s, s->s3->tmp.peer_psk_identity_hint, identity, sizeof(identity), psk, sizeof(psk)); if (psk_len > PSK_MAX_PSK_LEN) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } else if (psk_len == 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_PSK_IDENTITY_NOT_FOUND); ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); goto err; } identity_len = OPENSSL_strnlen(identity, sizeof(identity)); if (identity_len > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } if (s->session->psk_identity != NULL) OPENSSL_free(s->session->psk_identity); s->session->psk_identity = BUF_strdup(identity); if (s->session->psk_identity == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } /* Write out psk_identity. */ s2n(identity_len, p); memcpy(p, identity, identity_len); p += identity_len; n = 2 + identity_len; } /* Depending on the key exchange method, compute |pms| * and |pms_len|. */ if (alg_k & SSL_kRSA) { RSA *rsa; size_t enc_pms_len; pms_len = SSL_MAX_MASTER_KEY_LENGTH; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } if (s->session->sess_cert == NULL) { /* We should always have a server certificate with SSL_kRSA. */ OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_RSA_ENC].x509); if ((pkey == NULL) || (pkey->type != EVP_PKEY_RSA) || (pkey->pkey.rsa == NULL)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); if (pkey != NULL) EVP_PKEY_free(pkey); goto err; } rsa=pkey->pkey.rsa; EVP_PKEY_free(pkey); pms[0]=s->client_version>>8; pms[1]=s->client_version&0xff; if (RAND_bytes(&pms[2],SSL_MAX_MASTER_KEY_LENGTH-2) <= 0) goto err; s->session->master_key_length=SSL_MAX_MASTER_KEY_LENGTH; q=p; /* In TLS and beyond, reserve space for the length prefix. */ if (s->version > SSL3_VERSION) { p += 2; n += 2; } if (!RSA_encrypt(rsa, &enc_pms_len, p, RSA_size(rsa), pms, pms_len, RSA_PKCS1_PADDING)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_BAD_RSA_ENCRYPT); goto err; } n += enc_pms_len; /* Log the premaster secret, if logging is enabled. */ if (!ssl_ctx_log_rsa_client_key_exchange(s->ctx, p, enc_pms_len, pms, pms_len)) { goto err; } /* Fill in the length prefix. */ if (s->version > SSL3_VERSION) { s2n(enc_pms_len, q); } } else if (alg_k & SSL_kEDH) { DH *dh_srvr, *dh_clnt; SESS_CERT *scert = s->session->sess_cert; int dh_len; size_t pub_len; if (scert == NULL) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_UNEXPECTED_MESSAGE); goto err; } if (scert->peer_dh_tmp == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } dh_srvr=scert->peer_dh_tmp; /* generate a new random key */ if ((dh_clnt=DHparams_dup(dh_srvr)) == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_DH_LIB); goto err; } if (!DH_generate_key(dh_clnt)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_DH_LIB); DH_free(dh_clnt); goto err; } pms_len = DH_size(dh_clnt); pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); DH_free(dh_clnt); goto err; } dh_len = DH_compute_key(pms, dh_srvr->pub_key, dh_clnt); if (dh_len <= 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_DH_LIB); DH_free(dh_clnt); goto err; } pms_len = dh_len; /* send off the data */ pub_len = BN_num_bytes(dh_clnt->pub_key); s2n(pub_len, p); BN_bn2bin(dh_clnt->pub_key, p); n += 2 + pub_len; DH_free(dh_clnt); } else if (alg_k & SSL_kEECDH) { const EC_GROUP *srvr_group = NULL; EC_KEY *tkey; int field_size = 0, ecdh_len; if (s->session->sess_cert == NULL) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_UNEXPECTED_MESSAGE); goto err; } if (s->session->sess_cert->peer_ecdh_tmp == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } tkey = s->session->sess_cert->peer_ecdh_tmp; srvr_group = EC_KEY_get0_group(tkey); srvr_ecpoint = EC_KEY_get0_public_key(tkey); if ((srvr_group == NULL) || (srvr_ecpoint == NULL)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } if ((clnt_ecdh=EC_KEY_new()) == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_KEY_set_group(clnt_ecdh, srvr_group)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_EC_LIB); goto err; } /* Generate a new ECDH key pair */ if (!(EC_KEY_generate_key(clnt_ecdh))) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_ECDH_LIB); goto err; } field_size = EC_GROUP_get_degree(srvr_group); if (field_size <= 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_ECDH_LIB); goto err; } pms_len = (field_size + 7) / 8; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } ecdh_len = ECDH_compute_key(pms, pms_len, srvr_ecpoint, clnt_ecdh, NULL); if (ecdh_len <= 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_ECDH_LIB); goto err; } pms_len = ecdh_len; /* First check the size of encoding and * allocate memory accordingly. */ encoded_pt_len = EC_POINT_point2oct(srvr_group, EC_KEY_get0_public_key(clnt_ecdh), POINT_CONVERSION_UNCOMPRESSED, NULL, 0, NULL); encodedPoint = (unsigned char *) OPENSSL_malloc(encoded_pt_len * sizeof(unsigned char)); bn_ctx = BN_CTX_new(); if ((encodedPoint == NULL) || (bn_ctx == NULL)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } /* Encode the public key */ encoded_pt_len = EC_POINT_point2oct(srvr_group, EC_KEY_get0_public_key(clnt_ecdh), POINT_CONVERSION_UNCOMPRESSED, encodedPoint, encoded_pt_len, bn_ctx); *p = encoded_pt_len; /* length of encoded point */ /* Encoded point will be copied here */ p += 1; n += 1; /* copy the point */ memcpy(p, encodedPoint, encoded_pt_len); /* increment n to account for length field */ n += encoded_pt_len; /* Free allocated memory */ BN_CTX_free(bn_ctx); bn_ctx = NULL; OPENSSL_free(encodedPoint); encodedPoint = NULL; EC_KEY_free(clnt_ecdh); clnt_ecdh = NULL; EVP_PKEY_free(srvr_pub_pkey); srvr_pub_pkey = NULL; } else if (alg_k & SSL_kPSK) { /* For plain PSK, other_secret is a block of 0s with the same * length as the pre-shared key. */ pms_len = psk_len; pms = OPENSSL_malloc(pms_len); if (pms == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } memset(pms, 0, pms_len); } else { ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } /* For a PSK cipher suite, other_secret is combined * with the pre-shared key. */ if (alg_a & SSL_aPSK) { CBB cbb, child; uint8_t *new_pms; size_t new_pms_len; if (!CBB_init(&cbb, 2 + psk_len + 2 + pms_len)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE); goto err; } if (!CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, pms, pms_len) || !CBB_add_u16_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, psk, psk_len) || !CBB_finish(&cbb, &new_pms, &new_pms_len)) { CBB_cleanup(&cbb); OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR); goto err; } OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); pms = new_pms; pms_len = new_pms_len; } ssl_set_handshake_header(s, SSL3_MT_CLIENT_KEY_EXCHANGE, n); s->state=SSL3_ST_CW_KEY_EXCH_B; /* The message must be added to the finished hash before * calculating the master secret. */ s->method->ssl3_enc->add_to_finished_hash(s); s->session->master_key_length = s->method->ssl3_enc->generate_master_secret(s, s->session->master_key, pms, pms_len); if (s->session->master_key_length == 0) { goto err; } s->session->extended_master_secret = s->s3->tmp.extended_master_secret; OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); } /* SSL3_ST_CW_KEY_EXCH_B */ /* The message has already been added to the finished hash. */ return s->method->ssl3_enc->do_write(s, dont_add_to_finished_hash); err: BN_CTX_free(bn_ctx); if (encodedPoint != NULL) OPENSSL_free(encodedPoint); if (clnt_ecdh != NULL) EC_KEY_free(clnt_ecdh); EVP_PKEY_free(srvr_pub_pkey); if (pms) { OPENSSL_cleanse(pms, pms_len); OPENSSL_free(pms); } return -1; } int ssl3_send_cert_verify(SSL *s) { unsigned char *buf, *p; const EVP_MD *md = NULL; uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_length; EVP_PKEY *pkey; EVP_PKEY_CTX *pctx = NULL; size_t signature_length = 0; unsigned long n = 0; buf=(unsigned char *)s->init_buf->data; if (s->state == SSL3_ST_CW_CERT_VRFY_A) { p= ssl_handshake_start(s); pkey = s->cert->key->privatekey; /* Write out the digest type if needbe. */ if (SSL_USE_SIGALGS(s)) { md = tls1_choose_signing_digest(s, pkey); if (!tls12_get_sigandhash(p, pkey, md)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, ERR_R_INTERNAL_ERROR); goto err; } p += 2; n += 2; } /* Compute the digest. */ if (!ssl3_cert_verify_hash(s, digest, &digest_length, &md, pkey)) goto err; /* The handshake buffer is no longer necessary. */ if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s, free_handshake_buffer)) goto err; /* Sign the digest. */ pctx = EVP_PKEY_CTX_new(pkey, NULL); if (pctx == NULL) goto err; /* Initialize the EVP_PKEY_CTX and determine the size of the signature. */ if (!EVP_PKEY_sign_init(pctx) || !EVP_PKEY_CTX_set_signature_md(pctx, md) || !EVP_PKEY_sign(pctx, NULL, &signature_length, digest, digest_length)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, ERR_R_EVP_LIB); goto err; } if (p + 2 + signature_length > buf + SSL3_RT_MAX_PLAIN_LENGTH) { OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, SSL_R_DATA_LENGTH_TOO_LONG); goto err; } if (!EVP_PKEY_sign(pctx, &p[2], &signature_length, digest, digest_length)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, ERR_R_EVP_LIB); goto err; } s2n(signature_length, p); n += signature_length + 2; ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE_VERIFY, n); s->state=SSL3_ST_CW_CERT_VRFY_B; } EVP_PKEY_CTX_free(pctx); return ssl_do_write(s); err: EVP_PKEY_CTX_free(pctx); return(-1); } /* ssl3_has_client_certificate returns true if a client certificate is * configured. */ static int ssl3_has_client_certificate(SSL *s) { return s->cert && s->cert->key->x509 && s->cert->key->privatekey; } int ssl3_send_client_certificate(SSL *s) { X509 *x509=NULL; EVP_PKEY *pkey=NULL; int i; if (s->state == SSL3_ST_CW_CERT_A) { /* Let cert callback update client certificates if required */ if (s->cert->cert_cb) { i = s->cert->cert_cb(s, s->cert->cert_cb_arg); if (i < 0) { s->rwstate=SSL_X509_LOOKUP; return -1; } if (i == 0) { ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_INTERNAL_ERROR); return 0; } s->rwstate=SSL_NOTHING; } if (ssl3_has_client_certificate(s)) s->state=SSL3_ST_CW_CERT_C; else s->state=SSL3_ST_CW_CERT_B; } /* We need to get a client cert */ if (s->state == SSL3_ST_CW_CERT_B) { /* If we get an error, we need to * ssl->rwstate=SSL_X509_LOOKUP; return(-1); * We then get retried later */ i = ssl_do_client_cert_cb(s, &x509, &pkey); if (i < 0) { s->rwstate=SSL_X509_LOOKUP; return(-1); } s->rwstate=SSL_NOTHING; if ((i == 1) && (pkey != NULL) && (x509 != NULL)) { s->state=SSL3_ST_CW_CERT_B; if ( !SSL_use_certificate(s,x509) || !SSL_use_PrivateKey(s,pkey)) i=0; } else if (i == 1) { i=0; OPENSSL_PUT_ERROR(SSL, ssl3_send_client_certificate, SSL_R_BAD_DATA_RETURNED_BY_CALLBACK); } if (x509 != NULL) X509_free(x509); if (pkey != NULL) EVP_PKEY_free(pkey); if (i && !ssl3_has_client_certificate(s)) i = 0; if (i == 0) { if (s->version == SSL3_VERSION) { s->s3->tmp.cert_req=0; ssl3_send_alert(s,SSL3_AL_WARNING,SSL_AD_NO_CERTIFICATE); return(1); } else { s->s3->tmp.cert_req=2; } } /* Ok, we have a cert */ s->state=SSL3_ST_CW_CERT_C; } if (s->state == SSL3_ST_CW_CERT_C) { s->state=SSL3_ST_CW_CERT_D; ssl3_output_cert_chain(s, (s->s3->tmp.cert_req == 2)?NULL:s->cert->key); } /* SSL3_ST_CW_CERT_D */ return ssl_do_write(s); } #define has_bits(i,m) (((i)&(m)) == (m)) int ssl3_check_cert_and_algorithm(SSL *s) { int i,idx; long alg_k,alg_a; EVP_PKEY *pkey=NULL; SESS_CERT *sc; DH *dh; /* we don't have a certificate */ if (!ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) return 1; alg_k=s->s3->tmp.new_cipher->algorithm_mkey; alg_a=s->s3->tmp.new_cipher->algorithm_auth; sc=s->session->sess_cert; if (sc == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, ERR_R_INTERNAL_ERROR); goto err; } dh=s->session->sess_cert->peer_dh_tmp; /* This is the passed certificate */ idx=sc->peer_cert_type; if (idx == SSL_PKEY_ECC) { if (ssl_check_srvr_ecc_cert_and_alg(sc->peer_pkeys[idx].x509, s) == 0) { /* check failed */ OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_BAD_ECC_CERT); goto f_err; } else { return 1; } } else if (alg_a & SSL_aECDSA) { OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_ECDSA_SIGNING_CERT); goto f_err; } pkey=X509_get_pubkey(sc->peer_pkeys[idx].x509); i=X509_certificate_type(sc->peer_pkeys[idx].x509,pkey); EVP_PKEY_free(pkey); /* Check that we have a certificate if we require one */ if ((alg_a & SSL_aRSA) && !has_bits(i,EVP_PK_RSA|EVP_PKT_SIGN)) { OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_RSA_SIGNING_CERT); goto f_err; } if ((alg_k & SSL_kRSA) && !has_bits(i,EVP_PK_RSA|EVP_PKT_ENC)) { OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_RSA_ENCRYPTING_CERT); goto f_err; } if ((alg_k & SSL_kEDH) && !(has_bits(i,EVP_PK_DH|EVP_PKT_EXCH) || (dh != NULL))) { OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_DH_KEY); goto f_err; } return(1); f_err: ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE_FAILURE); err: return(0); } int ssl3_send_next_proto(SSL *s) { unsigned int len, padding_len; unsigned char *d; if (s->state == SSL3_ST_CW_NEXT_PROTO_A) { len = s->next_proto_negotiated_len; padding_len = 32 - ((len + 2) % 32); d = (unsigned char *)s->init_buf->data; d[4] = len; memcpy(d + 5, s->next_proto_negotiated, len); d[5 + len] = padding_len; memset(d + 6 + len, 0, padding_len); *(d++)=SSL3_MT_NEXT_PROTO; l2n3(2 + len + padding_len, d); s->state = SSL3_ST_CW_NEXT_PROTO_B; s->init_num = 4 + 2 + len + padding_len; s->init_off = 0; } return ssl3_do_write(s, SSL3_RT_HANDSHAKE, add_to_finished_hash); } int ssl3_send_channel_id(SSL *s) { unsigned char *d; int ret = -1, public_key_len; EVP_MD_CTX md_ctx; size_t sig_len; ECDSA_SIG *sig = NULL; unsigned char *public_key = NULL, *derp, *der_sig = NULL; if (s->state != SSL3_ST_CW_CHANNEL_ID_A) return ssl3_do_write(s, SSL3_RT_HANDSHAKE, add_to_finished_hash); if (!s->tlsext_channel_id_private && s->ctx->channel_id_cb) { EVP_PKEY *key = NULL; s->ctx->channel_id_cb(s, &key); if (key != NULL) { s->tlsext_channel_id_private = key; } } if (!s->tlsext_channel_id_private) { s->rwstate=SSL_CHANNEL_ID_LOOKUP; return (-1); } s->rwstate=SSL_NOTHING; d = (unsigned char *)s->init_buf->data; *(d++)=SSL3_MT_ENCRYPTED_EXTENSIONS; l2n3(2 + 2 + TLSEXT_CHANNEL_ID_SIZE, d); if (s->s3->tlsext_channel_id_new) s2n(TLSEXT_TYPE_channel_id_new, d); else s2n(TLSEXT_TYPE_channel_id, d); s2n(TLSEXT_CHANNEL_ID_SIZE, d); EVP_MD_CTX_init(&md_ctx); public_key_len = i2d_PublicKey(s->tlsext_channel_id_private, NULL); if (public_key_len <= 0) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_CANNOT_SERIALIZE_PUBLIC_KEY); goto err; } /* i2d_PublicKey will produce an ANSI X9.62 public key which, for a * P-256 key, is 0x04 (meaning uncompressed) followed by the x and y * field elements as 32-byte, big-endian numbers. */ if (public_key_len != 65) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_CHANNEL_ID_NOT_P256); goto err; } public_key = OPENSSL_malloc(public_key_len); if (!public_key) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, ERR_R_MALLOC_FAILURE); goto err; } derp = public_key; i2d_PublicKey(s->tlsext_channel_id_private, &derp); if (EVP_DigestSignInit(&md_ctx, NULL, EVP_sha256(), NULL, s->tlsext_channel_id_private) != 1) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_EVP_DIGESTSIGNINIT_FAILED); goto err; } if (!tls1_channel_id_hash(&md_ctx, s)) goto err; if (!EVP_DigestSignFinal(&md_ctx, NULL, &sig_len)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_EVP_DIGESTSIGNFINAL_FAILED); goto err; } der_sig = OPENSSL_malloc(sig_len); if (!der_sig) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_DigestSignFinal(&md_ctx, der_sig, &sig_len)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_EVP_DIGESTSIGNFINAL_FAILED); goto err; } derp = der_sig; sig = d2i_ECDSA_SIG(NULL, (const unsigned char**) &derp, sig_len); if (sig == NULL) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_D2I_ECDSA_SIG); goto err; } /* The first byte of public_key will be 0x4, denoting an uncompressed key. */ memcpy(d, public_key + 1, 64); d += 64; if (!BN_bn2bin_padded(d, 32, sig->r) || !BN_bn2bin_padded(d + 32, 32, sig->s)) { OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, ERR_R_INTERNAL_ERROR); goto err; } s->state = SSL3_ST_CW_CHANNEL_ID_B; s->init_num = 4 + 2 + 2 + TLSEXT_CHANNEL_ID_SIZE; s->init_off = 0; ret = ssl3_do_write(s, SSL3_RT_HANDSHAKE, add_to_finished_hash); err: EVP_MD_CTX_cleanup(&md_ctx); if (public_key) OPENSSL_free(public_key); if (der_sig) OPENSSL_free(der_sig); if (sig) ECDSA_SIG_free(sig); return ret; } int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey) { int i = 0; if (s->ctx->client_cert_cb) i = s->ctx->client_cert_cb(s,px509,ppkey); return i; }