/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../../test/test_util.h" // kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field // omitted. static const uint8_t kECKeyWithoutPublic[] = { 0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, }; // kECKeySpecifiedCurve is the above key with P-256's parameters explicitly // spelled out rather than using a named curve. static const uint8_t kECKeySpecifiedCurve[] = { 0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02, 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, 0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15, 0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78, 0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, 0x02, 0x01, 0x01, }; // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where // the private key is one. The private key is incorrectly encoded without zero // padding. static const uint8_t kECKeyMissingZeros[] = { 0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, }; // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where // the private key is one. The private key is encoded with the required zero // padding. static const uint8_t kECKeyWithZeros[] = { 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, }; // DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the // result or nullptr on error. static bssl::UniquePtr DecodeECPrivateKey(const uint8_t *in, size_t in_len) { CBS cbs; CBS_init(&cbs, in, in_len); bssl::UniquePtr ret(EC_KEY_parse_private_key(&cbs, NULL)); if (!ret || CBS_len(&cbs) != 0) { return nullptr; } return ret; } // EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It // returns true on success or false on error. static bool EncodeECPrivateKey(std::vector *out, const EC_KEY *key) { bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; if (!CBB_init(cbb.get(), 0) || !EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } out->assign(der, der + der_len); OPENSSL_free(der); return true; } TEST(ECTest, Encoding) { bssl::UniquePtr key = DecodeECPrivateKey(kECKeyWithoutPublic, sizeof(kECKeyWithoutPublic)); ASSERT_TRUE(key); // Test that the encoding round-trips. std::vector out; ASSERT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get()); ASSERT_TRUE(pub_key) << "Public key missing"; bssl::UniquePtr x(BN_new()); bssl::UniquePtr y(BN_new()); ASSERT_TRUE(x); ASSERT_TRUE(y); ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( EC_KEY_get0_group(key.get()), pub_key, x.get(), y.get(), NULL)); bssl::UniquePtr x_hex(BN_bn2hex(x.get())); bssl::UniquePtr y_hex(BN_bn2hex(y.get())); ASSERT_TRUE(x_hex); ASSERT_TRUE(y_hex); EXPECT_STREQ( "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681", x_hex.get()); EXPECT_STREQ( "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88", y_hex.get()); } TEST(ECTest, ZeroPadding) { // Check that the correct encoding round-trips. bssl::UniquePtr key = DecodeECPrivateKey(kECKeyWithZeros, sizeof(kECKeyWithZeros)); ASSERT_TRUE(key); std::vector out; EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); // Keys without leading zeros also parse, but they encode correctly. key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros)); ASSERT_TRUE(key); EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); } TEST(ECTest, SpecifiedCurve) { // Test keys with specified curves may be decoded. bssl::UniquePtr key = DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve)); ASSERT_TRUE(key); // The group should have been interpreted as P-256. EXPECT_EQ(NID_X9_62_prime256v1, EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get()))); // Encoding the key should still use named form. std::vector out; EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); } TEST(ECTest, ArbitraryCurve) { // Make a P-256 key and extract the affine coordinates. bssl::UniquePtr key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key(key.get())); // Make an arbitrary curve which is identical to P-256. static const uint8_t kP[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; static const uint8_t kA[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, }; static const uint8_t kB[] = { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, }; static const uint8_t kX[] = { 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, }; static const uint8_t kY[] = { 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, }; static const uint8_t kOrder[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, }; bssl::UniquePtr ctx(BN_CTX_new()); ASSERT_TRUE(ctx); bssl::UniquePtr p(BN_bin2bn(kP, sizeof(kP), nullptr)); ASSERT_TRUE(p); bssl::UniquePtr a(BN_bin2bn(kA, sizeof(kA), nullptr)); ASSERT_TRUE(a); bssl::UniquePtr b(BN_bin2bn(kB, sizeof(kB), nullptr)); ASSERT_TRUE(b); bssl::UniquePtr gx(BN_bin2bn(kX, sizeof(kX), nullptr)); ASSERT_TRUE(gx); bssl::UniquePtr gy(BN_bin2bn(kY, sizeof(kY), nullptr)); ASSERT_TRUE(gy); bssl::UniquePtr order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr)); ASSERT_TRUE(order); bssl::UniquePtr group( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group); bssl::UniquePtr generator(EC_POINT_new(group.get())); ASSERT_TRUE(generator); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group.get(), generator.get(), gx.get(), gy.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group.get(), generator.get(), order.get(), BN_value_one())); // |group| should not have a curve name. EXPECT_EQ(NID_undef, EC_GROUP_get_curve_name(group.get())); // Copy |key| to |key2| using |group|. bssl::UniquePtr key2(EC_KEY_new()); ASSERT_TRUE(key2); bssl::UniquePtr point(EC_POINT_new(group.get())); ASSERT_TRUE(point); bssl::UniquePtr x(BN_new()), y(BN_new()); ASSERT_TRUE(x); ASSERT_TRUE(EC_KEY_set_group(key2.get(), group.get())); ASSERT_TRUE( EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get()))); ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( EC_KEY_get0_group(key.get()), EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_KEY_set_public_key(key2.get(), point.get())); // The key must be valid according to the new group too. EXPECT_TRUE(EC_KEY_check_key(key2.get())); // Make a second instance of |group|. bssl::UniquePtr group2( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group2); bssl::UniquePtr generator2(EC_POINT_new(group2.get())); ASSERT_TRUE(generator2); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group2.get(), generator2.get(), gx.get(), gy.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group2.get(), generator2.get(), order.get(), BN_value_one())); EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group.get(), NULL)); EXPECT_EQ(0, EC_GROUP_cmp(group2.get(), group.get(), NULL)); // group3 uses the wrong generator. bssl::UniquePtr group3( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group3); bssl::UniquePtr generator3(EC_POINT_new(group3.get())); ASSERT_TRUE(generator3); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group3.get(), generator3.get(), x.get(), y.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group3.get(), generator3.get(), order.get(), BN_value_one())); EXPECT_NE(0, EC_GROUP_cmp(group.get(), group3.get(), NULL)); } class ECCurveTest : public testing::TestWithParam {}; TEST_P(ECCurveTest, SetAffine) { // Generate an EC_KEY. bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key(key.get())); const EC_GROUP *const group = EC_KEY_get0_group(key.get()); EXPECT_TRUE( EC_POINT_is_on_curve(group, EC_KEY_get0_public_key(key.get()), nullptr)); // Get the public key's coordinates. bssl::UniquePtr x(BN_new()); ASSERT_TRUE(x); bssl::UniquePtr y(BN_new()); ASSERT_TRUE(y); EXPECT_TRUE(EC_POINT_get_affine_coordinates_GFp( group, EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr)); // Points on the curve should be accepted. auto point = bssl::UniquePtr(EC_POINT_new(group)); ASSERT_TRUE(point); EXPECT_TRUE(EC_POINT_set_affine_coordinates_GFp(group, point.get(), x.get(), y.get(), nullptr)); // Subtract one from |y| to make the point no longer on the curve. EXPECT_TRUE(BN_sub(y.get(), y.get(), BN_value_one())); // Points not on the curve should be rejected. bssl::UniquePtr invalid_point(EC_POINT_new(group)); ASSERT_TRUE(invalid_point); EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group, invalid_point.get(), x.get(), y.get(), nullptr)); } TEST_P(ECCurveTest, GenerateFIPS) { // Generate an EC_KEY. bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key_fips(key.get())); } TEST_P(ECCurveTest, AddingEqualPoints) { bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key(key.get())); const EC_GROUP *const group = EC_KEY_get0_group(key.get()); bssl::UniquePtr p1(EC_POINT_new(group)); ASSERT_TRUE(p1); ASSERT_TRUE(EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get()))); bssl::UniquePtr p2(EC_POINT_new(group)); ASSERT_TRUE(p2); ASSERT_TRUE(EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))); bssl::UniquePtr double_p1(EC_POINT_new(group)); ASSERT_TRUE(double_p1); bssl::UniquePtr ctx(BN_CTX_new()); ASSERT_TRUE(ctx); ASSERT_TRUE(EC_POINT_dbl(group, double_p1.get(), p1.get(), ctx.get())); bssl::UniquePtr p1_plus_p2(EC_POINT_new(group)); ASSERT_TRUE(p1_plus_p2); ASSERT_TRUE( EC_POINT_add(group, p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())); EXPECT_EQ(0, EC_POINT_cmp(group, double_p1.get(), p1_plus_p2.get(), ctx.get())) << "A+A != 2A"; } TEST_P(ECCurveTest, MulZero) { bssl::UniquePtr group(EC_GROUP_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(group); bssl::UniquePtr point(EC_POINT_new(group.get())); ASSERT_TRUE(point); bssl::UniquePtr zero(BN_new()); ASSERT_TRUE(zero); BN_zero(zero.get()); ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), zero.get(), nullptr, nullptr, nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), point.get())) << "g * 0 did not return point at infinity."; // Test that zero times an arbitrary point is also infinity. The generator is // used as the arbitrary point. bssl::UniquePtr generator(EC_POINT_new(group.get())); ASSERT_TRUE(generator); ASSERT_TRUE(EC_POINT_mul(group.get(), generator.get(), BN_value_one(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), nullptr, generator.get(), zero.get(), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), point.get())) << "p * 0 did not return point at infinity."; } // Test that multiplying by the order produces ∞ and, moreover, that callers may // do so. |EC_POINT_mul| is almost exclusively used with reduced scalars, with // this exception. This comes from consumers following NIST SP 800-56A section // 5.6.2.3.2. (Though all our curves have cofactor one, so this check isn't // useful.) TEST_P(ECCurveTest, MulOrder) { bssl::UniquePtr group(EC_GROUP_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(group); // Test that g × order = ∞. bssl::UniquePtr point(EC_POINT_new(group.get())); ASSERT_TRUE(point); ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), EC_GROUP_get0_order(group.get()), nullptr, nullptr, nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), point.get())) << "g * order did not return point at infinity."; // Test that p × order = ∞, for some arbitrary p. bssl::UniquePtr forty_two(BN_new()); ASSERT_TRUE(forty_two); ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), forty_two.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_mul(group.get(), point.get(), nullptr, point.get(), EC_GROUP_get0_order(group.get()), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), point.get())) << "p * order did not return point at infinity."; } // Test that 10×∞ + G = G. TEST_P(ECCurveTest, Mul) { bssl::UniquePtr group(EC_GROUP_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(group); bssl::UniquePtr p(EC_POINT_new(group.get())); ASSERT_TRUE(p); bssl::UniquePtr result(EC_POINT_new(group.get())); ASSERT_TRUE(result); bssl::UniquePtr n(BN_new()); ASSERT_TRUE(n); ASSERT_TRUE(EC_POINT_set_to_infinity(group.get(), p.get())); ASSERT_TRUE(BN_set_word(n.get(), 10)); // First check that 10×∞ = ∞. ASSERT_TRUE(EC_POINT_mul(group.get(), result.get(), nullptr, p.get(), n.get(), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), result.get())); // Now check that 10×∞ + G = G. const EC_POINT *generator = EC_GROUP_get0_generator(group.get()); ASSERT_TRUE(EC_POINT_mul(group.get(), result.get(), BN_value_one(), p.get(), n.get(), nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group.get(), result.get(), generator, nullptr)); } static std::vector AllCurves() { const size_t num_curves = EC_get_builtin_curves(nullptr, 0); std::vector curves(num_curves); EC_get_builtin_curves(curves.data(), num_curves); return curves; } static std::string CurveToString( const testing::TestParamInfo ¶ms) { // The comment field contains characters GTest rejects, so use the OBJ name. return OBJ_nid2sn(params.param.nid); } INSTANTIATE_TEST_CASE_P(, ECCurveTest, testing::ValuesIn(AllCurves()), CurveToString);