/* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include "../bn/internal.h" #include "../ec/internal.h" #include "../../internal.h" // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for // ECDSA. Note this value is not fully reduced modulo the order, only the // correct number of bits. static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out, const uint8_t *digest, size_t digest_len) { const BIGNUM *order = &group->order; size_t num_bits = BN_num_bits(order); // Need to truncate digest if it is too long: first truncate whole bytes. if (8 * digest_len > num_bits) { digest_len = (num_bits + 7) / 8; } OPENSSL_memset(out, 0, sizeof(EC_SCALAR)); for (size_t i = 0; i < digest_len; i++) { out->bytes[i] = digest[digest_len - 1 - i]; } // If still too long truncate remaining bits with a shift if (8 * digest_len > num_bits) { size_t shift = 8 - (num_bits & 0x7); for (int i = 0; i < order->top - 1; i++) { out->words[i] = (out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift)); } out->words[order->top - 1] >>= shift; } } // field_element_to_scalar reduces |r| modulo |group->order|. |r| must // previously have been reduced modulo |group->field|. static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) { // We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we // can reduce by performing at most one subtraction. // // Proof: We only work with prime order curves, so the number of points on // the curve is the order. Thus Hasse's theorem gives: // // |order - (p + 1)| <= 2×sqrt(p) // p + 1 - order <= 2×sqrt(p) // p + 1 - 2×sqrt(p) <= order // p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17) // p/2 < p/2 + 1 < order // p < 2×order // // Additionally, one can manually check this property for built-in curves. It // is enforced for legacy custom curves in |EC_GROUP_set_generator|. // // TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from // |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need // to be constant-time for signing? |r| is the x-coordinate for kG, which is // public unless k was rerolled because |s| was zero. assert(!BN_is_negative(r)); assert(BN_cmp(r, &group->field) < 0); if (BN_cmp(r, &group->order) >= 0 && !BN_sub(r, r, &group->order)) { return 0; } assert(!BN_is_negative(r)); assert(BN_cmp(r, &group->order) < 0); return 1; } ECDSA_SIG *ECDSA_SIG_new(void) { ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG)); if (sig == NULL) { return NULL; } sig->r = BN_new(); sig->s = BN_new(); if (sig->r == NULL || sig->s == NULL) { ECDSA_SIG_free(sig); return NULL; } return sig; } void ECDSA_SIG_free(ECDSA_SIG *sig) { if (sig == NULL) { return; } BN_free(sig->r); BN_free(sig->s); OPENSSL_free(sig); } void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r, const BIGNUM **out_s) { if (out_r != NULL) { *out_r = sig->r; } if (out_s != NULL) { *out_s = sig->s; } } int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { if (r == NULL || s == NULL) { return 0; } BN_free(sig->r); BN_free(sig->s); sig->r = r; sig->s = s; return 1; } int ECDSA_do_verify(const uint8_t *digest, size_t digest_len, const ECDSA_SIG *sig, const EC_KEY *eckey) { const EC_GROUP *group = EC_KEY_get0_group(eckey); const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey); if (group == NULL || pub_key == NULL || sig == NULL) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); return 0; } BN_CTX *ctx = BN_CTX_new(); if (!ctx) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); return 0; } int ret = 0; EC_POINT *point = NULL; BN_CTX_start(ctx); BIGNUM *X = BN_CTX_get(ctx); if (X == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } EC_SCALAR r, s, m, u1, u2, s_inv_mont; const BIGNUM *order = EC_GROUP_get0_order(group); if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || BN_ucmp(sig->r, order) >= 0 || !ec_bignum_to_scalar(group, &r, sig->r) || BN_is_zero(sig->s) || BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0 || !ec_bignum_to_scalar(group, &s, sig->s)) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); goto err; } // s_inv_mont = s^-1 mod order. We convert the result to Montgomery form for // the products below. int no_inverse; if (!BN_mod_inverse_odd(X, &no_inverse, sig->s, order, ctx) || !ec_bignum_to_scalar(group, &s_inv_mont, X) || !bn_to_montgomery_small(s_inv_mont.words, order->top, s_inv_mont.words, order->top, group->order_mont)) { goto err; } // u1 = m * s_inv_mont mod order // u2 = r * s_inv_mont mod order // // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and // |u2| will be taken out of Montgomery form, as desired. Note that, although // |m| is not fully reduced, |bn_mod_mul_montgomery_small| only requires the // product not exceed R * |order|. |s_inv_mont| is fully reduced and |m| < // 2^BN_num_bits(order) <= R, so this holds. digest_to_scalar(group, &m, digest, digest_len); if (!bn_mod_mul_montgomery_small(u1.words, order->top, m.words, order->top, s_inv_mont.words, order->top, group->order_mont) || !bn_mod_mul_montgomery_small(u2.words, order->top, r.words, order->top, s_inv_mont.words, order->top, group->order_mont)) { goto err; } point = EC_POINT_new(group); if (point == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); goto err; } if (!ec_point_mul_scalar(group, point, &u1, pub_key, &u2, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } if (!field_element_to_scalar(group, X)) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); goto err; } // The signature is correct iff |X| is equal to |sig->r|. if (BN_ucmp(X, sig->r) != 0) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); EC_POINT_free(point); return ret; } static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx, EC_SCALAR *out_kinv_mont, BIGNUM **rp, const uint8_t *digest, size_t digest_len, const EC_SCALAR *priv_key) { EC_POINT *tmp_point = NULL; int ret = 0; EC_SCALAR k; BIGNUM *r = BN_new(); // this value is later returned in *rp if (r == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); goto err; } const EC_GROUP *group = EC_KEY_get0_group(eckey); const BIGNUM *order = EC_GROUP_get0_order(group); tmp_point = EC_POINT_new(group); if (tmp_point == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); goto err; } // Check that the size of the group order is FIPS compliant (FIPS 186-4 // B.5.2). if (BN_num_bits(order) < 160) { OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER); goto err; } do { // Include the private key and message digest in the k generation. if (eckey->fixed_k != NULL) { if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) { goto err; } } else { // Pass a SHA512 hash of the private key and digest as additional data // into the RBG. This is a hardening measure against entropy failure. OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32, additional_data_is_too_large_for_sha512); SHA512_CTX sha; uint8_t additional_data[SHA512_DIGEST_LENGTH]; SHA512_Init(&sha); SHA512_Update(&sha, priv_key->words, order->top * sizeof(BN_ULONG)); SHA512_Update(&sha, digest, digest_len); SHA512_Final(additional_data, &sha); if (!ec_random_nonzero_scalar(group, &k, additional_data)) { goto err; } } // Compute k^-1. We leave it in the Montgomery domain as an optimization for // later operations. if (!bn_to_montgomery_small(out_kinv_mont->words, order->top, k.words, order->top, group->order_mont) || !bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->top, out_kinv_mont->words, order->top, group->order_mont)) { goto err; } // Compute r, the x-coordinate of generator * k. if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) || !EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL, ctx)) { goto err; } if (!field_element_to_scalar(group, r)) { goto err; } } while (BN_is_zero(r)); BN_clear_free(*rp); *rp = r; r = NULL; ret = 1; err: OPENSSL_cleanse(&k, sizeof(k)); BN_clear_free(r); EC_POINT_free(tmp_point); return ret; } ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len, const EC_KEY *eckey) { if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); return NULL; } const EC_GROUP *group = EC_KEY_get0_group(eckey); const BIGNUM *priv_key_bn = EC_KEY_get0_private_key(eckey); if (group == NULL || priv_key_bn == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); return NULL; } const BIGNUM *order = EC_GROUP_get0_order(group); int ok = 0; ECDSA_SIG *ret = ECDSA_SIG_new(); BN_CTX *ctx = BN_CTX_new(); EC_SCALAR kinv_mont, priv_key, r_mont, s, tmp, m; if (ret == NULL || ctx == NULL) { OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); return NULL; } digest_to_scalar(group, &m, digest, digest_len); if (!ec_bignum_to_scalar(group, &priv_key, priv_key_bn)) { goto err; } for (;;) { if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len, &priv_key)) { goto err; } // Compute priv_key * r (mod order). Note if only one parameter is in the // Montgomery domain, |bn_mod_mul_montgomery_small| will compute the answer // in the normal domain. if (!ec_bignum_to_scalar(group, &r_mont, ret->r) || !bn_to_montgomery_small(r_mont.words, order->top, r_mont.words, order->top, group->order_mont) || !bn_mod_mul_montgomery_small(s.words, order->top, priv_key.words, order->top, r_mont.words, order->top, group->order_mont)) { goto err; } // Compute s += m in constant time. Reduce one copy of |order| if necessary. // Note this does not leave |s| fully reduced. We have // |m| < 2^BN_num_bits(order), so subtracting |order| leaves // 0 <= |s| < 2^BN_num_bits(order). BN_ULONG carry = bn_add_words(s.words, s.words, m.words, order->top); BN_ULONG v = bn_sub_words(tmp.words, s.words, order->d, order->top) - carry; v = 0u - v; for (int i = 0; i < order->top; i++) { s.words[i] = constant_time_select_w(v, s.words[i], tmp.words[i]); } // Finally, multiply s by k^-1. That was retained in Montgomery form, so the // same technique as the previous multiplication works. Although the // previous step did not fully reduce |s|, |bn_mod_mul_montgomery_small| // only requires the product not exceed R * |order|. |kinv_mont| is fully // reduced and |s| < 2^BN_num_bits(order) <= R, so this holds. if (!bn_mod_mul_montgomery_small(s.words, order->top, s.words, order->top, kinv_mont.words, order->top, group->order_mont) || !bn_set_words(ret->s, s.words, order->top)) { goto err; } if (!BN_is_zero(ret->s)) { // s != 0 => we have a valid signature break; } } ok = 1; err: if (!ok) { ECDSA_SIG_free(ret); ret = NULL; } BN_CTX_free(ctx); OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont)); OPENSSL_cleanse(&priv_key, sizeof(priv_key)); OPENSSL_cleanse(&r_mont, sizeof(r_mont)); OPENSSL_cleanse(&s, sizeof(s)); OPENSSL_cleanse(&tmp, sizeof(tmp)); OPENSSL_cleanse(&m, sizeof(m)); return ret; }