/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ /* For BIGNUM format macros. */ #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include #include #include #include #include #include #include #include #include #include #include "../crypto/test/file_test.h" #include "../crypto/test/scoped_types.h" #include "../crypto/test/test_util.h" // This program tests the BIGNUM implementation. It takes an optional -bc // argument to write a transcript compatible with the UNIX bc utility. // // TODO(davidben): Rather than generate random inputs and depend on bc to check // the results, most of these tests should use known answers. static const int num0 = 100; // number of tests static const int num2 = 5; // number of tests for slow functions static int rand_neg(); static bool test_mont(FILE *fp, BN_CTX *ctx); static bool test_mod_mul(FILE *fp, BN_CTX *ctx); static bool test_mod_exp(FILE *fp, BN_CTX *ctx); static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx); static bool test_exp(FILE *fp, BN_CTX *ctx); static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx); static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx); static bool test_sqrt(FILE *fp, BN_CTX *ctx); static bool TestBN2BinPadded(BN_CTX *ctx); static bool TestDec2BN(BN_CTX *ctx); static bool TestHex2BN(BN_CTX *ctx); static bool TestASC2BN(BN_CTX *ctx); static bool TestMPI(); static bool TestRand(); static bool TestASN1(); static bool TestNegativeZero(BN_CTX *ctx); static bool TestBadModulus(BN_CTX *ctx); static bool TestExpModZero(); static bool TestSmallPrime(BN_CTX *ctx); static bool RunTest(FileTest *t, void *arg); // A wrapper around puts that takes its arguments in the same order as our *_fp // functions. static void puts_fp(FILE *out, const char *m) { if (out != nullptr) { fputs(m, out); } } static void flush_fp(FILE *out) { if (out != nullptr) { fflush(out); } } static void message(FILE *out, const char *m) { puts_fp(out, "print \"test "); puts_fp(out, m); puts_fp(out, "\\n\"\n"); } int main(int argc, char *argv[]) { CRYPTO_library_init(); ScopedFILE bc_file; const char *name = argv[0]; argc--; argv++; if (argc > 0 && strcmp(argv[0], "-bc") == 0) { if (argc < 2) { fprintf(stderr, "Missing parameter to -bc\n"); return 1; } bc_file.reset(fopen(argv[1], "w+")); if (!bc_file) { fprintf(stderr, "Failed to open %s: %s\n", argv[1], strerror(errno)); } argc -= 2; argv += 2; } if (argc != 1) { fprintf(stderr, "%s [-bc BC_FILE] TEST_FILE\n", name); return 1; } ScopedBN_CTX ctx(BN_CTX_new()); if (!ctx) { return 1; } puts_fp(bc_file.get(), "/* This script, when run through the UNIX bc utility, " "should produce a sequence of zeros. */\n"); puts_fp(bc_file.get(), "/* tr a-f A-F < bn_test.out | sed s/BAsE/base/ | bc " "| grep -v 0 */\n"); puts_fp(bc_file.get(), "obase=16\nibase=16\n"); message(bc_file.get(), "BN_mod_mul"); if (!test_mod_mul(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mont"); if (!test_mont(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_exp"); if (!test_mod_exp(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_exp_mont_consttime"); if (!test_mod_exp_mont_consttime(bc_file.get(), ctx.get()) || !test_mod_exp_mont5(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_exp"); if (!test_exp(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_mod_sqrt"); if (!test_mod_sqrt(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); message(bc_file.get(), "BN_sqrt"); if (!test_sqrt(bc_file.get(), ctx.get())) { return 1; } flush_fp(bc_file.get()); if (!TestBN2BinPadded(ctx.get()) || !TestDec2BN(ctx.get()) || !TestHex2BN(ctx.get()) || !TestASC2BN(ctx.get()) || !TestMPI() || !TestRand() || !TestASN1() || !TestNegativeZero(ctx.get()) || !TestBadModulus(ctx.get()) || !TestExpModZero() || !TestSmallPrime(ctx.get())) { return 1; } return FileTestMain(RunTest, ctx.get(), argv[0]); } static int HexToBIGNUM(ScopedBIGNUM *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_hex2bn(&raw, in); out->reset(raw); return ret; } static ScopedBIGNUM GetBIGNUM(FileTest *t, const char *attribute) { std::string hex; if (!t->GetAttribute(&hex, attribute)) { return nullptr; } ScopedBIGNUM ret; if (HexToBIGNUM(&ret, hex.c_str()) != static_cast(hex.size())) { t->PrintLine("Could not decode '%s'.", hex.c_str()); return nullptr; } return ret; } static bool GetInt(FileTest *t, int *out, const char *attribute) { ScopedBIGNUM ret = GetBIGNUM(t, attribute); if (!ret) { return false; } BN_ULONG word = BN_get_word(ret.get()); if (word > INT_MAX) { return false; } *out = static_cast(word); return true; } static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation, const BIGNUM *expected, const BIGNUM *actual) { if (BN_cmp(expected, actual) == 0) { return true; } ScopedOpenSSLString expected_str(BN_bn2hex(expected)); ScopedOpenSSLString actual_str(BN_bn2hex(actual)); if (!expected_str || !actual_str) { return false; } t->PrintLine("Got %s =", operation); t->PrintLine("\t%s", actual_str.get()); t->PrintLine("wanted:"); t->PrintLine("\t%s", expected_str.get()); return false; } static bool TestSum(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM b = GetBIGNUM(t, "B"); ScopedBIGNUM sum = GetBIGNUM(t, "Sum"); if (!a || !b || !sum) { return false; } ScopedBIGNUM ret(BN_new()); if (!ret || !BN_add(ret.get(), a.get(), b.get()) || !ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) || !BN_sub(ret.get(), sum.get(), a.get()) || !ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) || !BN_sub(ret.get(), sum.get(), b.get()) || !ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) { return false; } // Test that the functions work when |r| and |a| point to the same |BIGNUM|, // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where // all of |r|, |a|, and |b| point to the same |BIGNUM|. if (!BN_copy(ret.get(), a.get()) || !BN_add(ret.get(), ret.get(), b.get()) || !ExpectBIGNUMsEqual(t, "A + B (r is a)", sum.get(), ret.get()) || !BN_copy(ret.get(), b.get()) || !BN_add(ret.get(), a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "A + B (r is b)", sum.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_sub(ret.get(), ret.get(), a.get()) || !ExpectBIGNUMsEqual(t, "Sum - A (r is a)", b.get(), ret.get()) || !BN_copy(ret.get(), a.get()) || !BN_sub(ret.get(), sum.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Sum - A (r is b)", b.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_sub(ret.get(), ret.get(), b.get()) || !ExpectBIGNUMsEqual(t, "Sum - B (r is a)", a.get(), ret.get()) || !BN_copy(ret.get(), b.get()) || !BN_sub(ret.get(), sum.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Sum - B (r is b)", a.get(), ret.get())) { return false; } // Test with |BN_add_word| and |BN_sub_word| if |b| is small enough. BN_ULONG b_word = BN_get_word(b.get()); if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { if (!BN_copy(ret.get(), a.get()) || !BN_add_word(ret.get(), b_word) || !ExpectBIGNUMsEqual(t, "A + B (word)", sum.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_sub_word(ret.get(), b_word) || !ExpectBIGNUMsEqual(t, "Sum - B (word)", a.get(), ret.get())) { return false; } } return true; } static bool TestLShift1(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM lshift1 = GetBIGNUM(t, "LShift1"); ScopedBIGNUM zero(BN_new()); if (!a || !lshift1 || !zero) { return false; } BN_zero(zero.get()); ScopedBIGNUM ret(BN_new()), two(BN_new()), remainder(BN_new()); if (!ret || !two || !remainder || !BN_set_word(two.get(), 2) || !BN_add(ret.get(), a.get(), a.get()) || !ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) || !BN_mul(ret.get(), a.get(), two.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) || !BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx) || !ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) || !BN_lshift1(ret.get(), a.get()) || !ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) || !BN_rshift1(ret.get(), lshift1.get()) || !ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) || !BN_rshift1(ret.get(), lshift1.get()) || !ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) { return false; } // Set the LSB to 1 and test rshift1 again. if (BN_is_negative(lshift1.get())) { if (!BN_sub(lshift1.get(), lshift1.get(), BN_value_one())) { return false; } } else { if (!BN_add(lshift1.get(), lshift1.get(), BN_value_one())) { return false; } } if (!BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx) || !ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) || !BN_rshift1(ret.get(), lshift1.get()) || !ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) { return false; } return true; } static bool TestLShift(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM lshift = GetBIGNUM(t, "LShift"); int n = 0; if (!a || !lshift || !GetInt(t, &n, "N")) { return false; } ScopedBIGNUM ret(BN_new()); if (!ret || !BN_lshift(ret.get(), a.get(), n) || !ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) || !BN_rshift(ret.get(), lshift.get(), n) || !ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) { return false; } return true; } static bool TestRShift(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM rshift = GetBIGNUM(t, "RShift"); int n = 0; if (!a || !rshift || !GetInt(t, &n, "N")) { return false; } ScopedBIGNUM ret(BN_new()); if (!ret || !BN_rshift(ret.get(), a.get(), n) || !ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) { return false; } return true; } static bool TestSquare(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM square = GetBIGNUM(t, "Square"); ScopedBIGNUM zero(BN_new()); if (!a || !square || !zero) { return false; } BN_zero(zero.get()); ScopedBIGNUM ret(BN_new()), remainder(BN_new()); if (!ret || !BN_sqr(ret.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "A^2", square.get(), ret.get()) || !BN_mul(ret.get(), a.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) || !BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) { return false; } BN_set_negative(a.get(), 0); if (!BN_sqrt(ret.get(), square.get(), ctx) || !ExpectBIGNUMsEqual(t, "sqrt(Square)", a.get(), ret.get())) { return false; } return true; } static bool TestProduct(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM b = GetBIGNUM(t, "B"); ScopedBIGNUM product = GetBIGNUM(t, "Product"); ScopedBIGNUM zero(BN_new()); if (!a || !b || !product || !zero) { return false; } BN_zero(zero.get()); ScopedBIGNUM ret(BN_new()), remainder(BN_new()); if (!ret || !remainder || !BN_mul(ret.get(), a.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) || !BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) || !BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) { return false; } return true; } static bool TestQuotient(FileTest *t, BN_CTX *ctx) { ScopedBIGNUM a = GetBIGNUM(t, "A"); ScopedBIGNUM b = GetBIGNUM(t, "B"); ScopedBIGNUM quotient = GetBIGNUM(t, "Quotient"); ScopedBIGNUM remainder = GetBIGNUM(t, "Remainder"); if (!a || !b || !quotient || !remainder) { return false; } ScopedBIGNUM ret(BN_new()), ret2(BN_new()); if (!ret || !ret2 || !BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) || !BN_mul(ret.get(), quotient.get(), b.get(), ctx) || !BN_add(ret.get(), ret.get(), remainder.get()) || !ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) { return false; } // Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough. BN_ULONG b_word = BN_get_word(b.get()); if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { BN_ULONG remainder_word = BN_get_word(remainder.get()); assert(remainder_word != (BN_ULONG)-1); if (!BN_copy(ret.get(), a.get())) { return false; } BN_ULONG ret_word = BN_div_word(ret.get(), b_word); if (ret_word != remainder_word) { t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1 "\n", ret_word, remainder_word); return false; } if (!ExpectBIGNUMsEqual(t, "A / B (word)", quotient.get(), ret.get())) { return false; } ret_word = BN_mod_word(a.get(), b_word); if (ret_word != remainder_word) { t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1 "\n", ret_word, remainder_word); return false; } } return true; } struct Test { const char *name; bool (*func)(FileTest *t, BN_CTX *ctx); }; static const Test kTests[] = { {"Sum", TestSum}, {"LShift1", TestLShift1}, {"LShift", TestLShift}, {"RShift", TestRShift}, {"Square", TestSquare}, {"Product", TestProduct}, {"Quotient", TestQuotient}, }; static bool RunTest(FileTest *t, void *arg) { BN_CTX *ctx = reinterpret_cast(arg); for (const Test &test : kTests) { if (t->GetType() != test.name) { continue; } return test.func(t, ctx); } t->PrintLine("Unknown test type: %s", t->GetType().c_str()); return false; } static int rand_neg() { static unsigned int neg = 0; static const int sign[8] = {0, 0, 0, 1, 1, 0, 1, 1}; return sign[(neg++) % 8]; } static bool test_mont(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM A(BN_new()); ScopedBIGNUM B(BN_new()); ScopedBIGNUM n(BN_new()); ScopedBN_MONT_CTX mont(BN_MONT_CTX_new()); if (!a || !b || !c || !d || !A || !B || !n || !mont) { return false; } if (!BN_rand(a.get(), 100, 0, 0) || !BN_rand(b.get(), 100, 0, 0)) { return false; } for (int i = 0; i < num2; i++) { int bits = (200 * (i + 1)) / num2; if (bits == 0) { continue; } if (!BN_rand(n.get(), bits, 0, 1) || !BN_MONT_CTX_set(mont.get(), n.get(), ctx) || !BN_nnmod(a.get(), a.get(), n.get(), ctx) || !BN_nnmod(b.get(), b.get(), n.get(), ctx) || !BN_to_montgomery(A.get(), a.get(), mont.get(), ctx) || !BN_to_montgomery(B.get(), b.get(), mont.get(), ctx) || !BN_mod_mul_montgomery(c.get(), A.get(), B.get(), mont.get(), ctx) || !BN_from_montgomery(A.get(), c.get(), mont.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, &mont->N); puts_fp(fp, " - "); BN_print_fp(fp, A.get()); puts_fp(fp, "\n"); } if (!BN_mod_mul(d.get(), a.get(), b.get(), n.get(), ctx) || !BN_sub(d.get(), d.get(), A.get())) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Montgomery multiplication test failed!\n"); return false; } } return true; } static bool test_mod_mul(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } for (int j = 0; j < 3; j++) { if (!BN_rand(c.get(), 1024, 0, 0)) { return false; } for (int i = 0; i < num0; i++) { if (!BN_rand(a.get(), 475 + i * 10, 0, 0) || !BN_rand(b.get(), 425 + i * 11, 0, 0)) { return false; } a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_mod_mul(e.get(), a.get(), b.get(), c.get(), ctx)) { ERR_print_errors_fp(stderr); return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " * "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, c.get()); if (a->neg != b->neg && !BN_is_zero(e.get())) { // If (a*b) % c is negative, c must be added // in order to obtain the normalized remainder // (new with OpenSSL 0.9.7, previous versions of // BN_mod_mul could generate negative results) puts_fp(fp, " + "); BN_print_fp(fp, c.get()); } puts_fp(fp, " - "); BN_print_fp(fp, e.get()); puts_fp(fp, "\n"); } if (!BN_mul(d.get(), a.get(), b.get(), ctx) || !BN_sub(d.get(), d.get(), e.get()) || !BN_div(a.get(), b.get(), d.get(), c.get(), ctx)) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Modulo multiply test failed!\n"); ERR_print_errors_fp(stderr); return false; } } } return true; } static bool test_mod_exp(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } if (!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery return false; } for (int i = 0; i < num2; i++) { if (!BN_rand(a.get(), 20 + i * 5, 0, 0) || !BN_rand(b.get(), 2 + i, 0, 0) || !BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " ^ "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, c.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); } if (!BN_exp(e.get(), a.get(), b.get(), ctx) || !BN_sub(e.get(), e.get(), d.get()) || !BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Modulo exponentiation test failed!\n"); return false; } } // Regression test for carry propagation bug in sqr8x_reduction. if (!HexToBIGNUM(&a, "050505050505") || !HexToBIGNUM(&b, "02") || !HexToBIGNUM( &c, "4141414141414141414141274141414141414141414141414141414141414141" "4141414141414141414141414141414141414141414141414141414141414141" "4141414141414141414141800000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000001") || !BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx) || !BN_mul(e.get(), a.get(), a.get(), ctx)) { return false; } if (BN_cmp(d.get(), e.get()) != 0) { fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n"); return false; } return true; } static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !c || !d || !e) { return false; } if (!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery return false; } for (int i = 0; i < num2; i++) { if (!BN_rand(a.get(), 20 + i * 5, 0, 0) || !BN_rand(b.get(), 2 + i, 0, 0) || !BN_mod_exp_mont_consttime(d.get(), a.get(), b.get(), c.get(), ctx, NULL)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " ^ "); BN_print_fp(fp, b.get()); puts_fp(fp, " % "); BN_print_fp(fp, c.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); } if (!BN_exp(e.get(), a.get(), b.get(), ctx) || !BN_sub(e.get(), e.get(), d.get()) || !BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) { return false; } if (!BN_is_zero(b.get())) { fprintf(stderr, "Modulo exponentiation test failed!\n"); return false; } } return true; } // Test constant-time modular exponentiation with 1024-bit inputs, // which on x86_64 cause a different code branch to be taken. static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM p(BN_new()); ScopedBIGNUM m(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !p || !m || !d || !e || !BN_rand(m.get(), 1024, 0, 1) || // must be odd for montgomery !BN_rand(a.get(), 1024, 0, 0)) { return false; } // Zero exponent. BN_zero(p.get()); if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx, NULL)) { return false; } if (!BN_is_one(d.get())) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } if (!BN_rand(p.get(), 1024, 0, 0)) { return false; } // Zero input. BN_zero(a.get()); if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx, NULL)) { return false; } if (!BN_is_zero(d.get())) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } // Craft an input whose Montgomery representation is 1, i.e., shorter than the // modulus m, in order to test the const time precomputation // scattering/gathering. ScopedBN_MONT_CTX mont(BN_MONT_CTX_new()); if (!mont || !BN_one(a.get()) || !BN_MONT_CTX_set(mont.get(), m.get(), ctx) || !BN_from_montgomery(e.get(), a.get(), mont.get(), ctx) || !BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx, NULL) || !BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) { return false; } if (BN_cmp(a.get(), d.get()) != 0) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } // Finally, some regular test vectors. if (!BN_rand(e.get(), 1024, 0, 0) || !BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx, NULL) || !BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) { return false; } if (BN_cmp(a.get(), d.get()) != 0) { fprintf(stderr, "Modular exponentiation test failed!\n"); return false; } return true; } static bool test_exp(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM d(BN_new()); ScopedBIGNUM e(BN_new()); if (!a || !b || !d || !e) { return false; } for (int i = 0; i < num2; i++) { if (!BN_rand(a.get(), 20 + i * 5, 0, 0) || !BN_rand(b.get(), 2 + i, 0, 0) || !BN_exp(d.get(), a.get(), b.get(), ctx)) { return false; } if (fp != NULL) { BN_print_fp(fp, a.get()); puts_fp(fp, " ^ "); BN_print_fp(fp, b.get()); puts_fp(fp, " - "); BN_print_fp(fp, d.get()); puts_fp(fp, "\n"); } if (!BN_one(e.get())) { return false; } while (!BN_is_zero(b.get())) { if (!BN_mul(e.get(), e.get(), a.get(), ctx) || !BN_sub(b.get(), b.get(), BN_value_one())) { return false; } } if (!BN_sub(e.get(), e.get(), d.get())) { return false; } if (!BN_is_zero(e.get())) { fprintf(stderr, "Exponentiation test failed!\n"); return false; } } return true; } static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM p(BN_new()); ScopedBIGNUM r(BN_new()); if (!a || !p || !r) { return false; } for (int i = 0; i < 16; i++) { if (i < 8) { const unsigned kPrimes[8] = {2, 3, 5, 7, 11, 13, 17, 19}; if (!BN_set_word(p.get(), kPrimes[i])) { return false; } } else { if (!BN_set_word(a.get(), 32) || !BN_set_word(r.get(), 2 * i + 1) || !BN_generate_prime_ex(p.get(), 256, 0, a.get(), r.get(), nullptr)) { return false; } } p->neg = rand_neg(); for (int j = 0; j < num2; j++) { // construct 'a' such that it is a square modulo p, but in general not a // proper square and not reduced modulo p if (!BN_rand(r.get(), 256, 0, 3) || !BN_nnmod(r.get(), r.get(), p.get(), ctx) || !BN_mod_sqr(r.get(), r.get(), p.get(), ctx) || !BN_rand(a.get(), 256, 0, 3) || !BN_nnmod(a.get(), a.get(), p.get(), ctx) || !BN_mod_sqr(a.get(), a.get(), p.get(), ctx) || !BN_mul(a.get(), a.get(), r.get(), ctx)) { return false; } if (rand_neg() && !BN_sub(a.get(), a.get(), p.get())) { return false; } if (!BN_mod_sqrt(r.get(), a.get(), p.get(), ctx) || !BN_mod_sqr(r.get(), r.get(), p.get(), ctx) || !BN_nnmod(a.get(), a.get(), p.get(), ctx)) { return false; } if (BN_cmp(a.get(), r.get()) != 0) { fprintf(stderr, "BN_mod_sqrt failed: a = "); BN_print_fp(stderr, a.get()); fprintf(stderr, ", r = "); BN_print_fp(stderr, r.get()); fprintf(stderr, ", p = "); BN_print_fp(stderr, p.get()); fprintf(stderr, "\n"); return false; } } } return true; } static bool test_sqrt(FILE *fp, BN_CTX *ctx) { ScopedBIGNUM n(BN_new()); ScopedBIGNUM nn(BN_new()); ScopedBIGNUM sqrt(BN_new()); if (!n || !nn || !sqrt) { return false; } // Test some random squares. for (int i = 0; i < 100; i++) { if (!BN_rand(n.get(), 1024 /* bit length */, -1 /* no modification of top bits */, 0 /* don't modify bottom bit */) || !BN_mul(nn.get(), n.get(), n.get(), ctx) || !BN_sqrt(sqrt.get(), nn.get(), ctx)) { ERR_print_errors_fp(stderr); return false; } if (BN_cmp(n.get(), sqrt.get()) != 0) { fprintf(stderr, "Bad result from BN_sqrt.\n"); return false; } } // Test some non-squares. for (int i = 0; i < 100; i++) { if (!BN_rand(n.get(), 1024 /* bit length */, -1 /* no modification of top bits */, 0 /* don't modify bottom bit */) || !BN_mul(nn.get(), n.get(), n.get(), ctx) || !BN_add(nn.get(), nn.get(), BN_value_one())) { ERR_print_errors_fp(stderr); return false; } if (BN_sqrt(sqrt.get(), nn.get(), ctx)) { char *nn_str = BN_bn2dec(nn.get()); fprintf(stderr, "BIO_sqrt didn't fail on a non-square: %s\n", nn_str); OPENSSL_free(nn_str); } } return true; } static bool TestBN2BinPadded(BN_CTX *ctx) { uint8_t zeros[256], out[256], reference[128]; memset(zeros, 0, sizeof(zeros)); // Test edge case at 0. ScopedBIGNUM n(BN_new()); if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in an empty buffer.\n"); return false; } memset(out, -1, sizeof(out)); if (!BN_bn2bin_padded(out, sizeof(out), n.get())) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n"); return false; } if (memcmp(zeros, out, sizeof(out))) { fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n"); return false; } // Test a random numbers at various byte lengths. for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { if (!BN_rand(n.get(), bytes * 8, 0 /* make sure top bit is 1 */, 0 /* don't modify bottom bit */)) { ERR_print_errors_fp(stderr); return false; } if (BN_num_bytes(n.get()) != bytes || BN_bn2bin(n.get(), reference) != bytes) { fprintf(stderr, "Bad result from BN_rand; bytes.\n"); return false; } // Empty buffer should fail. if (BN_bn2bin_padded(NULL, 0, n.get())) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on empty buffer.\n"); return false; } // One byte short should fail. if (BN_bn2bin_padded(out, bytes - 1, n.get())) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n"); return false; } // Exactly right size should encode. if (!BN_bn2bin_padded(out, bytes, n.get()) || memcmp(out, reference, bytes) != 0) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } // Pad up one byte extra. if (!BN_bn2bin_padded(out, bytes + 1, n.get()) || memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } // Pad up to 256. if (!BN_bn2bin_padded(out, sizeof(out), n.get()) || memcmp(out + sizeof(out) - bytes, reference, bytes) || memcmp(out, zeros, sizeof(out) - bytes)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } } return true; } static int DecimalToBIGNUM(ScopedBIGNUM *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_dec2bn(&raw, in); out->reset(raw); return ret; } static bool TestDec2BN(BN_CTX *ctx) { ScopedBIGNUM bn; int ret = DecimalToBIGNUM(&bn, "0"); if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "256"); if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored"); if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } return true; } static bool TestHex2BN(BN_CTX *ctx) { ScopedBIGNUM bn; int ret = HexToBIGNUM(&bn, "0"); if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "256"); if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored"); if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } return true; } static ScopedBIGNUM ASCIIToBIGNUM(const char *in) { BIGNUM *raw = NULL; if (!BN_asc2bn(&raw, in)) { return nullptr; } return ScopedBIGNUM(raw); } static bool TestASC2BN(BN_CTX *ctx) { ScopedBIGNUM bn = ASCIIToBIGNUM("0"); if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("256"); if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-42"); if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("0x1234"); if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("0X1234"); if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-0xabcd"); if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-0"); if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("123trailing garbage is ignored"); if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } return true; } struct MPITest { const char *base10; const char *mpi; size_t mpi_len; }; static const MPITest kMPITests[] = { { "0", "\x00\x00\x00\x00", 4 }, { "1", "\x00\x00\x00\x01\x01", 5 }, { "-1", "\x00\x00\x00\x01\x81", 5 }, { "128", "\x00\x00\x00\x02\x00\x80", 6 }, { "256", "\x00\x00\x00\x02\x01\x00", 6 }, { "-256", "\x00\x00\x00\x02\x81\x00", 6 }, }; static bool TestMPI() { uint8_t scratch[8]; for (size_t i = 0; i < sizeof(kMPITests) / sizeof(kMPITests[0]); i++) { const MPITest &test = kMPITests[i]; ScopedBIGNUM bn(ASCIIToBIGNUM(test.base10)); const size_t mpi_len = BN_bn2mpi(bn.get(), NULL); if (mpi_len > sizeof(scratch)) { fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n", (unsigned)i); return false; } const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch); if (mpi_len != mpi_len2) { fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i); return false; } if (mpi_len != test.mpi_len || memcmp(test.mpi, scratch, mpi_len) != 0) { fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i); hexdump(stderr, "Expected: ", test.mpi, test.mpi_len); hexdump(stderr, "Got: ", scratch, mpi_len); return false; } ScopedBIGNUM bn2(BN_mpi2bn(scratch, mpi_len, NULL)); if (bn2.get() == nullptr) { fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i); return false; } } return true; } static bool TestRand() { ScopedBIGNUM bn(BN_new()); if (!bn) { return false; } // Test BN_rand accounts for degenerate cases with |top| and |bottom| // parameters. if (!BN_rand(bn.get(), 0, 0 /* top */, 0 /* bottom */) || !BN_is_zero(bn.get())) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 0, 1 /* top */, 1 /* bottom */) || !BN_is_zero(bn.get())) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, 0 /* top */, 0 /* bottom */) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, 1 /* top */, 0 /* bottom */) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, -1 /* top */, 1 /* bottom */) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 2, 1 /* top */, 0 /* bottom */) || !BN_is_word(bn.get(), 3)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } return true; } struct ASN1Test { const char *value_ascii; const char *der; size_t der_len; }; static const ASN1Test kASN1Tests[] = { {"0", "\x02\x01\x00", 3}, {"1", "\x02\x01\x01", 3}, {"127", "\x02\x01\x7f", 3}, {"128", "\x02\x02\x00\x80", 4}, {"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7}, {"0x0102030405060708", "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, {"0xffffffffffffffff", "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, }; struct ASN1InvalidTest { const char *der; size_t der_len; }; static const ASN1InvalidTest kASN1InvalidTests[] = { // Bad tag. {"\x03\x01\x00", 3}, // Empty contents. {"\x02\x00", 2}, }; // kASN1BuggyTests contains incorrect encodings and the corresponding, expected // results of |BN_parse_asn1_unsigned_buggy| given that input. static const ASN1Test kASN1BuggyTests[] = { // Negative numbers. {"128", "\x02\x01\x80", 3}, {"255", "\x02\x01\xff", 3}, // Unnecessary leading zeros. {"1", "\x02\x02\x00\x01", 4}, }; static bool TestASN1() { for (const ASN1Test &test : kASN1Tests) { ScopedBIGNUM bn = ASCIIToBIGNUM(test.value_ascii); if (!bn) { return false; } // Test that the input is correctly parsed. ScopedBIGNUM bn2(BN_new()); if (!bn2) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "Bad parse.\n"); return false; } // Test the value serializes correctly. CBB cbb; uint8_t *der; size_t der_len; CBB_zero(&cbb); if (!CBB_init(&cbb, 0) || !BN_marshal_asn1(&cbb, bn.get()) || !CBB_finish(&cbb, &der, &der_len)) { CBB_cleanup(&cbb); return false; } ScopedOpenSSLBytes delete_der(der); if (der_len != test.der_len || memcmp(der, reinterpret_cast(test.der), der_len) != 0) { fprintf(stderr, "Bad serialization.\n"); return false; } // |BN_parse_asn1_unsigned_buggy| parses all valid input. CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "Bad parse.\n"); return false; } } for (const ASN1InvalidTest &test : kASN1InvalidTests) { ScopedBIGNUM bn(BN_new()); if (!bn) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); // All tests in kASN1InvalidTests are also rejected by // |BN_parse_asn1_unsigned_buggy|. CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); } for (const ASN1Test &test : kASN1BuggyTests) { // These broken encodings are rejected by |BN_parse_asn1_unsigned|. ScopedBIGNUM bn(BN_new()); if (!bn) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); // However |BN_parse_asn1_unsigned_buggy| accepts them. ScopedBIGNUM bn2 = ASCIIToBIGNUM(test.value_ascii); if (!bn2) { return false; } CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "\"Bad\" parse.\n"); return false; } } // Serializing negative numbers is not supported. ScopedBIGNUM bn = ASCIIToBIGNUM("-1"); if (!bn) { return false; } CBB cbb; CBB_zero(&cbb); if (!CBB_init(&cbb, 0) || BN_marshal_asn1(&cbb, bn.get())) { fprintf(stderr, "Serialized negative number.\n"); CBB_cleanup(&cbb); return false; } ERR_clear_error(); CBB_cleanup(&cbb); return true; } static bool TestNegativeZero(BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM c(BN_new()); ScopedBIGNUM d(BN_new()); if (!a || !b || !c || !d) { return false; } // Test that BN_mul never gives negative zero. if (!BN_set_word(a.get(), 1)) { return false; } BN_set_negative(a.get(), 1); BN_zero(b.get()); if (!BN_mul(c.get(), a.get(), b.get(), ctx)) { return false; } if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) { fprintf(stderr, "Multiplication test failed!\n"); return false; } // Test that BN_div never gives negative zero in the quotient. if (!BN_set_word(a.get(), 1) || !BN_set_word(b.get(), 2)) { return false; } BN_set_negative(a.get(), 1); if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) { return false; } if (!BN_is_zero(d.get()) || BN_is_negative(d.get())) { fprintf(stderr, "Division test failed!\n"); return false; } // Test that BN_div never gives negative zero in the remainder. if (!BN_set_word(b.get(), 1)) { return false; } if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) { return false; } if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) { fprintf(stderr, "Division test failed!\n"); return false; } return true; } static bool TestBadModulus(BN_CTX *ctx) { ScopedBIGNUM a(BN_new()); ScopedBIGNUM b(BN_new()); ScopedBIGNUM zero(BN_new()); ScopedBN_MONT_CTX mont(BN_MONT_CTX_new()); if (!a || !b || !zero || !mont) { return false; } BN_zero(zero.get()); if (BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx)) { fprintf(stderr, "Division by zero succeeded!\n"); return false; } ERR_clear_error(); if (BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) { fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n"); return false; } ERR_clear_error(); if (BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) { fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n"); return 0; } ERR_clear_error(); if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont with zero modulus succeeded!\n"); return 0; } ERR_clear_error(); if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx, nullptr)) { fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus succeeded!\n"); return 0; } ERR_clear_error(); if (BN_MONT_CTX_set(mont.get(), zero.get(), ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n"); return false; } ERR_clear_error(); // Some operations also may not be used with an even modulus. if (!BN_set_word(b.get(), 16)) { return false; } if (BN_MONT_CTX_set(mont.get(), b.get(), ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n"); return false; } ERR_clear_error(); if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont with even modulus succeeded!\n"); return 0; } ERR_clear_error(); if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx, nullptr)) { fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus succeeded!\n"); return 0; } ERR_clear_error(); return true; } // TestExpModZero tests that 1**0 mod 1 == 0. static bool TestExpModZero() { ScopedBIGNUM zero(BN_new()), a(BN_new()), r(BN_new()); if (!zero || !a || !r || !BN_rand(a.get(), 1024, 0, 0)) { return false; } BN_zero(zero.get()); if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get())) { return false; } return true; } static bool TestSmallPrime(BN_CTX *ctx) { static const unsigned kBits = 10; ScopedBIGNUM r(BN_new()); if (!r || !BN_generate_prime_ex(r.get(), static_cast(kBits), 0, NULL, NULL, NULL)) { return false; } if (BN_num_bits(r.get()) != kBits) { fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits, BN_num_bits(r.get())); return false; } return true; }