/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] * * The DSS routines are based on patches supplied by * Steven Schoch . */ #ifndef OPENSSL_HEADER_DSA_H #define OPENSSL_HEADER_DSA_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif // DSA contains functions for signing and verifying with the Digital Signature // Algorithm. // Allocation and destruction. // DSA_new returns a new, empty DSA object or NULL on error. OPENSSL_EXPORT DSA *DSA_new(void); // DSA_free decrements the reference count of |dsa| and frees it if the // reference count drops to zero. OPENSSL_EXPORT void DSA_free(DSA *dsa); // DSA_up_ref increments the reference count of |dsa| and returns one. OPENSSL_EXPORT int DSA_up_ref(DSA *dsa); // Properties. // DSA_get0_key sets |*out_pub_key| and |*out_priv_key|, if non-NULL, to |dsa|'s // public and private key, respectively. If |dsa| is a public key, the private // key will be set to NULL. OPENSSL_EXPORT void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key, const BIGNUM **out_priv_key); // DSA_get0_pqg sets |*out_p|, |*out_q|, and |*out_g|, if non-NULL, to |dsa|'s // p, q, and g parameters, respectively. OPENSSL_EXPORT void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q, const BIGNUM **out_g); // DSA_set0_key sets |dsa|'s public and private key to |pub_key| and |priv_key|, // respectively, if non-NULL. On success, it takes ownership of each argument // and returns one. Otherwise, it returns zero. // // |priv_key| may be NULL, but |pub_key| must either be non-NULL or already // configured on |dsa|. OPENSSL_EXPORT int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key); // DSA_set0_pqg sets |dsa|'s parameters to |p|, |q|, and |g|, if non-NULL, and // takes ownership of them. On success, it takes ownership of each argument and // returns one. Otherwise, it returns zero. // // Each argument must either be non-NULL or already configured on |dsa|. OPENSSL_EXPORT int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g); // Parameter generation. // DSA_generate_parameters_ex generates a set of DSA parameters by following // the procedure given in FIPS 186-4, appendix A. // (http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf) // // The larger prime will have a length of |bits| (e.g. 2048). The |seed| value // allows others to generate and verify the same parameters and should be // random input which is kept for reference. If |out_counter| or |out_h| are // not NULL then the counter and h value used in the generation are written to // them. // // The |cb| argument is passed to |BN_generate_prime_ex| and is thus called // during the generation process in order to indicate progress. See the // comments for that function for details. In addition to the calls made by // |BN_generate_prime_ex|, |DSA_generate_parameters_ex| will call it with // |event| equal to 2 and 3 at different stages of the process. // // It returns one on success and zero otherwise. OPENSSL_EXPORT int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed, size_t seed_len, int *out_counter, unsigned long *out_h, BN_GENCB *cb); // DSAparams_dup returns a freshly allocated |DSA| that contains a copy of the // parameters from |dsa|. It returns NULL on error. OPENSSL_EXPORT DSA *DSAparams_dup(const DSA *dsa); // Key generation. // DSA_generate_key generates a public/private key pair in |dsa|, which must // already have parameters setup. It returns one on success and zero on // error. OPENSSL_EXPORT int DSA_generate_key(DSA *dsa); // Signatures. // DSA_SIG_st (aka |DSA_SIG|) contains a DSA signature as a pair of integers. struct DSA_SIG_st { BIGNUM *r, *s; }; // DSA_SIG_new returns a freshly allocated, DIG_SIG structure or NULL on error. // Both |r| and |s| in the signature will be NULL. OPENSSL_EXPORT DSA_SIG *DSA_SIG_new(void); // DSA_SIG_free frees the contents of |sig| and then frees |sig| itself. OPENSSL_EXPORT void DSA_SIG_free(DSA_SIG *sig); // DSA_do_sign returns a signature of the hash in |digest| by the key in |dsa| // and returns an allocated, DSA_SIG structure, or NULL on error. OPENSSL_EXPORT DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, DSA *dsa); // DSA_do_verify verifies that |sig| is a valid signature, by the public key in // |dsa|, of the hash in |digest|. It returns one if so, zero if invalid and -1 // on error. // // WARNING: do not use. This function returns -1 for error, 0 for invalid and 1 // for valid. However, this is dangerously different to the usual OpenSSL // convention and could be a disaster if a user did |if (DSA_do_verify(...))|. // Because of this, |DSA_check_signature| is a safer version of this. // // TODO(fork): deprecate. OPENSSL_EXPORT int DSA_do_verify(const uint8_t *digest, size_t digest_len, DSA_SIG *sig, const DSA *dsa); // DSA_do_check_signature sets |*out_valid| to zero. Then it verifies that |sig| // is a valid signature, by the public key in |dsa| of the hash in |digest| // and, if so, it sets |*out_valid| to one. // // It returns one if it was able to verify the signature as valid or invalid, // and zero on error. OPENSSL_EXPORT int DSA_do_check_signature(int *out_valid, const uint8_t *digest, size_t digest_len, DSA_SIG *sig, const DSA *dsa); // ASN.1 signatures. // // These functions also perform DSA signature operations, but deal with ASN.1 // encoded signatures as opposed to raw |BIGNUM|s. If you don't know what // encoding a DSA signature is in, it's probably ASN.1. // DSA_sign signs |digest| with the key in |dsa| and writes the resulting // signature, in ASN.1 form, to |out_sig| and the length of the signature to // |*out_siglen|. There must be, at least, |DSA_size(dsa)| bytes of space in // |out_sig|. It returns one on success and zero otherwise. // // (The |type| argument is ignored.) OPENSSL_EXPORT int DSA_sign(int type, const uint8_t *digest, size_t digest_len, uint8_t *out_sig, unsigned int *out_siglen, DSA *dsa); // DSA_verify verifies that |sig| is a valid, ASN.1 signature, by the public // key in |dsa|, of the hash in |digest|. It returns one if so, zero if invalid // and -1 on error. // // (The |type| argument is ignored.) // // WARNING: do not use. This function returns -1 for error, 0 for invalid and 1 // for valid. However, this is dangerously different to the usual OpenSSL // convention and could be a disaster if a user did |if (DSA_do_verify(...))|. // Because of this, |DSA_check_signature| is a safer version of this. // // TODO(fork): deprecate. OPENSSL_EXPORT int DSA_verify(int type, const uint8_t *digest, size_t digest_len, const uint8_t *sig, size_t sig_len, const DSA *dsa); // DSA_check_signature sets |*out_valid| to zero. Then it verifies that |sig| // is a valid, ASN.1 signature, by the public key in |dsa|, of the hash in // |digest|. If so, it sets |*out_valid| to one. // // It returns one if it was able to verify the signature as valid or invalid, // and zero on error. OPENSSL_EXPORT int DSA_check_signature(int *out_valid, const uint8_t *digest, size_t digest_len, const uint8_t *sig, size_t sig_len, const DSA *dsa); // DSA_size returns the size, in bytes, of an ASN.1 encoded, DSA signature // generated by |dsa|. Parameters must already have been setup in |dsa|. OPENSSL_EXPORT int DSA_size(const DSA *dsa); // ASN.1 encoding. // DSA_SIG_parse parses a DER-encoded DSA-Sig-Value structure from |cbs| and // advances |cbs|. It returns a newly-allocated |DSA_SIG| or NULL on error. OPENSSL_EXPORT DSA_SIG *DSA_SIG_parse(CBS *cbs); // DSA_SIG_marshal marshals |sig| as a DER-encoded DSA-Sig-Value and appends the // result to |cbb|. It returns one on success and zero on error. OPENSSL_EXPORT int DSA_SIG_marshal(CBB *cbb, const DSA_SIG *sig); // DSA_parse_public_key parses a DER-encoded DSA public key from |cbs| and // advances |cbs|. It returns a newly-allocated |DSA| or NULL on error. OPENSSL_EXPORT DSA *DSA_parse_public_key(CBS *cbs); // DSA_marshal_public_key marshals |dsa| as a DER-encoded DSA public key and // appends the result to |cbb|. It returns one on success and zero on // failure. OPENSSL_EXPORT int DSA_marshal_public_key(CBB *cbb, const DSA *dsa); // DSA_parse_private_key parses a DER-encoded DSA private key from |cbs| and // advances |cbs|. It returns a newly-allocated |DSA| or NULL on error. OPENSSL_EXPORT DSA *DSA_parse_private_key(CBS *cbs); // DSA_marshal_private_key marshals |dsa| as a DER-encoded DSA private key and // appends the result to |cbb|. It returns one on success and zero on // failure. OPENSSL_EXPORT int DSA_marshal_private_key(CBB *cbb, const DSA *dsa); // DSA_parse_parameters parses a DER-encoded Dss-Parms structure (RFC 3279) // from |cbs| and advances |cbs|. It returns a newly-allocated |DSA| or NULL on // error. OPENSSL_EXPORT DSA *DSA_parse_parameters(CBS *cbs); // DSA_marshal_parameters marshals |dsa| as a DER-encoded Dss-Parms structure // (RFC 3447) and appends the result to |cbb|. It returns one on success and // zero on failure. OPENSSL_EXPORT int DSA_marshal_parameters(CBB *cbb, const DSA *dsa); // Precomputation. // DSA_sign_setup precomputes the message independent part of the DSA signature // and writes them to |*out_kinv| and |*out_r|. Returns one on success, zero on // error. // // TODO(fork): decide what to do with this. Since making DSA* opaque there's no // way for the user to install them. Also, it forces the DSA* not to be const // when passing to the signing function. OPENSSL_EXPORT int DSA_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv, BIGNUM **out_r); // Conversion. // DSA_dup_DH returns a |DH| constructed from the parameters of |dsa|. This is // sometimes needed when Diffie-Hellman parameters are stored in the form of // DSA parameters. It returns an allocated |DH| on success or NULL on error. OPENSSL_EXPORT DH *DSA_dup_DH(const DSA *dsa); // ex_data functions. // // See |ex_data.h| for details. OPENSSL_EXPORT int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func); OPENSSL_EXPORT int DSA_set_ex_data(DSA *dsa, int idx, void *arg); OPENSSL_EXPORT void *DSA_get_ex_data(const DSA *dsa, int idx); // Deprecated functions. // d2i_DSA_SIG parses an ASN.1, DER-encoded, DSA signature from |len| bytes at // |*inp|. If |out_sig| is not NULL then, on exit, a pointer to the result is // in |*out_sig|. Note that, even if |*out_sig| is already non-NULL on entry, it // will not be written to. Rather, a fresh |DSA_SIG| is allocated and the // previous one is freed. On successful exit, |*inp| is advanced past the DER // structure. It returns the result or NULL on error. // // Use |DSA_SIG_parse| instead. OPENSSL_EXPORT DSA_SIG *d2i_DSA_SIG(DSA_SIG **out_sig, const uint8_t **inp, long len); // i2d_DSA_SIG marshals |in| to an ASN.1, DER structure. If |outp| is not NULL // then the result is written to |*outp| and |*outp| is advanced just past the // output. It returns the number of bytes in the result, whether written or not, // or a negative value on error. // // Use |DSA_SIG_marshal| instead. OPENSSL_EXPORT int i2d_DSA_SIG(const DSA_SIG *in, uint8_t **outp); // d2i_DSAPublicKey parses an ASN.1, DER-encoded, DSA public key from |len| // bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result // is in |*out|. Note that, even if |*ou| is already non-NULL on entry, it will // not be written to. Rather, a fresh |DSA| is allocated and the previous one is // freed. On successful exit, |*inp| is advanced past the DER structure. It // returns the result or NULL on error. // // Use |DSA_parse_public_key| instead. OPENSSL_EXPORT DSA *d2i_DSAPublicKey(DSA **out, const uint8_t **inp, long len); // i2d_DSAPublicKey marshals a public key from |in| to an ASN.1, DER structure. // If |outp| is not NULL then the result is written to |*outp| and |*outp| is // advanced just past the output. It returns the number of bytes in the result, // whether written or not, or a negative value on error. // // Use |DSA_marshal_public_key| instead. OPENSSL_EXPORT int i2d_DSAPublicKey(const DSA *in, uint8_t **outp); // d2i_DSAPrivateKey parses an ASN.1, DER-encoded, DSA private key from |len| // bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result // is in |*out|. Note that, even if |*out| is already non-NULL on entry, it will // not be written to. Rather, a fresh |DSA| is allocated and the previous one is // freed. On successful exit, |*inp| is advanced past the DER structure. It // returns the result or NULL on error. // // Use |DSA_parse_private_key| instead. OPENSSL_EXPORT DSA *d2i_DSAPrivateKey(DSA **out, const uint8_t **inp, long len); // i2d_DSAPrivateKey marshals a private key from |in| to an ASN.1, DER // structure. If |outp| is not NULL then the result is written to |*outp| and // |*outp| is advanced just past the output. It returns the number of bytes in // the result, whether written or not, or a negative value on error. // // Use |DSA_marshal_private_key| instead. OPENSSL_EXPORT int i2d_DSAPrivateKey(const DSA *in, uint8_t **outp); // d2i_DSAparams parses ASN.1, DER-encoded, DSA parameters from |len| bytes at // |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in // |*out|. Note that, even if |*out| is already non-NULL on entry, it will not // be written to. Rather, a fresh |DSA| is allocated and the previous one is // freed. On successful exit, |*inp| is advanced past the DER structure. It // returns the result or NULL on error. // // Use |DSA_parse_parameters| instead. OPENSSL_EXPORT DSA *d2i_DSAparams(DSA **out, const uint8_t **inp, long len); // i2d_DSAparams marshals DSA parameters from |in| to an ASN.1, DER structure. // If |outp| is not NULL then the result is written to |*outp| and |*outp| is // advanced just past the output. It returns the number of bytes in the result, // whether written or not, or a negative value on error. // // Use |DSA_marshal_parameters| instead. OPENSSL_EXPORT int i2d_DSAparams(const DSA *in, uint8_t **outp); // DSA_generate_parameters is a deprecated version of // |DSA_generate_parameters_ex| that creates and returns a |DSA*|. Don't use // it. OPENSSL_EXPORT DSA *DSA_generate_parameters(int bits, unsigned char *seed, int seed_len, int *counter_ret, unsigned long *h_ret, void (*callback)(int, int, void *), void *cb_arg); struct dsa_st { long version; BIGNUM *p; BIGNUM *q; // == 20 BIGNUM *g; BIGNUM *pub_key; // y public key BIGNUM *priv_key; // x private key BIGNUM *kinv; // Signing pre-calc BIGNUM *r; // Signing pre-calc int flags; // Normally used to cache montgomery values CRYPTO_MUTEX method_mont_lock; BN_MONT_CTX *method_mont_p; BN_MONT_CTX *method_mont_q; CRYPTO_refcount_t references; CRYPTO_EX_DATA ex_data; }; #if defined(__cplusplus) } // extern C extern "C++" { namespace bssl { BORINGSSL_MAKE_DELETER(DSA, DSA_free) BORINGSSL_MAKE_DELETER(DSA_SIG, DSA_SIG_free) } // namespace bssl } // extern C++ #endif #define DSA_R_BAD_Q_VALUE 100 #define DSA_R_MISSING_PARAMETERS 101 #define DSA_R_MODULUS_TOO_LARGE 102 #define DSA_R_NEED_NEW_SETUP_VALUES 103 #define DSA_R_BAD_VERSION 104 #define DSA_R_DECODE_ERROR 105 #define DSA_R_ENCODE_ERROR 106 #endif // OPENSSL_HEADER_DSA_H