/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../crypto/internal.h" #include "internal.h" namespace bssl { SSL_HANDSHAKE::SSL_HANDSHAKE(SSL *ssl_arg) : ssl(ssl_arg), scts_requested(0), needs_psk_binder(0), received_hello_retry_request(0), accept_psk_mode(0), cert_request(0), certificate_status_expected(0), ocsp_stapling_requested(0), should_ack_sni(0), in_false_start(0), in_early_data(0), early_data_offered(0), can_early_read(0), can_early_write(0), next_proto_neg_seen(0), ticket_expected(0), extended_master_secret(0), pending_private_key_op(0) { } SSL_HANDSHAKE::~SSL_HANDSHAKE() { OPENSSL_cleanse(secret, sizeof(secret)); OPENSSL_cleanse(early_traffic_secret, sizeof(early_traffic_secret)); OPENSSL_cleanse(client_handshake_secret, sizeof(client_handshake_secret)); OPENSSL_cleanse(server_handshake_secret, sizeof(server_handshake_secret)); OPENSSL_cleanse(client_traffic_secret_0, sizeof(client_traffic_secret_0)); OPENSSL_cleanse(server_traffic_secret_0, sizeof(server_traffic_secret_0)); OPENSSL_free(cookie); OPENSSL_free(key_share_bytes); OPENSSL_free(ecdh_public_key); OPENSSL_free(peer_sigalgs); OPENSSL_free(peer_supported_group_list); OPENSSL_free(peer_key); OPENSSL_free(server_params); ssl->ctx->x509_method->hs_flush_cached_ca_names(this); OPENSSL_free(certificate_types); if (key_block != NULL) { OPENSSL_cleanse(key_block, key_block_len); OPENSSL_free(key_block); } } SSL_HANDSHAKE *ssl_handshake_new(SSL *ssl) { UniquePtr hs = MakeUnique(ssl); if (!hs || !hs->transcript.Init()) { return nullptr; } return hs.release(); } void ssl_handshake_free(SSL_HANDSHAKE *hs) { Delete(hs); } int ssl_check_message_type(SSL *ssl, int type) { if (ssl->s3->tmp.message_type != type) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); ERR_add_error_dataf("got type %d, wanted type %d", ssl->s3->tmp.message_type, type); return 0; } return 1; } static int add_record_to_flight(SSL *ssl, uint8_t type, const uint8_t *in, size_t in_len) { /* We'll never add a flight while in the process of writing it out. */ assert(ssl->s3->pending_flight_offset == 0); if (ssl->s3->pending_flight == NULL) { ssl->s3->pending_flight = BUF_MEM_new(); if (ssl->s3->pending_flight == NULL) { return 0; } } size_t max_out = in_len + SSL_max_seal_overhead(ssl); size_t new_cap = ssl->s3->pending_flight->length + max_out; if (max_out < in_len || new_cap < max_out) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } size_t len; if (!BUF_MEM_reserve(ssl->s3->pending_flight, new_cap) || !tls_seal_record(ssl, (uint8_t *)ssl->s3->pending_flight->data + ssl->s3->pending_flight->length, &len, max_out, type, in, in_len)) { return 0; } ssl->s3->pending_flight->length += len; return 1; } int ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { /* Pick a modest size hint to save most of the |realloc| calls. */ if (!CBB_init(cbb, 64) || !CBB_add_u8(cbb, type) || !CBB_add_u24_length_prefixed(cbb, body)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); CBB_cleanup(cbb); return 0; } return 1; } int ssl3_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg, size_t *out_len) { if (!CBB_finish(cbb, out_msg, out_len)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } return 1; } int ssl3_add_message(SSL *ssl, uint8_t *msg, size_t len) { /* Add the message to the current flight, splitting into several records if * needed. */ int ret = 0; size_t added = 0; do { size_t todo = len - added; if (todo > ssl->max_send_fragment) { todo = ssl->max_send_fragment; } uint8_t type = SSL3_RT_HANDSHAKE; if (ssl->server && ssl->s3->have_version && ssl->version == TLS1_3_RECORD_TYPE_EXPERIMENT_VERSION && ssl->s3->aead_write_ctx->is_null_cipher()) { type = SSL3_RT_PLAINTEXT_HANDSHAKE; } if (!add_record_to_flight(ssl, type, msg + added, todo)) { goto err; } added += todo; } while (added < len); ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, msg, len); /* TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript on * hs. */ if (ssl->s3->hs != NULL && !ssl->s3->hs->transcript.Update(msg, len)) { goto err; } ret = 1; err: OPENSSL_free(msg); return ret; } int ssl3_add_change_cipher_spec(SSL *ssl) { static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; if (!add_record_to_flight(ssl, SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, sizeof(kChangeCipherSpec))) { return 0; } ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, sizeof(kChangeCipherSpec)); return 1; } int ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc) { uint8_t alert[2] = {level, desc}; if (!add_record_to_flight(ssl, SSL3_RT_ALERT, alert, sizeof(alert))) { return 0; } ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_ALERT, alert, sizeof(alert)); ssl_do_info_callback(ssl, SSL_CB_WRITE_ALERT, ((int)level << 8) | desc); return 1; } int ssl_add_message_cbb(SSL *ssl, CBB *cbb) { uint8_t *msg; size_t len; if (!ssl->method->finish_message(ssl, cbb, &msg, &len) || !ssl->method->add_message(ssl, msg, len)) { return 0; } return 1; } int ssl3_flush_flight(SSL *ssl) { if (ssl->s3->pending_flight == NULL) { return 1; } if (ssl->s3->pending_flight->length > 0xffffffff || ssl->s3->pending_flight->length > INT_MAX) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } /* If there is pending data in the write buffer, it must be flushed out before * any new data in pending_flight. */ if (ssl_write_buffer_is_pending(ssl)) { int ret = ssl_write_buffer_flush(ssl); if (ret <= 0) { ssl->rwstate = SSL_WRITING; return ret; } } /* Write the pending flight. */ while (ssl->s3->pending_flight_offset < ssl->s3->pending_flight->length) { int ret = BIO_write( ssl->wbio, ssl->s3->pending_flight->data + ssl->s3->pending_flight_offset, ssl->s3->pending_flight->length - ssl->s3->pending_flight_offset); if (ret <= 0) { ssl->rwstate = SSL_WRITING; return ret; } ssl->s3->pending_flight_offset += ret; } if (BIO_flush(ssl->wbio) <= 0) { ssl->rwstate = SSL_WRITING; return -1; } BUF_MEM_free(ssl->s3->pending_flight); ssl->s3->pending_flight = NULL; ssl->s3->pending_flight_offset = 0; return 1; } int ssl3_send_finished(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; const SSL_SESSION *session = SSL_get_session(ssl); uint8_t finished[EVP_MAX_MD_SIZE]; size_t finished_len; if (!hs->transcript.GetFinishedMAC(finished, &finished_len, session, ssl->server, ssl3_protocol_version(ssl))) { return 0; } /* Log the master secret, if logging is enabled. */ if (!ssl_log_secret(ssl, "CLIENT_RANDOM", session->master_key, session->master_key_length)) { return 0; } /* Copy the Finished so we can use it for renegotiation checks. */ if (ssl->version != SSL3_VERSION) { if (finished_len > sizeof(ssl->s3->previous_client_finished) || finished_len > sizeof(ssl->s3->previous_server_finished)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } if (ssl->server) { OPENSSL_memcpy(ssl->s3->previous_server_finished, finished, finished_len); ssl->s3->previous_server_finished_len = finished_len; } else { OPENSSL_memcpy(ssl->s3->previous_client_finished, finished, finished_len); ssl->s3->previous_client_finished_len = finished_len; } } ScopedCBB cbb; CBB body; if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_FINISHED) || !CBB_add_bytes(&body, finished, finished_len) || !ssl_add_message_cbb(ssl, cbb.get())) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } return 1; } int ssl3_get_finished(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; int ret = ssl->method->ssl_get_message(ssl); if (ret <= 0) { return ret; } if (!ssl_check_message_type(ssl, SSL3_MT_FINISHED)) { return -1; } /* Snapshot the finished hash before incorporating the new message. */ uint8_t finished[EVP_MAX_MD_SIZE]; size_t finished_len; if (!hs->transcript.GetFinishedMAC(finished, &finished_len, SSL_get_session(ssl), !ssl->server, ssl3_protocol_version(ssl)) || !ssl_hash_current_message(hs)) { return -1; } int finished_ok = ssl->init_num == finished_len && CRYPTO_memcmp(ssl->init_msg, finished, finished_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) finished_ok = 1; #endif if (!finished_ok) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); return -1; } /* Copy the Finished so we can use it for renegotiation checks. */ if (ssl->version != SSL3_VERSION) { if (finished_len > sizeof(ssl->s3->previous_client_finished) || finished_len > sizeof(ssl->s3->previous_server_finished)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } if (ssl->server) { OPENSSL_memcpy(ssl->s3->previous_client_finished, finished, finished_len); ssl->s3->previous_client_finished_len = finished_len; } else { OPENSSL_memcpy(ssl->s3->previous_server_finished, finished, finished_len); ssl->s3->previous_server_finished_len = finished_len; } } return 1; } int ssl3_output_cert_chain(SSL *ssl) { ScopedCBB cbb; CBB body; if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CERTIFICATE) || !ssl_add_cert_chain(ssl, &body) || !ssl_add_message_cbb(ssl, cbb.get())) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } return 1; } size_t ssl_max_handshake_message_len(const SSL *ssl) { /* kMaxMessageLen is the default maximum message size for handshakes which do * not accept peer certificate chains. */ static const size_t kMaxMessageLen = 16384; if (SSL_in_init(ssl)) { if ((!ssl->server || (ssl->verify_mode & SSL_VERIFY_PEER)) && kMaxMessageLen < ssl->max_cert_list) { return ssl->max_cert_list; } return kMaxMessageLen; } if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) { /* In TLS 1.2 and below, the largest acceptable post-handshake message is * a HelloRequest. */ return 0; } if (ssl->server) { /* The largest acceptable post-handshake message for a server is a * KeyUpdate. We will never initiate post-handshake auth. */ return 1; } /* Clients must accept NewSessionTicket and CertificateRequest, so allow the * default size. */ return kMaxMessageLen; } static int extend_handshake_buffer(SSL *ssl, size_t length) { if (!BUF_MEM_reserve(ssl->init_buf, length)) { return -1; } while (ssl->init_buf->length < length) { int ret = ssl3_read_handshake_bytes( ssl, (uint8_t *)ssl->init_buf->data + ssl->init_buf->length, length - ssl->init_buf->length); if (ret <= 0) { return ret; } ssl->init_buf->length += (size_t)ret; } return 1; } static int read_v2_client_hello(SSL *ssl) { /* Read the first 5 bytes, the size of the TLS record header. This is * sufficient to detect a V2ClientHello and ensures that we never read beyond * the first record. */ int ret = ssl_read_buffer_extend_to(ssl, SSL3_RT_HEADER_LENGTH); if (ret <= 0) { return ret; } const uint8_t *p = ssl_read_buffer(ssl); /* Some dedicated error codes for protocol mixups should the application wish * to interpret them differently. (These do not overlap with ClientHello or * V2ClientHello.) */ if (strncmp("GET ", (const char *)p, 4) == 0 || strncmp("POST ", (const char *)p, 5) == 0 || strncmp("HEAD ", (const char *)p, 5) == 0 || strncmp("PUT ", (const char *)p, 4) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_HTTP_REQUEST); return -1; } if (strncmp("CONNE", (const char *)p, 5) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_HTTPS_PROXY_REQUEST); return -1; } if ((p[0] & 0x80) == 0 || p[2] != SSL2_MT_CLIENT_HELLO || p[3] != SSL3_VERSION_MAJOR) { /* Not a V2ClientHello. */ return 1; } /* Determine the length of the V2ClientHello. */ size_t msg_length = ((p[0] & 0x7f) << 8) | p[1]; if (msg_length > (1024 * 4)) { OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); return -1; } if (msg_length < SSL3_RT_HEADER_LENGTH - 2) { /* Reject lengths that are too short early. We have already read * |SSL3_RT_HEADER_LENGTH| bytes, so we should not attempt to process an * (invalid) V2ClientHello which would be shorter than that. */ OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_LENGTH_MISMATCH); return -1; } /* Read the remainder of the V2ClientHello. */ ret = ssl_read_buffer_extend_to(ssl, 2 + msg_length); if (ret <= 0) { return ret; } CBS v2_client_hello; CBS_init(&v2_client_hello, ssl_read_buffer(ssl) + 2, msg_length); /* The V2ClientHello without the length is incorporated into the handshake * hash. This is only ever called at the start of the handshake, so hs is * guaranteed to be non-NULL. */ if (!ssl->s3->hs->transcript.Update(CBS_data(&v2_client_hello), CBS_len(&v2_client_hello))) { return -1; } ssl_do_msg_callback(ssl, 0 /* read */, 0 /* V2ClientHello */, CBS_data(&v2_client_hello), CBS_len(&v2_client_hello)); uint8_t msg_type; uint16_t version, cipher_spec_length, session_id_length, challenge_length; CBS cipher_specs, session_id, challenge; if (!CBS_get_u8(&v2_client_hello, &msg_type) || !CBS_get_u16(&v2_client_hello, &version) || !CBS_get_u16(&v2_client_hello, &cipher_spec_length) || !CBS_get_u16(&v2_client_hello, &session_id_length) || !CBS_get_u16(&v2_client_hello, &challenge_length) || !CBS_get_bytes(&v2_client_hello, &cipher_specs, cipher_spec_length) || !CBS_get_bytes(&v2_client_hello, &session_id, session_id_length) || !CBS_get_bytes(&v2_client_hello, &challenge, challenge_length) || CBS_len(&v2_client_hello) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return -1; } /* msg_type has already been checked. */ assert(msg_type == SSL2_MT_CLIENT_HELLO); /* The client_random is the V2ClientHello challenge. Truncate or * left-pad with zeros as needed. */ size_t rand_len = CBS_len(&challenge); if (rand_len > SSL3_RANDOM_SIZE) { rand_len = SSL3_RANDOM_SIZE; } uint8_t random[SSL3_RANDOM_SIZE]; OPENSSL_memset(random, 0, SSL3_RANDOM_SIZE); OPENSSL_memcpy(random + (SSL3_RANDOM_SIZE - rand_len), CBS_data(&challenge), rand_len); /* Write out an equivalent SSLv3 ClientHello. */ size_t max_v3_client_hello = SSL3_HM_HEADER_LENGTH + 2 /* version */ + SSL3_RANDOM_SIZE + 1 /* session ID length */ + 2 /* cipher list length */ + CBS_len(&cipher_specs) / 3 * 2 + 1 /* compression length */ + 1 /* compression */; ScopedCBB client_hello; CBB hello_body, cipher_suites; if (!BUF_MEM_reserve(ssl->init_buf, max_v3_client_hello) || !CBB_init_fixed(client_hello.get(), (uint8_t *)ssl->init_buf->data, ssl->init_buf->max) || !CBB_add_u8(client_hello.get(), SSL3_MT_CLIENT_HELLO) || !CBB_add_u24_length_prefixed(client_hello.get(), &hello_body) || !CBB_add_u16(&hello_body, version) || !CBB_add_bytes(&hello_body, random, SSL3_RANDOM_SIZE) || /* No session id. */ !CBB_add_u8(&hello_body, 0) || !CBB_add_u16_length_prefixed(&hello_body, &cipher_suites)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return -1; } /* Copy the cipher suites. */ while (CBS_len(&cipher_specs) > 0) { uint32_t cipher_spec; if (!CBS_get_u24(&cipher_specs, &cipher_spec)) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return -1; } /* Skip SSLv2 ciphers. */ if ((cipher_spec & 0xff0000) != 0) { continue; } if (!CBB_add_u16(&cipher_suites, cipher_spec)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } } /* Add the null compression scheme and finish. */ if (!CBB_add_u8(&hello_body, 1) || !CBB_add_u8(&hello_body, 0) || !CBB_finish(client_hello.get(), NULL, &ssl->init_buf->length)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return -1; } /* Consume and discard the V2ClientHello. */ ssl_read_buffer_consume(ssl, 2 + msg_length); ssl_read_buffer_discard(ssl); ssl->s3->is_v2_hello = 1; return 1; } int ssl3_get_message(SSL *ssl) { /* Re-create the handshake buffer if needed. */ if (ssl->init_buf == NULL) { ssl->init_buf = BUF_MEM_new(); if (ssl->init_buf == NULL) { return -1; } } if (ssl->server && !ssl->s3->v2_hello_done) { /* Bypass the record layer for the first message to handle V2ClientHello. */ int ret = read_v2_client_hello(ssl); if (ret <= 0) { return ret; } ssl->s3->v2_hello_done = 1; } if (ssl->s3->tmp.reuse_message) { /* There must be a current message. */ assert(ssl->init_msg != NULL); ssl->s3->tmp.reuse_message = 0; } else { ssl3_release_current_message(ssl, 0 /* don't free buffer */); } /* Read the message header, if we haven't yet. */ int ret = extend_handshake_buffer(ssl, SSL3_HM_HEADER_LENGTH); if (ret <= 0) { return ret; } /* Parse out the length. Cap it so the peer cannot force us to buffer up to * 2^24 bytes. */ const uint8_t *p = (uint8_t *)ssl->init_buf->data; size_t msg_len = (((uint32_t)p[1]) << 16) | (((uint32_t)p[2]) << 8) | p[3]; if (msg_len > ssl_max_handshake_message_len(ssl)) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); return -1; } /* Read the message body, if we haven't yet. */ ret = extend_handshake_buffer(ssl, SSL3_HM_HEADER_LENGTH + msg_len); if (ret <= 0) { return ret; } /* We have now received a complete message. */ ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, ssl->init_buf->data, ssl->init_buf->length); ssl->s3->tmp.message_type = ((const uint8_t *)ssl->init_buf->data)[0]; ssl->init_msg = (uint8_t*)ssl->init_buf->data + SSL3_HM_HEADER_LENGTH; ssl->init_num = ssl->init_buf->length - SSL3_HM_HEADER_LENGTH; return 1; } void ssl3_get_current_message(const SSL *ssl, CBS *out) { CBS_init(out, (uint8_t *)ssl->init_buf->data, ssl->init_buf->length); } int ssl_hash_current_message(SSL_HANDSHAKE *hs) { /* V2ClientHellos are hashed implicitly. */ if (hs->ssl->s3->is_v2_hello) { return 1; } CBS cbs; hs->ssl->method->get_current_message(hs->ssl, &cbs); return hs->transcript.Update(CBS_data(&cbs), CBS_len(&cbs)); } void ssl3_release_current_message(SSL *ssl, int free_buffer) { if (ssl->init_msg != NULL) { /* |init_buf| never contains data beyond the current message. */ assert(SSL3_HM_HEADER_LENGTH + ssl->init_num == ssl->init_buf->length); /* Clear the current message. */ ssl->init_msg = NULL; ssl->init_num = 0; ssl->init_buf->length = 0; ssl->s3->is_v2_hello = 0; } if (free_buffer) { BUF_MEM_free(ssl->init_buf); ssl->init_buf = NULL; } } int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, const SSL_EXTENSION_TYPE *ext_types, size_t num_ext_types, int ignore_unknown) { /* Reset everything. */ for (size_t i = 0; i < num_ext_types; i++) { *ext_types[i].out_present = 0; CBS_init(ext_types[i].out_data, NULL, 0); } CBS copy = *cbs; while (CBS_len(©) != 0) { uint16_t type; CBS data; if (!CBS_get_u16(©, &type) || !CBS_get_u16_length_prefixed(©, &data)) { OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); *out_alert = SSL_AD_DECODE_ERROR; return 0; } const SSL_EXTENSION_TYPE *ext_type = NULL; for (size_t i = 0; i < num_ext_types; i++) { if (type == ext_types[i].type) { ext_type = &ext_types[i]; break; } } if (ext_type == NULL) { if (ignore_unknown) { continue; } OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return 0; } /* Duplicate ext_types are forbidden. */ if (*ext_type->out_present) { OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_EXTENSION); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return 0; } *ext_type->out_present = 1; *ext_type->out_data = data; } return 1; } enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN; enum ssl_verify_result_t ret; if (ssl->custom_verify_callback != nullptr) { ret = ssl->custom_verify_callback(ssl, &alert); switch (ret) { case ssl_verify_ok: hs->new_session->verify_result = X509_V_OK; break; case ssl_verify_invalid: hs->new_session->verify_result = X509_V_ERR_APPLICATION_VERIFICATION; break; case ssl_verify_retry: break; } } else { ret = ssl->ctx->x509_method->session_verify_cert_chain( hs->new_session.get(), ssl, &alert) ? ssl_verify_ok : ssl_verify_invalid; } if (ret == ssl_verify_invalid) { OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED); ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); } return ret; } uint16_t ssl_get_grease_value(const SSL *ssl, enum ssl_grease_index_t index) { /* Use the client_random or server_random for entropy. This both avoids * calling |RAND_bytes| on a single byte repeatedly and ensures the values are * deterministic. This allows the same ClientHello be sent twice for a * HelloRetryRequest or the same group be advertised in both supported_groups * and key_shares. */ uint16_t ret = ssl->server ? ssl->s3->server_random[index] : ssl->s3->client_random[index]; /* The first four bytes of server_random are a timestamp prior to TLS 1.3, but * servers have no fields to GREASE until TLS 1.3. */ assert(!ssl->server || ssl3_protocol_version(ssl) >= TLS1_3_VERSION); /* This generates a random value of the form 0xωaωa, for all 0 ≤ ω < 16. */ ret = (ret & 0xf0) | 0x0a; ret |= ret << 8; return ret; } } // namespace bssl