/* Copyright (c) 2016, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../test/file_test.h" #include "../test/test_util.h" #include "../test/wycheproof_util.h" static bssl::UniquePtr GetCurve(FileTest *t, const char *key) { std::string curve_name; if (!t->GetAttribute(&curve_name, key)) { return nullptr; } if (curve_name == "P-224") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name(NID_secp224r1)); } if (curve_name == "P-256") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name( NID_X9_62_prime256v1)); } if (curve_name == "P-384") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name(NID_secp384r1)); } if (curve_name == "P-521") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name(NID_secp521r1)); } t->PrintLine("Unknown curve '%s'", curve_name.c_str()); return nullptr; } static bssl::UniquePtr GetBIGNUM(FileTest *t, const char *key) { std::vector bytes; if (!t->GetBytes(&bytes, key)) { return nullptr; } return bssl::UniquePtr(BN_bin2bn(bytes.data(), bytes.size(), nullptr)); } TEST(ECDHTest, TestVectors) { FileTestGTest("crypto/ecdh_extra/ecdh_tests.txt", [](FileTest *t) { bssl::UniquePtr group = GetCurve(t, "Curve"); ASSERT_TRUE(group); bssl::UniquePtr priv_key = GetBIGNUM(t, "Private"); ASSERT_TRUE(priv_key); bssl::UniquePtr x = GetBIGNUM(t, "X"); ASSERT_TRUE(x); bssl::UniquePtr y = GetBIGNUM(t, "Y"); ASSERT_TRUE(y); bssl::UniquePtr peer_x = GetBIGNUM(t, "PeerX"); ASSERT_TRUE(peer_x); bssl::UniquePtr peer_y = GetBIGNUM(t, "PeerY"); ASSERT_TRUE(peer_y); std::vector z; ASSERT_TRUE(t->GetBytes(&z, "Z")); bssl::UniquePtr key(EC_KEY_new()); ASSERT_TRUE(key); bssl::UniquePtr pub_key(EC_POINT_new(group.get())); ASSERT_TRUE(pub_key); bssl::UniquePtr peer_pub_key(EC_POINT_new(group.get())); ASSERT_TRUE(peer_pub_key); ASSERT_TRUE(EC_KEY_set_group(key.get(), group.get())); ASSERT_TRUE(EC_KEY_set_private_key(key.get(), priv_key.get())); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), pub_key.get(), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group.get(), peer_pub_key.get(), peer_x.get(), peer_y.get(), nullptr)); ASSERT_TRUE(EC_KEY_set_public_key(key.get(), pub_key.get())); ASSERT_TRUE(EC_KEY_check_key(key.get())); std::vector actual_z; // Make |actual_z| larger than expected to ensure |ECDH_compute_key| returns // the right amount of data. actual_z.resize(z.size() + 1); int ret = ECDH_compute_key(actual_z.data(), actual_z.size(), peer_pub_key.get(), key.get(), nullptr); ASSERT_GE(ret, 0); EXPECT_EQ(Bytes(z), Bytes(actual_z.data(), static_cast(ret))); // Test |ECDH_compute_key| truncates. actual_z.resize(z.size() - 1); ret = ECDH_compute_key(actual_z.data(), actual_z.size(), peer_pub_key.get(), key.get(), nullptr); ASSERT_GE(ret, 0); EXPECT_EQ(Bytes(z.data(), z.size() - 1), Bytes(actual_z.data(), static_cast(ret))); // Test that |ECDH_compute_key_fips| hashes as expected. uint8_t digest[SHA256_DIGEST_LENGTH], expected_digest[SHA256_DIGEST_LENGTH]; ASSERT_TRUE(ECDH_compute_key_fips(digest, sizeof(digest), peer_pub_key.get(), key.get())); SHA256(z.data(), z.size(), expected_digest); EXPECT_EQ(Bytes(digest), Bytes(expected_digest)); }); } TEST(ECDHTest, Wycheproof) { FileTestGTest("third_party/wycheproof_testvectors/ecdh_test.txt", [](FileTest *t) { t->IgnoreInstruction("curve"); // This is redundant with the per-test one. t->IgnoreInstruction("encoding"); bssl::UniquePtr group = GetWycheproofCurve(t, "curve", false); ASSERT_TRUE(group); bssl::UniquePtr priv_key = GetWycheproofBIGNUM(t, "private", false); ASSERT_TRUE(priv_key); std::vector peer_spki; ASSERT_TRUE(t->GetBytes(&peer_spki, "public")); WycheproofResult result; ASSERT_TRUE(GetWycheproofResult(t, &result)); std::vector shared; ASSERT_TRUE(t->GetBytes(&shared, "shared")); // Wycheproof stores the peer key in an SPKI to mimic a Java API mistake. // This is non-standard and error-prone. CBS cbs; CBS_init(&cbs, peer_spki.data(), peer_spki.size()); bssl::UniquePtr peer_evp(EVP_parse_public_key(&cbs)); if (!peer_evp) { // Note some of Wycheproof's "acceptable" entries are unsupported by // BoringSSL because they test named curves (explicitly forbidden by RFC // 5480), while others are supported because they used compressed // coordinates. If the peer key fails to parse, we consider it to match // "acceptable", but if the resulting shared secret matches below, it too // matches "acceptable". // // TODO(davidben): Use the flags field to disambiguate these. Possibly // first get the Wycheproof folks to use flags more consistently. EXPECT_NE(WycheproofResult::kValid, result); return; } EC_KEY *peer_ec = EVP_PKEY_get0_EC_KEY(peer_evp.get()); ASSERT_TRUE(peer_ec); bssl::UniquePtr key(EC_KEY_new()); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_set_group(key.get(), group.get())); ASSERT_TRUE(EC_KEY_set_private_key(key.get(), priv_key.get())); std::vector actual((EC_GROUP_get_degree(group.get()) + 7) / 8); int ret = ECDH_compute_key(actual.data(), actual.size(), EC_KEY_get0_public_key(peer_ec), key.get(), nullptr); if (result == WycheproofResult::kInvalid) { EXPECT_EQ(-1, ret); } else { EXPECT_EQ(static_cast(actual.size()), ret); EXPECT_EQ(Bytes(shared), Bytes(actual.data(), static_cast(ret))); } }); } // MakeCustomGroup returns an |EC_GROUP| containing a non-standard group. (P-256 // with the wrong generator.) static bssl::UniquePtr MakeCustomGroup() { static const uint8_t kP[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; static const uint8_t kA[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, }; static const uint8_t kB[] = { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, }; static const uint8_t kX[] = { 0xe6, 0x2b, 0x69, 0xe2, 0xbf, 0x65, 0x9f, 0x97, 0xbe, 0x2f, 0x1e, 0x0d, 0x94, 0x8a, 0x4c, 0xd5, 0x97, 0x6b, 0xb7, 0xa9, 0x1e, 0x0d, 0x46, 0xfb, 0xdd, 0xa9, 0xa9, 0x1e, 0x9d, 0xdc, 0xba, 0x5a, }; static const uint8_t kY[] = { 0x01, 0xe7, 0xd6, 0x97, 0xa8, 0x0a, 0x18, 0xf9, 0xc3, 0xc4, 0xa3, 0x1e, 0x56, 0xe2, 0x7c, 0x83, 0x48, 0xdb, 0x16, 0x1a, 0x1c, 0xf5, 0x1d, 0x7e, 0xf1, 0x94, 0x2d, 0x4b, 0xcf, 0x72, 0x22, 0xc1, }; static const uint8_t kOrder[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, }; bssl::UniquePtr ctx(BN_CTX_new()); bssl::UniquePtr p(BN_bin2bn(kP, sizeof(kP), nullptr)); bssl::UniquePtr a(BN_bin2bn(kA, sizeof(kA), nullptr)); bssl::UniquePtr b(BN_bin2bn(kB, sizeof(kB), nullptr)); bssl::UniquePtr x(BN_bin2bn(kX, sizeof(kX), nullptr)); bssl::UniquePtr y(BN_bin2bn(kY, sizeof(kY), nullptr)); bssl::UniquePtr order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr)); if (!ctx || !p || !a || !b || !x || !y || !order) { return nullptr; } bssl::UniquePtr group( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); if (!group) { return nullptr; } bssl::UniquePtr generator(EC_POINT_new(group.get())); if (!generator || !EC_POINT_set_affine_coordinates_GFp(group.get(), generator.get(), x.get(), y.get(), ctx.get()) || !EC_GROUP_set_generator(group.get(), generator.get(), order.get(), BN_value_one())) { return nullptr; } return group; } TEST(ECDHTest, GroupMismatch) { const size_t num_curves = EC_get_builtin_curves(nullptr, 0); std::vector curves(num_curves); EC_get_builtin_curves(curves.data(), num_curves); // Instantiate all the built-in curves. std::vector> groups; for (const auto &curve : curves) { groups.emplace_back(EC_GROUP_new_by_curve_name(curve.nid)); ASSERT_TRUE(groups.back()); } // Also create some arbitrary group. (This is P-256 with the wrong generator.) groups.push_back(MakeCustomGroup()); ASSERT_TRUE(groups.back()); for (const auto &a : groups) { for (const auto &b : groups) { if (a.get() == b.get()) { continue; } bssl::UniquePtr key(EC_KEY_new()); ASSERT_TRUE(EC_KEY_set_group(key.get(), a.get())); ASSERT_TRUE(EC_KEY_generate_key(key.get())); // ECDH across the groups should not work. char out[64]; const EC_POINT *peer = EC_GROUP_get0_generator(b.get()); EXPECT_EQ(-1, ECDH_compute_key(out, sizeof(out), peer, key.get(), nullptr)); ERR_clear_error(); } } }