/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include "internal.h" /* Generic implementations of most operations are needed for: * - Configurations without inline assembly. * - Architectures other than x86 or x86_64. * - Windows x84_64; x86_64-gcc.c does not build on MSVC. */ #if defined(OPENSSL_NO_ASM) || \ (!defined(OPENSSL_X86_64) && !defined(OPENSSL_X86)) || \ (defined(OPENSSL_X86_64) && defined(OPENSSL_WINDOWS)) #ifdef BN_LLONG #define mul_add(r, a, w, c) \ { \ BN_ULLONG t; \ t = (BN_ULLONG)w * (a) + (r) + (c); \ (r) = Lw(t); \ (c) = Hw(t); \ } #define mul(r, a, w, c) \ { \ BN_ULLONG t; \ t = (BN_ULLONG)w * (a) + (c); \ (r) = Lw(t); \ (c) = Hw(t); \ } #define sqr(r0, r1, a) \ { \ BN_ULLONG t; \ t = (BN_ULLONG)(a) * (a); \ (r0) = Lw(t); \ (r1) = Hw(t); \ } #elif defined(BN_UMULT_LOHI) #define mul_add(r, a, w, c) \ { \ BN_ULONG high, low, ret, tmp = (a); \ ret = (r); \ BN_UMULT_LOHI(low, high, w, tmp); \ ret += (c); \ (c) = (ret < (c)) ? 1 : 0; \ (c) += high; \ ret += low; \ (c) += (ret < low) ? 1 : 0; \ (r) = ret; \ } #define mul(r, a, w, c) \ { \ BN_ULONG high, low, ret, ta = (a); \ BN_UMULT_LOHI(low, high, w, ta); \ ret = low + (c); \ (c) = high; \ (c) += (ret < low) ? 1 : 0; \ (r) = ret; \ } #define sqr(r0, r1, a) \ { \ BN_ULONG tmp = (a); \ BN_UMULT_LOHI(r0, r1, tmp, tmp); \ } #else /************************************************************* * No long long type */ #define LBITS(a) ((a) & BN_MASK2l) #define HBITS(a) (((a) >> BN_BITS4) & BN_MASK2l) #define L2HBITS(a) (((a) << BN_BITS4) & BN_MASK2) #define LLBITS(a) ((a) & BN_MASKl) #define LHBITS(a) (((a) >> BN_BITS2) & BN_MASKl) #define LL2HBITS(a) ((BN_ULLONG)((a) & BN_MASKl) << BN_BITS2) #define mul64(l, h, bl, bh) \ { \ BN_ULONG m, m1, lt, ht; \ \ lt = l; \ ht = h; \ m = (bh) * (lt); \ lt = (bl) * (lt); \ m1 = (bl) * (ht); \ ht = (bh) * (ht); \ m = (m + m1) & BN_MASK2; \ if (m < m1) \ ht += L2HBITS((BN_ULONG)1); \ ht += HBITS(m); \ m1 = L2HBITS(m); \ lt = (lt + m1) & BN_MASK2; \ if (lt < m1) \ ht++; \ (l) = lt; \ (h) = ht; \ } #define sqr64(lo, ho, in) \ { \ BN_ULONG l, h, m; \ \ h = (in); \ l = LBITS(h); \ h = HBITS(h); \ m = (l) * (h); \ l *= l; \ h *= h; \ h += (m & BN_MASK2h1) >> (BN_BITS4 - 1); \ m = (m & BN_MASK2l) << (BN_BITS4 + 1); \ l = (l + m) & BN_MASK2; \ if (l < m) \ h++; \ (lo) = l; \ (ho) = h; \ } #define mul_add(r, a, bl, bh, c) \ { \ BN_ULONG l, h; \ \ h = (a); \ l = LBITS(h); \ h = HBITS(h); \ mul64(l, h, (bl), (bh)); \ \ /* non-multiply part */ \ l = (l + (c)) & BN_MASK2; \ if (l < (c)) \ h++; \ (c) = (r); \ l = (l + (c)) & BN_MASK2; \ if (l < (c)) \ h++; \ (c) = h & BN_MASK2; \ (r) = l; \ } #define mul(r, a, bl, bh, c) \ { \ BN_ULONG l, h; \ \ h = (a); \ l = LBITS(h); \ h = HBITS(h); \ mul64(l, h, (bl), (bh)); \ \ /* non-multiply part */ \ l += (c); \ if ((l & BN_MASK2) < (c)) \ h++; \ (c) = h & BN_MASK2; \ (r) = l & BN_MASK2; \ } #endif /* !BN_LLONG */ #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) { return c1; } while (num & ~3) { mul_add(rp[0], ap[0], w, c1); mul_add(rp[1], ap[1], w, c1); mul_add(rp[2], ap[2], w, c1); mul_add(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } while (num) { mul_add(rp[0], ap[0], w, c1); ap++; rp++; num--; } return c1; } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) { return c1; } while (num & ~3) { mul(rp[0], ap[0], w, c1); mul(rp[1], ap[1], w, c1); mul(rp[2], ap[2], w, c1); mul(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } while (num) { mul(rp[0], ap[0], w, c1); ap++; rp++; num--; } return c1; } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) { return; } while (n & ~3) { sqr(r[0], r[1], a[0]); sqr(r[2], r[3], a[1]); sqr(r[4], r[5], a[2]); sqr(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } while (n) { sqr(r[0], r[1], a[0]); a++; r += 2; n--; } } #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) { return (BN_ULONG)0; } bl = LBITS(w); bh = HBITS(w); while (num & ~3) { mul_add(rp[0], ap[0], bl, bh, c); mul_add(rp[1], ap[1], bl, bh, c); mul_add(rp[2], ap[2], bl, bh, c); mul_add(rp[3], ap[3], bl, bh, c); ap += 4; rp += 4; num -= 4; } while (num) { mul_add(rp[0], ap[0], bl, bh, c); ap++; rp++; num--; } return c; } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG carry = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) { return (BN_ULONG)0; } bl = LBITS(w); bh = HBITS(w); while (num & ~3) { mul(rp[0], ap[0], bl, bh, carry); mul(rp[1], ap[1], bl, bh, carry); mul(rp[2], ap[2], bl, bh, carry); mul(rp[3], ap[3], bl, bh, carry); ap += 4; rp += 4; num -= 4; } while (num) { mul(rp[0], ap[0], bl, bh, carry); ap++; rp++; num--; } return carry; } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) { return; } while (n & ~3) { sqr64(r[0], r[1], a[0]); sqr64(r[2], r[3], a[1]); sqr64(r[4], r[5], a[2]); sqr64(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } while (n) { sqr64(r[0], r[1], a[0]); a++; r += 2; n--; } } #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ #if defined(BN_LLONG) BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { return (BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2) | l) / (BN_ULLONG)d); } #else /* Divide h,l by d and return the result. */ BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { BN_ULONG dh, dl, q, ret = 0, th, tl, t; int i, count = 2; if (d == 0) { return BN_MASK2; } i = BN_num_bits_word(d); assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); i = BN_BITS2 - i; if (h >= d) { h -= d; } if (i) { d <<= i; h = (h << i) | (l >> (BN_BITS2 - i)); l <<= i; } dh = (d & BN_MASK2h) >> BN_BITS4; dl = (d & BN_MASK2l); for (;;) { if ((h >> BN_BITS4) == dh) { q = BN_MASK2l; } else { q = h / dh; } th = q * dh; tl = dl * q; for (;;) { t = h - th; if ((t & BN_MASK2h) || ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) { break; } q--; th -= dh; tl -= dl; } t = (tl >> BN_BITS4); tl = (tl << BN_BITS4) & BN_MASK2h; th += t; if (l < tl) { th++; } l -= tl; if (h < th) { h += d; q--; } h -= th; if (--count == 0) { break; } ret = q << BN_BITS4; h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; l = (l & BN_MASK2l) << BN_BITS4; } ret |= q; return ret; } #endif /* !defined(BN_LLONG) */ #ifdef BN_LLONG BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULLONG ll = 0; assert(n >= 0); if (n <= 0) { return (BN_ULONG)0; } while (n & ~3) { ll += (BN_ULLONG)a[0] + b[0]; r[0] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG)a[1] + b[1]; r[1] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG)a[2] + b[2]; r[2] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG)a[3] + b[3]; r[3] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; a += 4; b += 4; r += 4; n -= 4; } while (n) { ll += (BN_ULLONG)a[0] + b[0]; r[0] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; a++; b++; r++; n--; } return (BN_ULONG)ll; } #else /* !BN_LLONG */ BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG c, l, t; assert(n >= 0); if (n <= 0) { return (BN_ULONG)0; } c = 0; while (n & ~3) { t = a[0]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[0]) & BN_MASK2; c += (l < t); r[0] = l; t = a[1]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[1]) & BN_MASK2; c += (l < t); r[1] = l; t = a[2]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[2]) & BN_MASK2; c += (l < t); r[2] = l; t = a[3]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[3]) & BN_MASK2; c += (l < t); r[3] = l; a += 4; b += 4; r += 4; n -= 4; } while (n) { t = a[0]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[0]) & BN_MASK2; c += (l < t); r[0] = l; a++; b++; r++; n--; } return (BN_ULONG)c; } #endif /* !BN_LLONG */ BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG t1, t2; int c = 0; assert(n >= 0); if (n <= 0) { return (BN_ULONG)0; } while (n & ~3) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) { c = (t1 < t2); } t1 = a[1]; t2 = b[1]; r[1] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) { c = (t1 < t2); } t1 = a[2]; t2 = b[2]; r[2] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) { c = (t1 < t2); } t1 = a[3]; t2 = b[3]; r[3] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) { c = (t1 < t2); } a += 4; b += 4; r += 4; n -= 4; } while (n) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) { c = (t1 < t2); } a++; b++; r++; n--; } return c; } /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ #ifdef BN_LLONG /* Keep in mind that additions to multiplication result can not overflow, * because its high half cannot be all-ones. */ #define mul_add_c(a, b, c0, c1, c2) \ do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)(a) * (b); \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ } while (0) #define mul_add_c2(a, b, c0, c1, c2) \ do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)(a) * (b); \ BN_ULLONG tt = t + c0; /* no carry */ \ c0 = (BN_ULONG)Lw(tt); \ hi = (BN_ULONG)Hw(tt); \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ } while (0) #define sqr_add_c(a, i, c0, c1, c2) \ do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)a[i] * a[i]; \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ } while (0) #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) #elif defined(BN_UMULT_LOHI) /* Keep in mind that additions to hi can not overflow, because the high word of * a multiplication result cannot be all-ones. */ #define mul_add_c(a, b, c0, c1, c2) \ do { \ BN_ULONG ta = (a), tb = (b); \ BN_ULONG lo, hi; \ BN_UMULT_LOHI(lo, hi, ta, tb); \ c0 += lo; \ hi += (c0 < lo) ? 1 : 0; \ c1 += hi; \ c2 += (c1 < hi) ? 1 : 0; \ } while (0) #define mul_add_c2(a, b, c0, c1, c2) \ do { \ BN_ULONG ta = (a), tb = (b); \ BN_ULONG lo, hi, tt; \ BN_UMULT_LOHI(lo, hi, ta, tb); \ c0 += lo; \ tt = hi + ((c0 < lo) ? 1 : 0); \ c1 += tt; \ c2 += (c1 < tt) ? 1 : 0; \ c0 += lo; \ hi += (c0 < lo) ? 1 : 0; \ c1 += hi; \ c2 += (c1 < hi) ? 1 : 0; \ } while (0) #define sqr_add_c(a, i, c0, c1, c2) \ do { \ BN_ULONG ta = (a)[i]; \ BN_ULONG lo, hi; \ BN_UMULT_LOHI(lo, hi, ta, ta); \ c0 += lo; \ hi += (c0 < lo) ? 1 : 0; \ c1 += hi; \ c2 += (c1 < hi) ? 1 : 0; \ } while (0) #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) #else /* !BN_LLONG */ /* Keep in mind that additions to hi can not overflow, because * the high word of a multiplication result cannot be all-ones. */ #define mul_add_c(a, b, c0, c1, c2) \ do { \ BN_ULONG lo = LBITS(a), hi = HBITS(a); \ BN_ULONG bl = LBITS(b), bh = HBITS(b); \ mul64(lo, hi, bl, bh); \ c0 = (c0 + lo) & BN_MASK2; \ if (c0 < lo) \ hi++; \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ } while (0) #define mul_add_c2(a, b, c0, c1, c2) \ do { \ BN_ULONG tt; \ BN_ULONG lo = LBITS(a), hi = HBITS(a); \ BN_ULONG bl = LBITS(b), bh = HBITS(b); \ mul64(lo, hi, bl, bh); \ tt = hi; \ c0 = (c0 + lo) & BN_MASK2; \ if (c0 < lo) \ tt++; \ c1 = (c1 + tt) & BN_MASK2; \ if (c1 < tt) \ c2++; \ c0 = (c0 + lo) & BN_MASK2; \ if (c0 < lo) \ hi++; \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ } while (0) #define sqr_add_c(a, i, c0, c1, c2) \ do { \ BN_ULONG lo, hi; \ sqr64(lo, hi, (a)[i]); \ c0 = (c0 + lo) & BN_MASK2; \ if (c0 < lo) \ hi++; \ c1 = (c1 + hi) & BN_MASK2; \ if (c1 < hi) \ c2++; \ } while (0) #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) #endif /* !BN_LLONG */ void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; mul_add_c(a[0], b[0], c1, c2, c3); r[0] = c1; c1 = 0; mul_add_c(a[0], b[1], c2, c3, c1); mul_add_c(a[1], b[0], c2, c3, c1); r[1] = c2; c2 = 0; mul_add_c(a[2], b[0], c3, c1, c2); mul_add_c(a[1], b[1], c3, c1, c2); mul_add_c(a[0], b[2], c3, c1, c2); r[2] = c3; c3 = 0; mul_add_c(a[0], b[3], c1, c2, c3); mul_add_c(a[1], b[2], c1, c2, c3); mul_add_c(a[2], b[1], c1, c2, c3); mul_add_c(a[3], b[0], c1, c2, c3); r[3] = c1; c1 = 0; mul_add_c(a[4], b[0], c2, c3, c1); mul_add_c(a[3], b[1], c2, c3, c1); mul_add_c(a[2], b[2], c2, c3, c1); mul_add_c(a[1], b[3], c2, c3, c1); mul_add_c(a[0], b[4], c2, c3, c1); r[4] = c2; c2 = 0; mul_add_c(a[0], b[5], c3, c1, c2); mul_add_c(a[1], b[4], c3, c1, c2); mul_add_c(a[2], b[3], c3, c1, c2); mul_add_c(a[3], b[2], c3, c1, c2); mul_add_c(a[4], b[1], c3, c1, c2); mul_add_c(a[5], b[0], c3, c1, c2); r[5] = c3; c3 = 0; mul_add_c(a[6], b[0], c1, c2, c3); mul_add_c(a[5], b[1], c1, c2, c3); mul_add_c(a[4], b[2], c1, c2, c3); mul_add_c(a[3], b[3], c1, c2, c3); mul_add_c(a[2], b[4], c1, c2, c3); mul_add_c(a[1], b[5], c1, c2, c3); mul_add_c(a[0], b[6], c1, c2, c3); r[6] = c1; c1 = 0; mul_add_c(a[0], b[7], c2, c3, c1); mul_add_c(a[1], b[6], c2, c3, c1); mul_add_c(a[2], b[5], c2, c3, c1); mul_add_c(a[3], b[4], c2, c3, c1); mul_add_c(a[4], b[3], c2, c3, c1); mul_add_c(a[5], b[2], c2, c3, c1); mul_add_c(a[6], b[1], c2, c3, c1); mul_add_c(a[7], b[0], c2, c3, c1); r[7] = c2; c2 = 0; mul_add_c(a[7], b[1], c3, c1, c2); mul_add_c(a[6], b[2], c3, c1, c2); mul_add_c(a[5], b[3], c3, c1, c2); mul_add_c(a[4], b[4], c3, c1, c2); mul_add_c(a[3], b[5], c3, c1, c2); mul_add_c(a[2], b[6], c3, c1, c2); mul_add_c(a[1], b[7], c3, c1, c2); r[8] = c3; c3 = 0; mul_add_c(a[2], b[7], c1, c2, c3); mul_add_c(a[3], b[6], c1, c2, c3); mul_add_c(a[4], b[5], c1, c2, c3); mul_add_c(a[5], b[4], c1, c2, c3); mul_add_c(a[6], b[3], c1, c2, c3); mul_add_c(a[7], b[2], c1, c2, c3); r[9] = c1; c1 = 0; mul_add_c(a[7], b[3], c2, c3, c1); mul_add_c(a[6], b[4], c2, c3, c1); mul_add_c(a[5], b[5], c2, c3, c1); mul_add_c(a[4], b[6], c2, c3, c1); mul_add_c(a[3], b[7], c2, c3, c1); r[10] = c2; c2 = 0; mul_add_c(a[4], b[7], c3, c1, c2); mul_add_c(a[5], b[6], c3, c1, c2); mul_add_c(a[6], b[5], c3, c1, c2); mul_add_c(a[7], b[4], c3, c1, c2); r[11] = c3; c3 = 0; mul_add_c(a[7], b[5], c1, c2, c3); mul_add_c(a[6], b[6], c1, c2, c3); mul_add_c(a[5], b[7], c1, c2, c3); r[12] = c1; c1 = 0; mul_add_c(a[6], b[7], c2, c3, c1); mul_add_c(a[7], b[6], c2, c3, c1); r[13] = c2; c2 = 0; mul_add_c(a[7], b[7], c3, c1, c2); r[14] = c3; r[15] = c1; } void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; mul_add_c(a[0], b[0], c1, c2, c3); r[0] = c1; c1 = 0; mul_add_c(a[0], b[1], c2, c3, c1); mul_add_c(a[1], b[0], c2, c3, c1); r[1] = c2; c2 = 0; mul_add_c(a[2], b[0], c3, c1, c2); mul_add_c(a[1], b[1], c3, c1, c2); mul_add_c(a[0], b[2], c3, c1, c2); r[2] = c3; c3 = 0; mul_add_c(a[0], b[3], c1, c2, c3); mul_add_c(a[1], b[2], c1, c2, c3); mul_add_c(a[2], b[1], c1, c2, c3); mul_add_c(a[3], b[0], c1, c2, c3); r[3] = c1; c1 = 0; mul_add_c(a[3], b[1], c2, c3, c1); mul_add_c(a[2], b[2], c2, c3, c1); mul_add_c(a[1], b[3], c2, c3, c1); r[4] = c2; c2 = 0; mul_add_c(a[2], b[3], c3, c1, c2); mul_add_c(a[3], b[2], c3, c1, c2); r[5] = c3; c3 = 0; mul_add_c(a[3], b[3], c1, c2, c3); r[6] = c1; r[7] = c2; } void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; sqr_add_c(a, 0, c1, c2, c3); r[0] = c1; c1 = 0; sqr_add_c2(a, 1, 0, c2, c3, c1); r[1] = c2; c2 = 0; sqr_add_c(a, 1, c3, c1, c2); sqr_add_c2(a, 2, 0, c3, c1, c2); r[2] = c3; c3 = 0; sqr_add_c2(a, 3, 0, c1, c2, c3); sqr_add_c2(a, 2, 1, c1, c2, c3); r[3] = c1; c1 = 0; sqr_add_c(a, 2, c2, c3, c1); sqr_add_c2(a, 3, 1, c2, c3, c1); sqr_add_c2(a, 4, 0, c2, c3, c1); r[4] = c2; c2 = 0; sqr_add_c2(a, 5, 0, c3, c1, c2); sqr_add_c2(a, 4, 1, c3, c1, c2); sqr_add_c2(a, 3, 2, c3, c1, c2); r[5] = c3; c3 = 0; sqr_add_c(a, 3, c1, c2, c3); sqr_add_c2(a, 4, 2, c1, c2, c3); sqr_add_c2(a, 5, 1, c1, c2, c3); sqr_add_c2(a, 6, 0, c1, c2, c3); r[6] = c1; c1 = 0; sqr_add_c2(a, 7, 0, c2, c3, c1); sqr_add_c2(a, 6, 1, c2, c3, c1); sqr_add_c2(a, 5, 2, c2, c3, c1); sqr_add_c2(a, 4, 3, c2, c3, c1); r[7] = c2; c2 = 0; sqr_add_c(a, 4, c3, c1, c2); sqr_add_c2(a, 5, 3, c3, c1, c2); sqr_add_c2(a, 6, 2, c3, c1, c2); sqr_add_c2(a, 7, 1, c3, c1, c2); r[8] = c3; c3 = 0; sqr_add_c2(a, 7, 2, c1, c2, c3); sqr_add_c2(a, 6, 3, c1, c2, c3); sqr_add_c2(a, 5, 4, c1, c2, c3); r[9] = c1; c1 = 0; sqr_add_c(a, 5, c2, c3, c1); sqr_add_c2(a, 6, 4, c2, c3, c1); sqr_add_c2(a, 7, 3, c2, c3, c1); r[10] = c2; c2 = 0; sqr_add_c2(a, 7, 4, c3, c1, c2); sqr_add_c2(a, 6, 5, c3, c1, c2); r[11] = c3; c3 = 0; sqr_add_c(a, 6, c1, c2, c3); sqr_add_c2(a, 7, 5, c1, c2, c3); r[12] = c1; c1 = 0; sqr_add_c2(a, 7, 6, c2, c3, c1); r[13] = c2; c2 = 0; sqr_add_c(a, 7, c3, c1, c2); r[14] = c3; r[15] = c1; } void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; sqr_add_c(a, 0, c1, c2, c3); r[0] = c1; c1 = 0; sqr_add_c2(a, 1, 0, c2, c3, c1); r[1] = c2; c2 = 0; sqr_add_c(a, 1, c3, c1, c2); sqr_add_c2(a, 2, 0, c3, c1, c2); r[2] = c3; c3 = 0; sqr_add_c2(a, 3, 0, c1, c2, c3); sqr_add_c2(a, 2, 1, c1, c2, c3); r[3] = c1; c1 = 0; sqr_add_c(a, 2, c2, c3, c1); sqr_add_c2(a, 3, 1, c2, c3, c1); r[4] = c2; c2 = 0; sqr_add_c2(a, 3, 2, c3, c1, c2); r[5] = c3; c3 = 0; sqr_add_c(a, 3, c1, c2, c3); r[6] = c1; r[7] = c2; } #endif