/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "handshake_util.h" #include #if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID) #include #include #include #include #include #include #include #include #endif #include #include "async_bio.h" #include "packeted_bio.h" #include "test_config.h" #include "test_state.h" #include using namespace bssl; bool RetryAsync(SSL *ssl, int ret) { // No error; don't retry. if (ret >= 0) { return false; } TestState *test_state = GetTestState(ssl); assert(GetTestConfig(ssl)->async); if (test_state->packeted_bio != nullptr && PacketedBioAdvanceClock(test_state->packeted_bio)) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. AsyncBioEnforceWriteQuota(test_state->async_bio, false); int timeout_ret = DTLSv1_handle_timeout(ssl); AsyncBioEnforceWriteQuota(test_state->async_bio, true); if (timeout_ret < 0) { fprintf(stderr, "Error retransmitting.\n"); return false; } return true; } // See if we needed to read or write more. If so, allow one byte through on // the appropriate end to maximally stress the state machine. switch (SSL_get_error(ssl, ret)) { case SSL_ERROR_WANT_READ: AsyncBioAllowRead(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_WRITE: AsyncBioAllowWrite(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { UniquePtr pkey = LoadPrivateKey(GetTestConfig(ssl)->send_channel_id); if (!pkey) { return false; } test_state->channel_id = std::move(pkey); return true; } case SSL_ERROR_WANT_X509_LOOKUP: test_state->cert_ready = true; return true; case SSL_ERROR_PENDING_SESSION: test_state->session = std::move(test_state->pending_session); return true; case SSL_ERROR_PENDING_CERTIFICATE: test_state->early_callback_ready = true; return true; case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: test_state->private_key_retries++; return true; case SSL_ERROR_WANT_CERTIFICATE_VERIFY: test_state->custom_verify_ready = true; return true; default: return false; } } int CheckIdempotentError(const char *name, SSL *ssl, std::function func) { int ret = func(); int ssl_err = SSL_get_error(ssl, ret); uint32_t err = ERR_peek_error(); if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) { int ret2 = func(); int ssl_err2 = SSL_get_error(ssl, ret2); uint32_t err2 = ERR_peek_error(); if (ret != ret2 || ssl_err != ssl_err2 || err != err2) { fprintf(stderr, "Repeating %s did not replay the error.\n", name); char buf[256]; ERR_error_string_n(err, buf, sizeof(buf)); fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf); ERR_error_string_n(err2, buf, sizeof(buf)); fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf); // runner treats exit code 90 as always failing. Otherwise, it may // accidentally consider the result an expected protocol failure. exit(90); } } return ret; } #if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID) // MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff. static void MoveBIOs(SSL *dest, SSL *src) { BIO *rbio = SSL_get_rbio(src); BIO_up_ref(rbio); SSL_set0_rbio(dest, rbio); BIO *wbio = SSL_get_wbio(src); BIO_up_ref(wbio); SSL_set0_wbio(dest, wbio); SSL_set0_rbio(src, nullptr); SSL_set0_wbio(src, nullptr); } static bool HandoffReady(SSL *ssl, int ret) { return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF; } static ssize_t read_eintr(int fd, void *out, size_t len) { ssize_t ret; do { ret = read(fd, out, len); } while (ret < 0 && errno == EINTR); return ret; } static ssize_t write_eintr(int fd, const void *in, size_t len) { ssize_t ret; do { ret = write(fd, in, len); } while (ret < 0 && errno == EINTR); return ret; } static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) { pid_t ret; do { ret = waitpid(pid, wstatus, options); } while (ret < 0 && errno == EINTR); return ret; } // Proxy relays data between |socket|, which is connected to the client, and the // handshaker, which is connected to the numerically specified file descriptors, // until the handshaker returns control. static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) { for (;;) { fd_set rfds; FD_ZERO(&rfds); FD_SET(wfd, &rfds); FD_SET(control, &rfds); int fd_max = wfd > control ? wfd : control; if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) { perror("select"); return false; } char buf[64]; ssize_t bytes; if (FD_ISSET(wfd, &rfds) && (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) { char *b = buf; while (bytes) { int written = BIO_write(socket, b, bytes); if (!written) { fprintf(stderr, "BIO_write wrote nothing\n"); return false; } if (written < 0) { if (async) { AsyncBioAllowWrite(socket, 1); continue; } fprintf(stderr, "BIO_write failed\n"); return false; } b += written; bytes -= written; } // Flush all pending data from the handshaker to the client before // considering control messages. continue; } if (!FD_ISSET(control, &rfds)) { continue; } char msg; if (read_eintr(control, &msg, 1) != 1) { perror("read"); return false; } switch (msg) { case kControlMsgHandback: return true; case kControlMsgError: return false; case kControlMsgWantRead: break; default: fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); return false; } char readbuf[64]; if (async) { AsyncBioAllowRead(socket, 1); } int read = BIO_read(socket, readbuf, sizeof(readbuf)); if (read < 1) { fprintf(stderr, "BIO_read failed\n"); return false; } ssize_t written = write_eintr(rfd, readbuf, read); if (written == -1) { perror("write"); return false; } if (written != read) { fprintf(stderr, "short write (%zu of %d bytes)\n", written, read); return false; } // The handshaker blocks on the control channel, so we have to signal // it that the data have been written. msg = kControlMsgWriteCompleted; if (write_eintr(control, &msg, 1) != 1) { perror("write"); return false; } } } class ScopedFD { public: explicit ScopedFD(int fd): fd_(fd) {} ~ScopedFD() { close(fd_); } private: const int fd_; }; // RunHandshaker forks and execs the handshaker binary, handing off |input|, // and, after proxying some amount of handshake traffic, handing back |out|. static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume, const Array &input, Array *out) { if (config->handshaker_path.empty()) { fprintf(stderr, "no -handshaker-path specified\n"); return false; } struct stat dummy; if (stat(config->handshaker_path.c_str(), &dummy) == -1) { perror(config->handshaker_path.c_str()); return false; } // A datagram socket guarantees that writes are all-or-nothing. int control[2]; if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) { perror("socketpair"); return false; } int rfd[2], wfd[2]; // We use pipes, rather than some other mechanism, for their buffers. During // the handshake, this process acts as a dumb proxy until receiving the // handback signal, which arrives asynchronously. The race condition means // that this process could incorrectly proxy post-handshake data from the // client to the handshaker. // // To avoid this, this process never proxies data to the handshaker that the // handshaker has not explicitly requested as a result of hitting // |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the // two processes synchronize over the |control| channel. if (pipe(rfd) != 0 || pipe(wfd) != 0) { perror("pipe2"); return false; } fflush(stdout); fflush(stderr); std::vector args; bssl::UniquePtr handshaker_path( OPENSSL_strdup(config->handshaker_path.c_str())); args.push_back(handshaker_path.get()); char resume[] = "-handshaker-resume"; if (is_resume) { args.push_back(resume); } // config->argv omits argv[0]. for (int j = 0; j < config->argc; ++j) { args.push_back(config->argv[j]); } args.push_back(nullptr); posix_spawn_file_actions_t actions; if (posix_spawn_file_actions_init(&actions) != 0 || posix_spawn_file_actions_addclose(&actions, control[0]) || posix_spawn_file_actions_addclose(&actions, rfd[1]) || posix_spawn_file_actions_addclose(&actions, wfd[0])) { return false; } assert(kFdControl != rfd[0]); assert(kFdControl != wfd[1]); if (control[1] != kFdControl && posix_spawn_file_actions_adddup2(&actions, control[1], kFdControl) != 0) { return false; } assert(kFdProxyToHandshaker != wfd[1]); if (rfd[0] != kFdProxyToHandshaker && posix_spawn_file_actions_adddup2(&actions, rfd[0], kFdProxyToHandshaker) != 0) { return false; } if (wfd[1] != kFdHandshakerToProxy && posix_spawn_file_actions_adddup2(&actions, wfd[1], kFdHandshakerToProxy) != 0) { return false; } pid_t handshaker_pid; int ret = posix_spawn(&handshaker_pid, args[0], &actions, nullptr, args.data(), nullptr); if (posix_spawn_file_actions_destroy(&actions) != 0 || ret != 0) { return false; } close(control[1]); close(rfd[0]); close(wfd[1]); ScopedFD rfd_closer(rfd[1]); ScopedFD wfd_closer(wfd[0]); ScopedFD control_closer(control[0]); if (write_eintr(control[0], input.data(), input.size()) == -1) { perror("write"); return false; } bool ok = Proxy(bio, config->async, control[0], rfd[1], wfd[0]); int wstatus; if (waitpid_eintr(handshaker_pid, &wstatus, 0) != handshaker_pid) { perror("waitpid"); return false; } if (ok && wstatus) { fprintf(stderr, "handshaker exited irregularly\n"); return false; } if (!ok) { return false; // This is a "good", i.e. expected, error. } constexpr size_t kBufSize = 1024 * 1024; bssl::UniquePtr buf((uint8_t *) OPENSSL_malloc(kBufSize)); int len = read_eintr(control[0], buf.get(), kBufSize); if (len == -1) { perror("read"); return false; } out->CopyFrom({buf.get(), (size_t)len}); return true; } // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to // be passed to the handshaker. The serialized state includes both the SSL // handoff, as well test-related state. static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer, Array *out_handoff) { SSL_set_handoff_mode(ssl, 1); const TestConfig *config = GetTestConfig(ssl); int ret = -1; do { ret = CheckIdempotentError( "SSL_do_handshake", ssl, [&]() -> int { return SSL_do_handshake(ssl); }); } while (!HandoffReady(ssl, ret) && config->async && RetryAsync(ssl, ret)); if (!HandoffReady(ssl, ret)) { fprintf(stderr, "Handshake failed while waiting for handoff.\n"); return false; } ScopedCBB cbb; if (!CBB_init(cbb.get(), 512) || !SSL_serialize_handoff(ssl, cbb.get()) || !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) || !SerializeContextState(ssl->ctx.get(), cbb.get()) || !GetTestState(ssl)->Serialize(cbb.get())) { fprintf(stderr, "Handoff serialisation failed.\n"); return false; } return CBBFinishArray(cbb.get(), out_handoff); } // DoSplitHandshake delegates the SSL handshake to a separate process, called // the handshaker. This process proxies I/O between the handshaker and the // client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is // replaced with a new |SSL| object, in a way that is intended to be invisible // to the caller. bool DoSplitHandshake(UniquePtr *ssl, SettingsWriter *writer, bool is_resume) { assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get())); Array handshaker_input; const TestConfig *config = GetTestConfig(ssl->get()); // out is the response from the handshaker, which includes a serialized // handback message, but also serialized updates to the |TestState|. Array out; if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) || !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume, handshaker_input, &out)) { fprintf(stderr, "Handoff failed.\n"); return false; } UniquePtr ssl_handback = config->NewSSL((*ssl)->ctx.get(), nullptr, false, nullptr); if (!ssl_handback) { return false; } CBS output, handback; CBS_init(&output, out.data(), out.size()); if (!CBS_get_u24_length_prefixed(&output, &handback) || !DeserializeContextState(&output, ssl_handback->ctx.get()) || !SetTestState(ssl_handback.get(), TestState::Deserialize( &output, ssl_handback->ctx.get())) || !GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) || !SSL_apply_handback(ssl_handback.get(), handback)) { fprintf(stderr, "Handback failed.\n"); return false; } MoveBIOs(ssl_handback.get(), ssl->get()); GetTestState(ssl_handback.get())->async_bio = GetTestState(ssl->get())->async_bio; GetTestState(ssl->get())->async_bio = nullptr; *ssl = std::move(ssl_handback); return true; } #endif // defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)