/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ /* Per C99, various stdint.h and inttypes.h macros (the latter used by bn.h) are * unavailable in C++ unless some macros are defined. C++11 overruled this * decision, but older Android NDKs still require it. */ #if !defined(__STDC_CONSTANT_MACROS) #define __STDC_CONSTANT_MACROS #endif #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include #include #include #include #include #include #include #include #include #include #include #include "../internal.h" #include "../test/file_test.h" #include "../test/test_util.h" static int HexToBIGNUM(bssl::UniquePtr *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_hex2bn(&raw, in); out->reset(raw); return ret; } static bssl::UniquePtr GetBIGNUM(FileTest *t, const char *attribute) { std::string hex; if (!t->GetAttribute(&hex, attribute)) { return nullptr; } bssl::UniquePtr ret; if (HexToBIGNUM(&ret, hex.c_str()) != static_cast(hex.size())) { t->PrintLine("Could not decode '%s'.", hex.c_str()); return nullptr; } return ret; } static bool GetInt(FileTest *t, int *out, const char *attribute) { bssl::UniquePtr ret = GetBIGNUM(t, attribute); if (!ret) { return false; } BN_ULONG word = BN_get_word(ret.get()); if (word > INT_MAX) { return false; } *out = static_cast(word); return true; } static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation, const BIGNUM *expected, const BIGNUM *actual) { if (BN_cmp(expected, actual) == 0) { return true; } bssl::UniquePtr expected_str(BN_bn2hex(expected)); bssl::UniquePtr actual_str(BN_bn2hex(actual)); if (!expected_str || !actual_str) { return false; } t->PrintLine("Got %s =", operation); t->PrintLine("\t%s", actual_str.get()); t->PrintLine("wanted:"); t->PrintLine("\t%s", expected_str.get()); return false; } static bool TestSum(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr b = GetBIGNUM(t, "B"); bssl::UniquePtr sum = GetBIGNUM(t, "Sum"); if (!a || !b || !sum) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_add(ret.get(), a.get(), b.get()) || !ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) || !BN_sub(ret.get(), sum.get(), a.get()) || !ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) || !BN_sub(ret.get(), sum.get(), b.get()) || !ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) { return false; } // Test that the functions work when |r| and |a| point to the same |BIGNUM|, // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where // all of |r|, |a|, and |b| point to the same |BIGNUM|. if (!BN_copy(ret.get(), a.get()) || !BN_add(ret.get(), ret.get(), b.get()) || !ExpectBIGNUMsEqual(t, "A + B (r is a)", sum.get(), ret.get()) || !BN_copy(ret.get(), b.get()) || !BN_add(ret.get(), a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "A + B (r is b)", sum.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_sub(ret.get(), ret.get(), a.get()) || !ExpectBIGNUMsEqual(t, "Sum - A (r is a)", b.get(), ret.get()) || !BN_copy(ret.get(), a.get()) || !BN_sub(ret.get(), sum.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Sum - A (r is b)", b.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_sub(ret.get(), ret.get(), b.get()) || !ExpectBIGNUMsEqual(t, "Sum - B (r is a)", a.get(), ret.get()) || !BN_copy(ret.get(), b.get()) || !BN_sub(ret.get(), sum.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Sum - B (r is b)", a.get(), ret.get())) { return false; } // Test |BN_uadd| and |BN_usub| with the prerequisites they are documented as // having. Note that these functions are frequently used when the // prerequisites don't hold. In those cases, they are supposed to work as if // the prerequisite hold, but we don't test that yet. TODO: test that. if (!BN_is_negative(a.get()) && !BN_is_negative(b.get()) && BN_cmp(a.get(), b.get()) >= 0) { if (!BN_uadd(ret.get(), a.get(), b.get()) || !ExpectBIGNUMsEqual(t, "A +u B", sum.get(), ret.get()) || !BN_usub(ret.get(), sum.get(), a.get()) || !ExpectBIGNUMsEqual(t, "Sum -u A", b.get(), ret.get()) || !BN_usub(ret.get(), sum.get(), b.get()) || !ExpectBIGNUMsEqual(t, "Sum -u B", a.get(), ret.get())) { return false; } // Test that the functions work when |r| and |a| point to the same |BIGNUM|, // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where // all of |r|, |a|, and |b| point to the same |BIGNUM|. if (!BN_copy(ret.get(), a.get()) || !BN_uadd(ret.get(), ret.get(), b.get()) || !ExpectBIGNUMsEqual(t, "A +u B (r is a)", sum.get(), ret.get()) || !BN_copy(ret.get(), b.get()) || !BN_uadd(ret.get(), a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "A +u B (r is b)", sum.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_usub(ret.get(), ret.get(), a.get()) || !ExpectBIGNUMsEqual(t, "Sum -u A (r is a)", b.get(), ret.get()) || !BN_copy(ret.get(), a.get()) || !BN_usub(ret.get(), sum.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Sum -u A (r is b)", b.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_usub(ret.get(), ret.get(), b.get()) || !ExpectBIGNUMsEqual(t, "Sum -u B (r is a)", a.get(), ret.get()) || !BN_copy(ret.get(), b.get()) || !BN_usub(ret.get(), sum.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Sum -u B (r is b)", a.get(), ret.get())) { return false; } } // Test with |BN_add_word| and |BN_sub_word| if |b| is small enough. BN_ULONG b_word = BN_get_word(b.get()); if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { if (!BN_copy(ret.get(), a.get()) || !BN_add_word(ret.get(), b_word) || !ExpectBIGNUMsEqual(t, "A + B (word)", sum.get(), ret.get()) || !BN_copy(ret.get(), sum.get()) || !BN_sub_word(ret.get(), b_word) || !ExpectBIGNUMsEqual(t, "Sum - B (word)", a.get(), ret.get())) { return false; } } return true; } static bool TestLShift1(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr lshift1 = GetBIGNUM(t, "LShift1"); bssl::UniquePtr zero(BN_new()); if (!a || !lshift1 || !zero) { return false; } BN_zero(zero.get()); bssl::UniquePtr ret(BN_new()), two(BN_new()), remainder(BN_new()); if (!ret || !two || !remainder || !BN_set_word(two.get(), 2) || !BN_add(ret.get(), a.get(), a.get()) || !ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) || !BN_mul(ret.get(), a.get(), two.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) || !BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx) || !ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) || !BN_lshift1(ret.get(), a.get()) || !ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) || !BN_rshift1(ret.get(), lshift1.get()) || !ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) || !BN_rshift1(ret.get(), lshift1.get()) || !ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) { return false; } // Set the LSB to 1 and test rshift1 again. if (!BN_set_bit(lshift1.get(), 0) || !BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx) || !ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) || !BN_rshift1(ret.get(), lshift1.get()) || !ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) { return false; } return true; } static bool TestLShift(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr lshift = GetBIGNUM(t, "LShift"); int n = 0; if (!a || !lshift || !GetInt(t, &n, "N")) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_lshift(ret.get(), a.get(), n) || !ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) || !BN_rshift(ret.get(), lshift.get(), n) || !ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) { return false; } return true; } static bool TestRShift(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr rshift = GetBIGNUM(t, "RShift"); int n = 0; if (!a || !rshift || !GetInt(t, &n, "N")) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_rshift(ret.get(), a.get(), n) || !ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) { return false; } return true; } static bool TestSquare(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr square = GetBIGNUM(t, "Square"); bssl::UniquePtr zero(BN_new()); if (!a || !square || !zero) { return false; } BN_zero(zero.get()); bssl::UniquePtr ret(BN_new()), remainder(BN_new()); if (!ret || !remainder || !BN_sqr(ret.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "A^2", square.get(), ret.get()) || !BN_mul(ret.get(), a.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) || !BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) { return false; } BN_set_negative(a.get(), 0); if (!BN_sqrt(ret.get(), square.get(), ctx) || !ExpectBIGNUMsEqual(t, "sqrt(Square)", a.get(), ret.get())) { return false; } // BN_sqrt should fail on non-squares and negative numbers. if (!BN_is_zero(square.get())) { bssl::UniquePtr tmp(BN_new()); if (!tmp || !BN_copy(tmp.get(), square.get())) { return false; } BN_set_negative(tmp.get(), 1); if (BN_sqrt(ret.get(), tmp.get(), ctx)) { t->PrintLine("BN_sqrt succeeded on a negative number"); return false; } ERR_clear_error(); BN_set_negative(tmp.get(), 0); if (!BN_add(tmp.get(), tmp.get(), BN_value_one())) { return false; } if (BN_sqrt(ret.get(), tmp.get(), ctx)) { t->PrintLine("BN_sqrt succeeded on a non-square"); return false; } ERR_clear_error(); } return true; } static bool TestProduct(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr b = GetBIGNUM(t, "B"); bssl::UniquePtr product = GetBIGNUM(t, "Product"); bssl::UniquePtr zero(BN_new()); if (!a || !b || !product || !zero) { return false; } BN_zero(zero.get()); bssl::UniquePtr ret(BN_new()), remainder(BN_new()); if (!ret || !remainder || !BN_mul(ret.get(), a.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) || !BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx) || !ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) || !BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) { return false; } return true; } static bool TestQuotient(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr b = GetBIGNUM(t, "B"); bssl::UniquePtr quotient = GetBIGNUM(t, "Quotient"); bssl::UniquePtr remainder = GetBIGNUM(t, "Remainder"); if (!a || !b || !quotient || !remainder) { return false; } bssl::UniquePtr ret(BN_new()), ret2(BN_new()); if (!ret || !ret2 || !BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) || !ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) || !BN_mul(ret.get(), quotient.get(), b.get(), ctx) || !BN_add(ret.get(), ret.get(), remainder.get()) || !ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) { return false; } // Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough. BN_ULONG b_word = BN_get_word(b.get()); if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { BN_ULONG remainder_word = BN_get_word(remainder.get()); assert(remainder_word != (BN_ULONG)-1); if (!BN_copy(ret.get(), a.get())) { return false; } BN_ULONG ret_word = BN_div_word(ret.get(), b_word); if (ret_word != remainder_word) { t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1 "\n", ret_word, remainder_word); return false; } if (!ExpectBIGNUMsEqual(t, "A / B (word)", quotient.get(), ret.get())) { return false; } ret_word = BN_mod_word(a.get(), b_word); if (ret_word != remainder_word) { t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1 "\n", ret_word, remainder_word); return false; } } // Test BN_nnmod. if (!BN_is_negative(b.get())) { bssl::UniquePtr nnmod(BN_new()); if (!nnmod || !BN_copy(nnmod.get(), remainder.get()) || (BN_is_negative(nnmod.get()) && !BN_add(nnmod.get(), nnmod.get(), b.get())) || !BN_nnmod(ret.get(), a.get(), b.get(), ctx) || !ExpectBIGNUMsEqual(t, "A % B (non-negative)", nnmod.get(), ret.get())) { return false; } } return true; } static bool TestModMul(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr b = GetBIGNUM(t, "B"); bssl::UniquePtr m = GetBIGNUM(t, "M"); bssl::UniquePtr mod_mul = GetBIGNUM(t, "ModMul"); if (!a || !b || !m || !mod_mul) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_mod_mul(ret.get(), a.get(), b.get(), m.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * B (mod M)", mod_mul.get(), ret.get())) { return false; } if (BN_is_odd(m.get())) { // Reduce |a| and |b| and test the Montgomery version. bssl::UniquePtr mont(BN_MONT_CTX_new()); bssl::UniquePtr a_tmp(BN_new()), b_tmp(BN_new()); if (!mont || !a_tmp || !b_tmp || !BN_MONT_CTX_set(mont.get(), m.get(), ctx) || !BN_nnmod(a_tmp.get(), a.get(), m.get(), ctx) || !BN_nnmod(b_tmp.get(), b.get(), m.get(), ctx) || !BN_to_montgomery(a_tmp.get(), a_tmp.get(), mont.get(), ctx) || !BN_to_montgomery(b_tmp.get(), b_tmp.get(), mont.get(), ctx) || !BN_mod_mul_montgomery(ret.get(), a_tmp.get(), b_tmp.get(), mont.get(), ctx) || !BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx) || !ExpectBIGNUMsEqual(t, "A * B (mod M) (Montgomery)", mod_mul.get(), ret.get())) { return false; } } return true; } static bool TestModExp(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr e = GetBIGNUM(t, "E"); bssl::UniquePtr m = GetBIGNUM(t, "M"); bssl::UniquePtr mod_exp = GetBIGNUM(t, "ModExp"); if (!a || !e || !m || !mod_exp) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_mod_exp(ret.get(), a.get(), e.get(), m.get(), ctx) || !ExpectBIGNUMsEqual(t, "A ^ E (mod M)", mod_exp.get(), ret.get())) { return false; } if (BN_is_odd(m.get())) { if (!BN_mod_exp_mont(ret.get(), a.get(), e.get(), m.get(), ctx, NULL) || !ExpectBIGNUMsEqual(t, "A ^ E (mod M) (Montgomery)", mod_exp.get(), ret.get()) || !BN_mod_exp_mont_consttime(ret.get(), a.get(), e.get(), m.get(), ctx, NULL) || !ExpectBIGNUMsEqual(t, "A ^ E (mod M) (constant-time)", mod_exp.get(), ret.get())) { return false; } } return true; } static bool TestExp(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr e = GetBIGNUM(t, "E"); bssl::UniquePtr exp = GetBIGNUM(t, "Exp"); if (!a || !e || !exp) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_exp(ret.get(), a.get(), e.get(), ctx) || !ExpectBIGNUMsEqual(t, "A ^ E", exp.get(), ret.get())) { return false; } return true; } static bool TestModSqrt(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr p = GetBIGNUM(t, "P"); bssl::UniquePtr mod_sqrt = GetBIGNUM(t, "ModSqrt"); if (!a || !p || !mod_sqrt) { return false; } bssl::UniquePtr ret(BN_new()); bssl::UniquePtr ret2(BN_new()); if (!ret || !ret2 || !BN_mod_sqrt(ret.get(), a.get(), p.get(), ctx) || // There are two possible answers. !BN_sub(ret2.get(), p.get(), ret.get())) { return false; } if (BN_cmp(ret2.get(), mod_sqrt.get()) != 0 && !ExpectBIGNUMsEqual(t, "sqrt(A) (mod P)", mod_sqrt.get(), ret.get())) { return false; } return true; } static bool TestModInv(FileTest *t, BN_CTX *ctx) { bssl::UniquePtr a = GetBIGNUM(t, "A"); bssl::UniquePtr m = GetBIGNUM(t, "M"); bssl::UniquePtr mod_inv = GetBIGNUM(t, "ModInv"); if (!a || !m || !mod_inv) { return false; } bssl::UniquePtr ret(BN_new()); if (!ret || !BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) || !ExpectBIGNUMsEqual(t, "inv(A) (mod M)", mod_inv.get(), ret.get())) { return false; } BN_set_flags(a.get(), BN_FLG_CONSTTIME); if (!ret || !BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) || !ExpectBIGNUMsEqual(t, "inv(A) (mod M) (constant-time)", mod_inv.get(), ret.get())) { return false; } return true; } struct Test { const char *name; bool (*func)(FileTest *t, BN_CTX *ctx); }; static const Test kTests[] = { {"Sum", TestSum}, {"LShift1", TestLShift1}, {"LShift", TestLShift}, {"RShift", TestRShift}, {"Square", TestSquare}, {"Product", TestProduct}, {"Quotient", TestQuotient}, {"ModMul", TestModMul}, {"ModExp", TestModExp}, {"Exp", TestExp}, {"ModSqrt", TestModSqrt}, {"ModInv", TestModInv}, }; static bool RunTest(FileTest *t, void *arg) { BN_CTX *ctx = reinterpret_cast(arg); for (const Test &test : kTests) { if (t->GetType() != test.name) { continue; } return test.func(t, ctx); } t->PrintLine("Unknown test type: %s", t->GetType().c_str()); return false; } static bool TestBN2BinPadded(BN_CTX *ctx) { uint8_t zeros[256], out[256], reference[128]; memset(zeros, 0, sizeof(zeros)); // Test edge case at 0. bssl::UniquePtr n(BN_new()); if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in an empty buffer.\n"); return false; } memset(out, -1, sizeof(out)); if (!BN_bn2bin_padded(out, sizeof(out), n.get())) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n"); return false; } if (memcmp(zeros, out, sizeof(out))) { fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n"); return false; } // Test a random numbers at various byte lengths. for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { if (!BN_rand(n.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) { ERR_print_errors_fp(stderr); return false; } if (BN_num_bytes(n.get()) != bytes || BN_bn2bin(n.get(), reference) != bytes) { fprintf(stderr, "Bad result from BN_rand; bytes.\n"); return false; } // Empty buffer should fail. if (BN_bn2bin_padded(NULL, 0, n.get())) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on empty buffer.\n"); return false; } // One byte short should fail. if (BN_bn2bin_padded(out, bytes - 1, n.get())) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n"); return false; } // Exactly right size should encode. if (!BN_bn2bin_padded(out, bytes, n.get()) || memcmp(out, reference, bytes) != 0) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } // Pad up one byte extra. if (!BN_bn2bin_padded(out, bytes + 1, n.get()) || memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } // Pad up to 256. if (!BN_bn2bin_padded(out, sizeof(out), n.get()) || memcmp(out + sizeof(out) - bytes, reference, bytes) || memcmp(out, zeros, sizeof(out) - bytes)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); return false; } } return true; } static int DecimalToBIGNUM(bssl::UniquePtr *out, const char *in) { BIGNUM *raw = NULL; int ret = BN_dec2bn(&raw, in); out->reset(raw); return ret; } static bool TestDec2BN(BN_CTX *ctx) { bssl::UniquePtr bn; int ret = DecimalToBIGNUM(&bn, "0"); if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "256"); if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored"); if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_dec2bn gave a bad result.\n"); return false; } return true; } static bool TestHex2BN(BN_CTX *ctx) { bssl::UniquePtr bn; int ret = HexToBIGNUM(&bn, "0"); if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "256"); if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored"); if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_hex2bn gave a bad result.\n"); return false; } return true; } static bssl::UniquePtr ASCIIToBIGNUM(const char *in) { BIGNUM *raw = NULL; if (!BN_asc2bn(&raw, in)) { return nullptr; } return bssl::UniquePtr(raw); } static bool TestASC2BN(BN_CTX *ctx) { bssl::UniquePtr bn = ASCIIToBIGNUM("0"); if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("256"); if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-42"); if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("0x1234"); if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("0X1234"); if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-0xabcd"); if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("-0"); if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } bn = ASCIIToBIGNUM("123trailing garbage is ignored"); if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) { fprintf(stderr, "BN_asc2bn gave a bad result.\n"); return false; } return true; } struct MPITest { const char *base10; const char *mpi; size_t mpi_len; }; static const MPITest kMPITests[] = { { "0", "\x00\x00\x00\x00", 4 }, { "1", "\x00\x00\x00\x01\x01", 5 }, { "-1", "\x00\x00\x00\x01\x81", 5 }, { "128", "\x00\x00\x00\x02\x00\x80", 6 }, { "256", "\x00\x00\x00\x02\x01\x00", 6 }, { "-256", "\x00\x00\x00\x02\x81\x00", 6 }, }; static bool TestMPI() { uint8_t scratch[8]; for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMPITests); i++) { const MPITest &test = kMPITests[i]; bssl::UniquePtr bn(ASCIIToBIGNUM(test.base10)); if (!bn) { return false; } const size_t mpi_len = BN_bn2mpi(bn.get(), NULL); if (mpi_len > sizeof(scratch)) { fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n", (unsigned)i); return false; } const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch); if (mpi_len != mpi_len2) { fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i); return false; } if (mpi_len != test.mpi_len || memcmp(test.mpi, scratch, mpi_len) != 0) { fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i); hexdump(stderr, "Expected: ", test.mpi, test.mpi_len); hexdump(stderr, "Got: ", scratch, mpi_len); return false; } bssl::UniquePtr bn2(BN_mpi2bn(scratch, mpi_len, NULL)); if (bn2.get() == nullptr) { fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i); return false; } } return true; } static bool TestRand() { bssl::UniquePtr bn(BN_new()); if (!bn) { return false; } // Test BN_rand accounts for degenerate cases with |top| and |bottom| // parameters. if (!BN_rand(bn.get(), 0, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) || !BN_is_zero(bn.get())) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 0, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD) || !BN_is_zero(bn.get())) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ODD) || !BN_is_word(bn.get(), 1)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } if (!BN_rand(bn.get(), 2, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) || !BN_is_word(bn.get(), 3)) { fprintf(stderr, "BN_rand gave a bad result.\n"); return false; } return true; } struct ASN1Test { const char *value_ascii; const char *der; size_t der_len; }; static const ASN1Test kASN1Tests[] = { {"0", "\x02\x01\x00", 3}, {"1", "\x02\x01\x01", 3}, {"127", "\x02\x01\x7f", 3}, {"128", "\x02\x02\x00\x80", 4}, {"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7}, {"0x0102030405060708", "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, {"0xffffffffffffffff", "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, }; struct ASN1InvalidTest { const char *der; size_t der_len; }; static const ASN1InvalidTest kASN1InvalidTests[] = { // Bad tag. {"\x03\x01\x00", 3}, // Empty contents. {"\x02\x00", 2}, }; // kASN1BuggyTests contains incorrect encodings and the corresponding, expected // results of |BN_parse_asn1_unsigned_buggy| given that input. static const ASN1Test kASN1BuggyTests[] = { // Negative numbers. {"128", "\x02\x01\x80", 3}, {"255", "\x02\x01\xff", 3}, // Unnecessary leading zeros. {"1", "\x02\x02\x00\x01", 4}, }; static bool TestASN1() { for (const ASN1Test &test : kASN1Tests) { bssl::UniquePtr bn = ASCIIToBIGNUM(test.value_ascii); if (!bn) { return false; } // Test that the input is correctly parsed. bssl::UniquePtr bn2(BN_new()); if (!bn2) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "Bad parse.\n"); return false; } // Test the value serializes correctly. bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; if (!CBB_init(cbb.get(), 0) || !BN_marshal_asn1(cbb.get(), bn.get()) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } bssl::UniquePtr delete_der(der); if (der_len != test.der_len || memcmp(der, reinterpret_cast(test.der), der_len) != 0) { fprintf(stderr, "Bad serialization.\n"); return false; } // |BN_parse_asn1_unsigned_buggy| parses all valid input. CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "Bad parse.\n"); return false; } } for (const ASN1InvalidTest &test : kASN1InvalidTests) { bssl::UniquePtr bn(BN_new()); if (!bn) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); // All tests in kASN1InvalidTests are also rejected by // |BN_parse_asn1_unsigned_buggy|. CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); } for (const ASN1Test &test : kASN1BuggyTests) { // These broken encodings are rejected by |BN_parse_asn1_unsigned|. bssl::UniquePtr bn(BN_new()); if (!bn) { return false; } CBS cbs; CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (BN_parse_asn1_unsigned(&cbs, bn.get())) { fprintf(stderr, "Parsed invalid input.\n"); return false; } ERR_clear_error(); // However |BN_parse_asn1_unsigned_buggy| accepts them. bssl::UniquePtr bn2 = ASCIIToBIGNUM(test.value_ascii); if (!bn2) { return false; } CBS_init(&cbs, reinterpret_cast(test.der), test.der_len); if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) { fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n"); return false; } if (BN_cmp(bn.get(), bn2.get()) != 0) { fprintf(stderr, "\"Bad\" parse.\n"); return false; } } // Serializing negative numbers is not supported. bssl::UniquePtr bn = ASCIIToBIGNUM("-1"); if (!bn) { return false; } bssl::ScopedCBB cbb; if (!CBB_init(cbb.get(), 0) || BN_marshal_asn1(cbb.get(), bn.get())) { fprintf(stderr, "Serialized negative number.\n"); return false; } ERR_clear_error(); return true; } static bool TestNegativeZero(BN_CTX *ctx) { bssl::UniquePtr a(BN_new()); bssl::UniquePtr b(BN_new()); bssl::UniquePtr c(BN_new()); if (!a || !b || !c) { return false; } // Test that BN_mul never gives negative zero. if (!BN_set_word(a.get(), 1)) { return false; } BN_set_negative(a.get(), 1); BN_zero(b.get()); if (!BN_mul(c.get(), a.get(), b.get(), ctx)) { return false; } if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) { fprintf(stderr, "Multiplication test failed.\n"); return false; } for (int consttime = 0; consttime < 2; consttime++) { bssl::UniquePtr numerator(BN_new()), denominator(BN_new()); if (!numerator || !denominator) { return false; } if (consttime) { BN_set_flags(numerator.get(), BN_FLG_CONSTTIME); BN_set_flags(denominator.get(), BN_FLG_CONSTTIME); } // Test that BN_div never gives negative zero in the quotient. if (!BN_set_word(numerator.get(), 1) || !BN_set_word(denominator.get(), 2)) { return false; } BN_set_negative(numerator.get(), 1); if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) { return false; } if (!BN_is_zero(a.get()) || BN_is_negative(a.get())) { fprintf(stderr, "Incorrect quotient (consttime = %d).\n", consttime); return false; } // Test that BN_div never gives negative zero in the remainder. if (!BN_set_word(denominator.get(), 1)) { return false; } if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) { return false; } if (!BN_is_zero(b.get()) || BN_is_negative(b.get())) { fprintf(stderr, "Incorrect remainder (consttime = %d).\n", consttime); return false; } } // Test that BN_set_negative will not produce a negative zero. BN_zero(a.get()); BN_set_negative(a.get(), 1); if (BN_is_negative(a.get())) { fprintf(stderr, "BN_set_negative produced a negative zero.\n"); return false; } // Test that forcibly creating a negative zero does not break |BN_bn2hex| or // |BN_bn2dec|. a->neg = 1; bssl::UniquePtr dec(BN_bn2dec(a.get())); bssl::UniquePtr hex(BN_bn2hex(a.get())); if (!dec || !hex || strcmp(dec.get(), "-0") != 0 || strcmp(hex.get(), "-0") != 0) { fprintf(stderr, "BN_bn2dec or BN_bn2hex failed with negative zero.\n"); return false; } return true; } static bool TestBadModulus(BN_CTX *ctx) { bssl::UniquePtr a(BN_new()); bssl::UniquePtr b(BN_new()); bssl::UniquePtr zero(BN_new()); bssl::UniquePtr mont(BN_MONT_CTX_new()); if (!a || !b || !zero || !mont) { return false; } BN_zero(zero.get()); if (BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx)) { fprintf(stderr, "Division by zero unexpectedly succeeded.\n"); return false; } ERR_clear_error(); if (BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) { fprintf(stderr, "BN_mod_mul with zero modulus unexpectedly succeeded.\n"); return false; } ERR_clear_error(); if (BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) { fprintf(stderr, "BN_mod_exp with zero modulus unexpectedly succeeded.\n"); return 0; } ERR_clear_error(); if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont with zero modulus unexpectedly succeeded.\n"); return 0; } ERR_clear_error(); if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx, nullptr)) { fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus unexpectedly " "succeeded.\n"); return 0; } ERR_clear_error(); if (BN_MONT_CTX_set(mont.get(), zero.get(), ctx)) { fprintf(stderr, "BN_MONT_CTX_set unexpectedly succeeded for zero modulus.\n"); return false; } ERR_clear_error(); // Some operations also may not be used with an even modulus. if (!BN_set_word(b.get(), 16)) { return false; } if (BN_MONT_CTX_set(mont.get(), b.get(), ctx)) { fprintf(stderr, "BN_MONT_CTX_set unexpectedly succeeded for even modulus.\n"); return false; } ERR_clear_error(); if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont with even modulus unexpectedly succeeded.\n"); return 0; } ERR_clear_error(); if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx, nullptr)) { fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus unexpectedly " "succeeded.\n"); return 0; } ERR_clear_error(); return true; } // TestExpModZero tests that 1**0 mod 1 == 0. static bool TestExpModZero() { bssl::UniquePtr zero(BN_new()), a(BN_new()), r(BN_new()); if (!zero || !a || !r || !BN_rand(a.get(), 1024, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) { return false; } BN_zero(zero.get()); if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get()) || !BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr, nullptr) || !BN_is_zero(r.get())) { return false; } return true; } static bool TestSmallPrime(BN_CTX *ctx) { static const unsigned kBits = 10; bssl::UniquePtr r(BN_new()); if (!r || !BN_generate_prime_ex(r.get(), static_cast(kBits), 0, NULL, NULL, NULL)) { return false; } if (BN_num_bits(r.get()) != kBits) { fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits, BN_num_bits(r.get())); return false; } return true; } static bool TestCmpWord() { static const BN_ULONG kMaxWord = (BN_ULONG)-1; bssl::UniquePtr r(BN_new()); if (!r || !BN_set_word(r.get(), 0)) { return false; } if (BN_cmp_word(r.get(), 0) != 0 || BN_cmp_word(r.get(), 1) >= 0 || BN_cmp_word(r.get(), kMaxWord) >= 0) { fprintf(stderr, "BN_cmp_word compared against 0 incorrectly.\n"); return false; } if (!BN_set_word(r.get(), 100)) { return false; } if (BN_cmp_word(r.get(), 0) <= 0 || BN_cmp_word(r.get(), 99) <= 0 || BN_cmp_word(r.get(), 100) != 0 || BN_cmp_word(r.get(), 101) >= 0 || BN_cmp_word(r.get(), kMaxWord) >= 0) { fprintf(stderr, "BN_cmp_word compared against 100 incorrectly.\n"); return false; } BN_set_negative(r.get(), 1); if (BN_cmp_word(r.get(), 0) >= 0 || BN_cmp_word(r.get(), 100) >= 0 || BN_cmp_word(r.get(), kMaxWord) >= 0) { fprintf(stderr, "BN_cmp_word compared against -100 incorrectly.\n"); return false; } if (!BN_set_word(r.get(), kMaxWord)) { return false; } if (BN_cmp_word(r.get(), 0) <= 0 || BN_cmp_word(r.get(), kMaxWord - 1) <= 0 || BN_cmp_word(r.get(), kMaxWord) != 0) { fprintf(stderr, "BN_cmp_word compared against kMaxWord incorrectly.\n"); return false; } if (!BN_add(r.get(), r.get(), BN_value_one())) { return false; } if (BN_cmp_word(r.get(), 0) <= 0 || BN_cmp_word(r.get(), kMaxWord) <= 0) { fprintf(stderr, "BN_cmp_word compared against kMaxWord + 1 incorrectly.\n"); return false; } BN_set_negative(r.get(), 1); if (BN_cmp_word(r.get(), 0) >= 0 || BN_cmp_word(r.get(), kMaxWord) >= 0) { fprintf(stderr, "BN_cmp_word compared against -kMaxWord - 1 incorrectly.\n"); return false; } return true; } static bool TestBN2Dec() { static const char *kBN2DecTests[] = { "0", "1", "-1", "100", "-100", "123456789012345678901234567890", "-123456789012345678901234567890", "123456789012345678901234567890123456789012345678901234567890", "-123456789012345678901234567890123456789012345678901234567890", }; for (const char *test : kBN2DecTests) { bssl::UniquePtr bn; int ret = DecimalToBIGNUM(&bn, test); if (ret == 0) { return false; } bssl::UniquePtr dec(BN_bn2dec(bn.get())); if (!dec) { fprintf(stderr, "BN_bn2dec failed on %s.\n", test); return false; } if (strcmp(dec.get(), test) != 0) { fprintf(stderr, "BN_bn2dec gave %s, wanted %s.\n", dec.get(), test); return false; } } return true; } static bool TestBNSetU64() { static const struct { const char *hex; uint64_t value; } kU64Tests[] = { {"0", UINT64_C(0x0)}, {"1", UINT64_C(0x1)}, {"ffffffff", UINT64_C(0xffffffff)}, {"100000000", UINT64_C(0x100000000)}, {"ffffffffffffffff", UINT64_C(0xffffffffffffffff)}, }; for (const auto& test : kU64Tests) { bssl::UniquePtr bn(BN_new()), expected; if (!bn || !BN_set_u64(bn.get(), test.value) || !HexToBIGNUM(&expected, test.hex) || BN_cmp(bn.get(), expected.get()) != 0) { fprintf(stderr, "BN_set_u64 test failed for 0x%s.\n", test.hex); ERR_print_errors_fp(stderr); return false; } } return true; } int main(int argc, char *argv[]) { CRYPTO_library_init(); if (argc != 2) { fprintf(stderr, "%s TEST_FILE\n", argv[0]); return 1; } bssl::UniquePtr ctx(BN_CTX_new()); if (!ctx) { return 1; } if (!TestBN2BinPadded(ctx.get()) || !TestDec2BN(ctx.get()) || !TestHex2BN(ctx.get()) || !TestASC2BN(ctx.get()) || !TestMPI() || !TestRand() || !TestASN1() || !TestNegativeZero(ctx.get()) || !TestBadModulus(ctx.get()) || !TestExpModZero() || !TestSmallPrime(ctx.get()) || !TestCmpWord() || !TestBN2Dec() || !TestBNSetU64()) { return 1; } return FileTestMain(RunTest, ctx.get(), argv[1]); }