/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include #include #include #include #include #include "internal.h" #include "../../internal.h" // Most method functions in this file are designed to work with non-trivial // representations of field elements if necessary (see ecp_mont.c): while // standard modular addition and subtraction are used, the field_mul and // field_sqr methods will be used for multiplication, and field_encode and // field_decode (if defined) will be used for converting between // representations. // // Functions here specifically assume that if a non-trivial representation is // used, it is a Montgomery representation (i.e. 'encoding' means multiplying // by some factor R). int ec_GFp_simple_group_init(EC_GROUP *group) { BN_init(&group->field); BN_init(&group->a); BN_init(&group->b); BN_init(&group->one); group->a_is_minus3 = 0; return 1; } void ec_GFp_simple_group_finish(EC_GROUP *group) { BN_free(&group->field); BN_free(&group->a); BN_free(&group->b); BN_free(&group->one); } int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) { if (!BN_copy(&dest->field, &src->field) || !BN_copy(&dest->a, &src->a) || !BN_copy(&dest->b, &src->b) || !BN_copy(&dest->one, &src->one)) { return 0; } dest->a_is_minus3 = src->a_is_minus3; return 1; } int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *tmp_a; // p must be a prime > 3 if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); tmp_a = BN_CTX_get(ctx); if (tmp_a == NULL) { goto err; } // group->field if (!BN_copy(&group->field, p)) { goto err; } BN_set_negative(&group->field, 0); // group->a if (!BN_nnmod(tmp_a, a, p, ctx)) { goto err; } if (group->meth->field_encode) { if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) { goto err; } } else if (!BN_copy(&group->a, tmp_a)) { goto err; } // group->b if (!BN_nnmod(&group->b, b, p, ctx)) { goto err; } if (group->meth->field_encode && !group->meth->field_encode(group, &group->b, &group->b, ctx)) { goto err; } // group->a_is_minus3 if (!BN_add_word(tmp_a, 3)) { goto err; } group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); if (group->meth->field_encode != NULL) { if (!group->meth->field_encode(group, &group->one, BN_value_one(), ctx)) { goto err; } } else if (!BN_copy(&group->one, BN_value_one())) { goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; if (p != NULL && !BN_copy(p, &group->field)) { return 0; } if (a != NULL || b != NULL) { if (group->meth->field_decode) { if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) { goto err; } if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) { goto err; } } else { if (a != NULL && !BN_copy(a, &group->a)) { goto err; } if (b != NULL && !BN_copy(b, &group->b)) { goto err; } } } ret = 1; err: BN_CTX_free(new_ctx); return ret; } unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) { return BN_num_bits(&group->field); } int ec_GFp_simple_point_init(EC_POINT *point) { BN_init(&point->X); BN_init(&point->Y); BN_init(&point->Z); return 1; } void ec_GFp_simple_point_finish(EC_POINT *point) { BN_free(&point->X); BN_free(&point->Y); BN_free(&point->Z); } void ec_GFp_simple_point_clear_finish(EC_POINT *point) { BN_clear_free(&point->X); BN_clear_free(&point->Y); BN_clear_free(&point->Z); } int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) { if (!BN_copy(&dest->X, &src->X) || !BN_copy(&dest->Y, &src->Y) || !BN_copy(&dest->Z, &src->Z)) { return 0; } return 1; } int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { BN_zero(&point->Z); return 1; } static int set_Jprojective_coordinate_GFp(const EC_GROUP *group, BIGNUM *out, const BIGNUM *in, BN_CTX *ctx) { if (in == NULL) { return 1; } if (BN_is_negative(in) || BN_cmp(in, &group->field) >= 0) { OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE); return 0; } if (group->meth->field_encode) { return group->meth->field_encode(group, out, in, ctx); } return BN_copy(out, in) != NULL; } int ec_GFp_simple_set_Jprojective_coordinates_GFp( const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; int ret = 0; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } if (!set_Jprojective_coordinate_GFp(group, &point->X, x, ctx) || !set_Jprojective_coordinate_GFp(group, &point->Y, y, ctx) || !set_Jprojective_coordinate_GFp(group, &point->Z, z, ctx)) { goto err; } ret = 1; err: BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; int ret = 0; if (group->meth->field_decode != 0) { if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) { goto err; } if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) { goto err; } if (z != NULL && !group->meth->field_decode(group, z, &point->Z, ctx)) { goto err; } } else { if (x != NULL && !BN_copy(x, &point->X)) { goto err; } if (y != NULL && !BN_copy(y, &point->Y)) { goto err; } if (z != NULL && !BN_copy(z, &point->Z)) { goto err; } } ret = 1; err: BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { if (x == NULL || y == NULL) { // unlike for projective coordinates, we do not tolerate this OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return 0; } return ec_point_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); } int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; int ret = 0; if (a == b) { return EC_POINT_dbl(group, r, a, ctx); } if (EC_POINT_is_at_infinity(group, a)) { return EC_POINT_copy(r, b); } if (EC_POINT_is_at_infinity(group, b)) { return EC_POINT_copy(r, a); } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); n4 = BN_CTX_get(ctx); n5 = BN_CTX_get(ctx); n6 = BN_CTX_get(ctx); if (n6 == NULL) { goto end; } // Note that in this function we must not read components of 'a' or 'b' // once we have written the corresponding components of 'r'. // ('r' might be one of 'a' or 'b'.) // n1, n2 int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0; if (b_Z_is_one) { if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) { goto end; } // n1 = X_a // n2 = Y_a } else { if (!field_sqr(group, n0, &b->Z, ctx) || !field_mul(group, n1, &a->X, n0, ctx)) { goto end; } // n1 = X_a * Z_b^2 if (!field_mul(group, n0, n0, &b->Z, ctx) || !field_mul(group, n2, &a->Y, n0, ctx)) { goto end; } // n2 = Y_a * Z_b^3 } // n3, n4 int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0; if (a_Z_is_one) { if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) { goto end; } // n3 = X_b // n4 = Y_b } else { if (!field_sqr(group, n0, &a->Z, ctx) || !field_mul(group, n3, &b->X, n0, ctx)) { goto end; } // n3 = X_b * Z_a^2 if (!field_mul(group, n0, n0, &a->Z, ctx) || !field_mul(group, n4, &b->Y, n0, ctx)) { goto end; } // n4 = Y_b * Z_a^3 } // n5, n6 if (!BN_mod_sub_quick(n5, n1, n3, p) || !BN_mod_sub_quick(n6, n2, n4, p)) { goto end; } // n5 = n1 - n3 // n6 = n2 - n4 if (BN_is_zero(n5)) { if (BN_is_zero(n6)) { // a is the same point as b BN_CTX_end(ctx); ret = EC_POINT_dbl(group, r, a, ctx); ctx = NULL; goto end; } else { // a is the inverse of b BN_zero(&r->Z); ret = 1; goto end; } } // 'n7', 'n8' if (!BN_mod_add_quick(n1, n1, n3, p) || !BN_mod_add_quick(n2, n2, n4, p)) { goto end; } // 'n7' = n1 + n3 // 'n8' = n2 + n4 // Z_r if (a_Z_is_one && b_Z_is_one) { if (!BN_copy(&r->Z, n5)) { goto end; } } else { if (a_Z_is_one) { if (!BN_copy(n0, &b->Z)) { goto end; } } else if (b_Z_is_one) { if (!BN_copy(n0, &a->Z)) { goto end; } } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) { goto end; } if (!field_mul(group, &r->Z, n0, n5, ctx)) { goto end; } } // Z_r = Z_a * Z_b * n5 // X_r if (!field_sqr(group, n0, n6, ctx) || !field_sqr(group, n4, n5, ctx) || !field_mul(group, n3, n1, n4, ctx) || !BN_mod_sub_quick(&r->X, n0, n3, p)) { goto end; } // X_r = n6^2 - n5^2 * 'n7' // 'n9' if (!BN_mod_lshift1_quick(n0, &r->X, p) || !BN_mod_sub_quick(n0, n3, n0, p)) { goto end; } // n9 = n5^2 * 'n7' - 2 * X_r // Y_r if (!field_mul(group, n0, n0, n6, ctx) || !field_mul(group, n5, n4, n5, ctx)) { goto end; // now n5 is n5^3 } if (!field_mul(group, n1, n2, n5, ctx) || !BN_mod_sub_quick(n0, n0, n1, p)) { goto end; } if (BN_is_odd(n0) && !BN_add(n0, n0, p)) { goto end; } // now 0 <= n0 < 2*p, and n0 is even if (!BN_rshift1(&r->Y, n0)) { goto end; } // Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 ret = 1; end: if (ctx) { // otherwise we already called BN_CTX_end BN_CTX_end(ctx); } BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { BN_zero(&r->Z); return 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); if (n3 == NULL) { goto err; } // Note that in this function we must not read components of 'a' // once we have written the corresponding components of 'r'. // ('r' might the same as 'a'.) // n1 if (BN_cmp(&a->Z, &group->one) == 0) { if (!field_sqr(group, n0, &a->X, ctx) || !BN_mod_lshift1_quick(n1, n0, p) || !BN_mod_add_quick(n0, n0, n1, p) || !BN_mod_add_quick(n1, n0, &group->a, p)) { goto err; } // n1 = 3 * X_a^2 + a_curve } else if (group->a_is_minus3) { if (!field_sqr(group, n1, &a->Z, ctx) || !BN_mod_add_quick(n0, &a->X, n1, p) || !BN_mod_sub_quick(n2, &a->X, n1, p) || !field_mul(group, n1, n0, n2, ctx) || !BN_mod_lshift1_quick(n0, n1, p) || !BN_mod_add_quick(n1, n0, n1, p)) { goto err; } // n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) // = 3 * X_a^2 - 3 * Z_a^4 } else { if (!field_sqr(group, n0, &a->X, ctx) || !BN_mod_lshift1_quick(n1, n0, p) || !BN_mod_add_quick(n0, n0, n1, p) || !field_sqr(group, n1, &a->Z, ctx) || !field_sqr(group, n1, n1, ctx) || !field_mul(group, n1, n1, &group->a, ctx) || !BN_mod_add_quick(n1, n1, n0, p)) { goto err; } // n1 = 3 * X_a^2 + a_curve * Z_a^4 } // Z_r if (BN_cmp(&a->Z, &group->one) == 0) { if (!BN_copy(n0, &a->Y)) { goto err; } } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) { goto err; } if (!BN_mod_lshift1_quick(&r->Z, n0, p)) { goto err; } // Z_r = 2 * Y_a * Z_a // n2 if (!field_sqr(group, n3, &a->Y, ctx) || !field_mul(group, n2, &a->X, n3, ctx) || !BN_mod_lshift_quick(n2, n2, 2, p)) { goto err; } // n2 = 4 * X_a * Y_a^2 // X_r if (!BN_mod_lshift1_quick(n0, n2, p) || !field_sqr(group, &r->X, n1, ctx) || !BN_mod_sub_quick(&r->X, &r->X, n0, p)) { goto err; } // X_r = n1^2 - 2 * n2 // n3 if (!field_sqr(group, n0, n3, ctx) || !BN_mod_lshift_quick(n3, n0, 3, p)) { goto err; } // n3 = 8 * Y_a^4 // Y_r if (!BN_mod_sub_quick(n0, n2, &r->X, p) || !field_mul(group, n0, n1, n0, ctx) || !BN_mod_sub_quick(&r->Y, n0, n3, p)) { goto err; } // Y_r = n1 * (n2 - X_r) - n3 ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) { // point is its own inverse return 1; } return BN_usub(&point->Y, &group->field, &point->Y); } int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { return BN_is_zero(&point->Z); } int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *rh, *tmp, *Z4, *Z6; int ret = 0; if (EC_POINT_is_at_infinity(group, point)) { return 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); rh = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); Z4 = BN_CTX_get(ctx); Z6 = BN_CTX_get(ctx); if (Z6 == NULL) { goto err; } // We have a curve defined by a Weierstrass equation // y^2 = x^3 + a*x + b. // The point to consider is given in Jacobian projective coordinates // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). // Substituting this and multiplying by Z^6 transforms the above equation // into // Y^2 = X^3 + a*X*Z^4 + b*Z^6. // To test this, we add up the right-hand side in 'rh'. // rh := X^2 if (!field_sqr(group, rh, &point->X, ctx)) { goto err; } if (BN_cmp(&point->Z, &group->one) != 0) { if (!field_sqr(group, tmp, &point->Z, ctx) || !field_sqr(group, Z4, tmp, ctx) || !field_mul(group, Z6, Z4, tmp, ctx)) { goto err; } // rh := (rh + a*Z^4)*X if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp, Z4, p) || !BN_mod_add_quick(tmp, tmp, Z4, p) || !BN_mod_sub_quick(rh, rh, tmp, p) || !field_mul(group, rh, rh, &point->X, ctx)) { goto err; } } else { if (!field_mul(group, tmp, Z4, &group->a, ctx) || !BN_mod_add_quick(rh, rh, tmp, p) || !field_mul(group, rh, rh, &point->X, ctx)) { goto err; } } // rh := rh + b*Z^6 if (!field_mul(group, tmp, &group->b, Z6, ctx) || !BN_mod_add_quick(rh, rh, tmp, p)) { goto err; } } else { // rh := (rh + a)*X if (!BN_mod_add_quick(rh, rh, &group->a, p) || !field_mul(group, rh, rh, &point->X, ctx)) { goto err; } // rh := rh + b if (!BN_mod_add_quick(rh, rh, &group->b, p)) { goto err; } } // 'lh' := Y^2 if (!field_sqr(group, tmp, &point->Y, ctx)) { goto err; } ret = (0 == BN_ucmp(tmp, rh)); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { // return values: // -1 error // 0 equal (in affine coordinates) // 1 not equal int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *Za23, *Zb23; const BIGNUM *tmp1_, *tmp2_; int ret = -1; if (EC_POINT_is_at_infinity(group, a)) { return EC_POINT_is_at_infinity(group, b) ? 0 : 1; } if (EC_POINT_is_at_infinity(group, b)) { return 1; } int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0; int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0; if (a_Z_is_one && b_Z_is_one) { return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return -1; } } BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); Za23 = BN_CTX_get(ctx); Zb23 = BN_CTX_get(ctx); if (Zb23 == NULL) { goto end; } // We have to decide whether // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), // or equivalently, whether // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). if (!b_Z_is_one) { if (!field_sqr(group, Zb23, &b->Z, ctx) || !field_mul(group, tmp1, &a->X, Zb23, ctx)) { goto end; } tmp1_ = tmp1; } else { tmp1_ = &a->X; } if (!a_Z_is_one) { if (!field_sqr(group, Za23, &a->Z, ctx) || !field_mul(group, tmp2, &b->X, Za23, ctx)) { goto end; } tmp2_ = tmp2; } else { tmp2_ = &b->X; } // compare X_a*Z_b^2 with X_b*Z_a^2 if (BN_cmp(tmp1_, tmp2_) != 0) { ret = 1; // points differ goto end; } if (!b_Z_is_one) { if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) || !field_mul(group, tmp1, &a->Y, Zb23, ctx)) { goto end; } // tmp1_ = tmp1 } else { tmp1_ = &a->Y; } if (!a_Z_is_one) { if (!field_mul(group, Za23, Za23, &a->Z, ctx) || !field_mul(group, tmp2, &b->Y, Za23, ctx)) { goto end; } // tmp2_ = tmp2 } else { tmp2_ = &b->Y; } // compare Y_a*Z_b^3 with Y_b*Z_a^3 if (BN_cmp(tmp1_, tmp2_) != 0) { ret = 1; // points differ goto end; } // points are equal ret = 0; end: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x, *y; int ret = 0; if (BN_cmp(&point->Z, &group->one) == 0 || EC_POINT_is_at_infinity(group, point)) { return 1; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) { goto err; } if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) || !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { goto err; } if (BN_cmp(&point->Z, &group->one) != 0) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp, *tmp_Z; BIGNUM **prod_Z = NULL; int ret = 0; if (num == 0) { return 1; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); tmp_Z = BN_CTX_get(ctx); if (tmp == NULL || tmp_Z == NULL) { goto err; } prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); if (prod_Z == NULL) { goto err; } OPENSSL_memset(prod_Z, 0, num * sizeof(prod_Z[0])); for (size_t i = 0; i < num; i++) { prod_Z[i] = BN_new(); if (prod_Z[i] == NULL) { goto err; } } // Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, // skipping any zero-valued inputs (pretend that they're 1). if (!BN_is_zero(&points[0]->Z)) { if (!BN_copy(prod_Z[0], &points[0]->Z)) { goto err; } } else { if (BN_copy(prod_Z[0], &group->one) == NULL) { goto err; } } for (size_t i = 1; i < num; i++) { if (!BN_is_zero(&points[i]->Z)) { if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], &points[i]->Z, ctx)) { goto err; } } else { if (!BN_copy(prod_Z[i], prod_Z[i - 1])) { goto err; } } } // Now use a single explicit inversion to replace every non-zero points[i]->Z // by its inverse. We use |BN_mod_inverse_odd| instead of doing a constant- // time inversion using Fermat's Little Theorem because this function is // usually only used for converting multiples of a public key point to // affine, and a public key point isn't secret. If we were to use Fermat's // Little Theorem then the cost of the inversion would usually be so high // that converting the multiples to affine would be counterproductive. int no_inverse; if (!BN_mod_inverse_odd(tmp, &no_inverse, prod_Z[num - 1], &group->field, ctx)) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); goto err; } if (group->meth->field_encode != NULL) { // In the Montgomery case, we just turned R*H (representing H) // into 1/(R*H), but we need R*(1/H) (representing 1/H); // i.e. we need to multiply by the Montgomery factor twice. if (!group->meth->field_encode(group, tmp, tmp, ctx) || !group->meth->field_encode(group, tmp, tmp, ctx)) { goto err; } } for (size_t i = num - 1; i > 0; --i) { // Loop invariant: tmp is the product of the inverses of // points[0]->Z .. points[i]->Z (zero-valued inputs skipped). if (BN_is_zero(&points[i]->Z)) { continue; } // Set tmp_Z to the inverse of points[i]->Z (as product // of Z inverses 0 .. i, Z values 0 .. i - 1). if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) || // Update tmp to satisfy the loop invariant for i - 1. !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) || // Replace points[i]->Z by its inverse. !BN_copy(&points[i]->Z, tmp_Z)) { goto err; } } // Replace points[0]->Z by its inverse. if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) { goto err; } // Finally, fix up the X and Y coordinates for all points. for (size_t i = 0; i < num; i++) { EC_POINT *p = points[i]; if (!BN_is_zero(&p->Z)) { // turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) || !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) || !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) || !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) { goto err; } if (BN_copy(&p->Z, &group->one) == NULL) { goto err; } } } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); if (prod_Z != NULL) { for (size_t i = 0; i < num; i++) { if (prod_Z[i] == NULL) { break; } BN_clear_free(prod_Z[i]); } OPENSSL_free(prod_Z); } return ret; } int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_mod_mul(r, a, b, &group->field, ctx); } int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { return BN_mod_sqr(r, a, &group->field, ctx); }