/* * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project. */ /* ==================================================================== * Copyright (c) 2015 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include OPENSSL_MSVC_PRAGMA(warning(push)) OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) #include #include #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #include #include #include #include #include #include "../test/file_test.h" // evp_test dispatches between multiple test types. PrivateKey tests take a key // name parameter and single block, decode it as a PEM private key, and save it // under that key name. Decrypt, Sign, and Verify tests take a previously // imported key name as parameter and test their respective operations. static const EVP_MD *GetDigest(FileTest *t, const std::string &name) { if (name == "MD5") { return EVP_md5(); } else if (name == "SHA1") { return EVP_sha1(); } else if (name == "SHA224") { return EVP_sha224(); } else if (name == "SHA256") { return EVP_sha256(); } else if (name == "SHA384") { return EVP_sha384(); } else if (name == "SHA512") { return EVP_sha512(); } t->PrintLine("Unknown digest: '%s'", name.c_str()); return nullptr; } static int GetKeyType(FileTest *t, const std::string &name) { if (name == "RSA") { return EVP_PKEY_RSA; } if (name == "EC") { return EVP_PKEY_EC; } if (name == "DSA") { return EVP_PKEY_DSA; } if (name == "Ed25519") { return EVP_PKEY_ED25519; } t->PrintLine("Unknown key type: '%s'", name.c_str()); return EVP_PKEY_NONE; } static int GetRSAPadding(FileTest *t, int *out, const std::string &name) { if (name == "PKCS1") { *out = RSA_PKCS1_PADDING; return true; } if (name == "PSS") { *out = RSA_PKCS1_PSS_PADDING; return true; } if (name == "OAEP") { *out = RSA_PKCS1_OAEP_PADDING; return true; } t->PrintLine("Unknown RSA padding mode: '%s'", name.c_str()); return false; } using KeyMap = std::map>; static bool ImportKey(FileTest *t, KeyMap *key_map, EVP_PKEY *(*parse_func)(CBS *cbs), int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) { std::vector input; if (!t->GetBytes(&input, "Input")) { return false; } CBS cbs; CBS_init(&cbs, input.data(), input.size()); bssl::UniquePtr pkey(parse_func(&cbs)); if (!pkey) { return false; } std::string key_type; if (!t->GetAttribute(&key_type, "Type")) { return false; } if (EVP_PKEY_id(pkey.get()) != GetKeyType(t, key_type)) { t->PrintLine("Bad key type."); return false; } // The key must re-encode correctly. bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; if (!CBB_init(cbb.get(), 0) || !marshal_func(cbb.get(), pkey.get()) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } bssl::UniquePtr free_der(der); std::vector output = input; if (t->HasAttribute("Output") && !t->GetBytes(&output, "Output")) { return false; } if (!t->ExpectBytesEqual(output.data(), output.size(), der, der_len)) { t->PrintLine("Re-encoding the key did not match."); return false; } // Save the key for future tests. const std::string &key_name = t->GetParameter(); if (key_map->count(key_name) > 0) { t->PrintLine("Duplicate key '%s'.", key_name.c_str()); return false; } (*key_map)[key_name] = std::move(pkey); return true; } static bool TestEVP(FileTest *t, void *arg) { KeyMap *key_map = reinterpret_cast(arg); if (t->GetType() == "PrivateKey") { return ImportKey(t, key_map, EVP_parse_private_key, EVP_marshal_private_key); } if (t->GetType() == "PublicKey") { return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key); } int (*key_op_init)(EVP_PKEY_CTX *ctx); int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len) = nullptr; int (*verify_op)(EVP_PKEY_CTX * ctx, const uint8_t *sig, size_t sig_len, const uint8_t *in, size_t in_len) = nullptr; if (t->GetType() == "Decrypt") { key_op_init = EVP_PKEY_decrypt_init; key_op = EVP_PKEY_decrypt; } else if (t->GetType() == "Sign") { key_op_init = EVP_PKEY_sign_init; key_op = EVP_PKEY_sign; } else if (t->GetType() == "SignMessage") { key_op_init = EVP_PKEY_sign_init; key_op = EVP_PKEY_sign_message; } else if (t->GetType() == "Verify") { key_op_init = EVP_PKEY_verify_init; verify_op = EVP_PKEY_verify; } else if (t->GetType() == "VerifyMessage") { key_op_init = EVP_PKEY_verify_init; verify_op = EVP_PKEY_verify_message; } else { t->PrintLine("Unknown test '%s'", t->GetType().c_str()); return false; } // Load the key. const std::string &key_name = t->GetParameter(); if (key_map->count(key_name) == 0) { t->PrintLine("Could not find key '%s'.", key_name.c_str()); return false; } EVP_PKEY *key = (*key_map)[key_name].get(); std::vector input; if (!t->GetBytes(&input, "Input")) { return false; } // Set up the EVP_PKEY_CTX. bssl::UniquePtr ctx(EVP_PKEY_CTX_new(key, nullptr)); if (!ctx || !key_op_init(ctx.get())) { return false; } if (t->HasAttribute("Digest")) { const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("Digest")); if (digest == nullptr || !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) { return false; } } if (t->HasAttribute("RSAPadding")) { int padding; if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) || !EVP_PKEY_CTX_set_rsa_padding(ctx.get(), padding)) { return false; } } if (t->HasAttribute("PSSSaltLength") && !EVP_PKEY_CTX_set_rsa_pss_saltlen( ctx.get(), atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { return false; } if (t->HasAttribute("MGF1Digest")) { const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest")); if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx.get(), digest)) { return false; } } if (verify_op != nullptr) { std::vector output; if (!t->GetBytes(&output, "Output") || !verify_op(ctx.get(), output.data(), output.size(), input.data(), input.size())) { return false; } return true; } size_t len; std::vector actual, output; if (!key_op(ctx.get(), nullptr, &len, input.data(), input.size())) { return false; } actual.resize(len); if (!key_op(ctx.get(), actual.data(), &len, input.data(), input.size())) { return false; } actual.resize(len); if (!t->GetBytes(&output, "Output") || !t->ExpectBytesEqual(output.data(), output.size(), actual.data(), len)) { return false; } return true; } int main(int argc, char *argv[]) { CRYPTO_library_init(); if (argc != 2) { fprintf(stderr, "%s \n", argv[0]); return 1; } KeyMap map; return FileTestMain(TestEVP, &map, argv[1]); }