// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "crypto" "crypto/hmac" "crypto/md5" "crypto/sha1" "crypto/sha256" "crypto/sha512" "errors" "hash" ) // Split a premaster secret in two as specified in RFC 4346, section 5. func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { s1 = secret[0 : (len(secret)+1)/2] s2 = secret[len(secret)/2:] return } // pHash implements the P_hash function, as defined in RFC 4346, section 5. func pHash(result, secret, seed []byte, hash func() hash.Hash) { h := hmac.New(hash, secret) h.Write(seed) a := h.Sum(nil) j := 0 for j < len(result) { h.Reset() h.Write(a) h.Write(seed) b := h.Sum(nil) todo := len(b) if j+todo > len(result) { todo = len(result) - j } copy(result[j:j+todo], b) j += todo h.Reset() h.Write(a) a = h.Sum(nil) } } // prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. func prf10(result, secret, label, seed []byte) { hashSHA1 := sha1.New hashMD5 := md5.New labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) s1, s2 := splitPreMasterSecret(secret) pHash(result, s1, labelAndSeed, hashMD5) result2 := make([]byte, len(result)) pHash(result2, s2, labelAndSeed, hashSHA1) for i, b := range result2 { result[i] ^= b } } // prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { return func(result, secret, label, seed []byte) { labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) pHash(result, secret, labelAndSeed, hashFunc) } } // prf30 implements the SSL 3.0 pseudo-random function, as defined in // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6. func prf30(result, secret, label, seed []byte) { hashSHA1 := sha1.New() hashMD5 := md5.New() done := 0 i := 0 // RFC5246 section 6.3 says that the largest PRF output needed is 128 // bytes. Since no more ciphersuites will be added to SSLv3, this will // remain true. Each iteration gives us 16 bytes so 10 iterations will // be sufficient. var b [11]byte for done < len(result) { for j := 0; j <= i; j++ { b[j] = 'A' + byte(i) } hashSHA1.Reset() hashSHA1.Write(b[:i+1]) hashSHA1.Write(secret) hashSHA1.Write(seed) digest := hashSHA1.Sum(nil) hashMD5.Reset() hashMD5.Write(secret) hashMD5.Write(digest) done += copy(result[done:], hashMD5.Sum(nil)) i++ } } const ( tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. masterSecretLength = 48 // Length of a master secret in TLS 1.1. finishedVerifyLength = 12 // Length of verify_data in a Finished message. ) var masterSecretLabel = []byte("master secret") var keyExpansionLabel = []byte("key expansion") var clientFinishedLabel = []byte("client finished") var serverFinishedLabel = []byte("server finished") var channelIDLabel = []byte("TLS Channel ID signature\x00") var channelIDResumeLabel = []byte("Resumption\x00") func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { switch version { case VersionSSL30: return prf30 case VersionTLS10, VersionTLS11: return prf10 case VersionTLS12: if suite.flags&suiteSHA384 != 0 { return prf12(sha512.New384) } return prf12(sha256.New) default: panic("unknown version") } } // masterFromPreMasterSecret generates the master secret from the pre-master // secret. See http://tools.ietf.org/html/rfc5246#section-8.1 func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { var seed [tlsRandomLength * 2]byte copy(seed[0:len(clientRandom)], clientRandom) copy(seed[len(clientRandom):], serverRandom) masterSecret := make([]byte, masterSecretLength) prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) return masterSecret } // keysFromMasterSecret generates the connection keys from the master // secret, given the lengths of the MAC key, cipher key and IV, as defined in // RFC 2246, section 6.3. func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { var seed [tlsRandomLength * 2]byte copy(seed[0:len(clientRandom)], serverRandom) copy(seed[len(serverRandom):], clientRandom) n := 2*macLen + 2*keyLen + 2*ivLen keyMaterial := make([]byte, n) prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) clientMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] serverMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] clientKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] serverKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] clientIV = keyMaterial[:ivLen] keyMaterial = keyMaterial[ivLen:] serverIV = keyMaterial[:ivLen] return } func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash { if version >= VersionTLS12 { newHash := sha256.New if cipherSuite.flags&suiteSHA384 != 0 { newHash = sha512.New384 } return finishedHash{newHash(), newHash(), nil, nil, version, prf12(newHash)} } return finishedHash{sha1.New(), sha1.New(), md5.New(), md5.New(), version, prf10} } // A finishedHash calculates the hash of a set of handshake messages suitable // for including in a Finished message. type finishedHash struct { client hash.Hash server hash.Hash // Prior to TLS 1.2, an additional MD5 hash is required. clientMD5 hash.Hash serverMD5 hash.Hash version uint16 prf func(result, secret, label, seed []byte) } func (h finishedHash) Write(msg []byte) (n int, err error) { h.client.Write(msg) h.server.Write(msg) if h.version < VersionTLS12 { h.clientMD5.Write(msg) h.serverMD5.Write(msg) } return len(msg), nil } // finishedSum30 calculates the contents of the verify_data member of a SSLv3 // Finished message given the MD5 and SHA1 hashes of a set of handshake // messages. func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic [4]byte) []byte { md5.Write(magic[:]) md5.Write(masterSecret) md5.Write(ssl30Pad1[:]) md5Digest := md5.Sum(nil) md5.Reset() md5.Write(masterSecret) md5.Write(ssl30Pad2[:]) md5.Write(md5Digest) md5Digest = md5.Sum(nil) sha1.Write(magic[:]) sha1.Write(masterSecret) sha1.Write(ssl30Pad1[:40]) sha1Digest := sha1.Sum(nil) sha1.Reset() sha1.Write(masterSecret) sha1.Write(ssl30Pad2[:40]) sha1.Write(sha1Digest) sha1Digest = sha1.Sum(nil) ret := make([]byte, len(md5Digest)+len(sha1Digest)) copy(ret, md5Digest) copy(ret[len(md5Digest):], sha1Digest) return ret } var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54} var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52} // clientSum returns the contents of the verify_data member of a client's // Finished message. func (h finishedHash) clientSum(masterSecret []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.clientMD5, h.client, masterSecret, ssl3ClientFinishedMagic) } out := make([]byte, finishedVerifyLength) if h.version >= VersionTLS12 { seed := h.client.Sum(nil) h.prf(out, masterSecret, clientFinishedLabel, seed) } else { seed := make([]byte, 0, md5.Size+sha1.Size) seed = h.clientMD5.Sum(seed) seed = h.client.Sum(seed) h.prf(out, masterSecret, clientFinishedLabel, seed) } return out } // serverSum returns the contents of the verify_data member of a server's // Finished message. func (h finishedHash) serverSum(masterSecret []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.serverMD5, h.server, masterSecret, ssl3ServerFinishedMagic) } out := make([]byte, finishedVerifyLength) if h.version >= VersionTLS12 { seed := h.server.Sum(nil) h.prf(out, masterSecret, serverFinishedLabel, seed) } else { seed := make([]byte, 0, md5.Size+sha1.Size) seed = h.serverMD5.Sum(seed) seed = h.server.Sum(seed) h.prf(out, masterSecret, serverFinishedLabel, seed) } return out } // selectClientCertSignatureAlgorithm returns a signatureAndHash to sign a // client's CertificateVerify with, or an error if none can be found. func (h finishedHash) selectClientCertSignatureAlgorithm(serverList []signatureAndHash, sigType uint8) (signatureAndHash, error) { if h.version < VersionTLS12 { // Nothing to negotiate before TLS 1.2. return signatureAndHash{sigType, 0}, nil } for _, v := range serverList { if v.signature == sigType && v.hash == hashSHA256 { return v, nil } } return signatureAndHash{}, errors.New("tls: no supported signature algorithm found for signing client certificate") } // hashForClientCertificate returns a digest, hash function, and TLS 1.2 hash // id suitable for signing by a TLS client certificate. func (h finishedHash) hashForClientCertificate(signatureAndHash signatureAndHash) ([]byte, crypto.Hash, error) { if h.version >= VersionTLS12 { if signatureAndHash.hash != hashSHA256 { return nil, 0, errors.New("tls: unsupported hash function for client certificate") } digest := h.server.Sum(nil) return digest, crypto.SHA256, nil } if signatureAndHash.signature == signatureECDSA { digest := h.server.Sum(nil) return digest, crypto.SHA1, nil } digest := make([]byte, 0, 36) digest = h.serverMD5.Sum(digest) digest = h.server.Sum(digest) return digest, crypto.MD5SHA1, nil } // hashForChannelID returns the hash to be signed for TLS Channel // ID. If a resumption, resumeHash has the previous handshake // hash. Otherwise, it is nil. func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { hash := sha256.New() hash.Write(channelIDLabel) if resumeHash != nil { hash.Write(channelIDResumeLabel) hash.Write(resumeHash) } hash.Write(h.server.Sum(nil)) return hash.Sum(nil) }