/* Copyright (c) 2014, Intel Corporation. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Developers and authors: * Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center * (2) University of Haifa * Reference: * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with * 256 Bit Primes" */ #include #include #include #include #include #include #include "../bn/internal.h" #include "../ec/internal.h" #include "../internal.h" #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ !defined(OPENSSL_SMALL) #if BN_BITS2 != 64 #define TOBN(hi, lo) lo, hi #else #define TOBN(hi, lo) ((BN_ULONG)hi << 32 | lo) #endif #if defined(__GNUC__) #define ALIGN32 __attribute((aligned(32))) #elif defined(_MSC_VER) #define ALIGN32 __declspec(align(32)) #else #define ALIGN32 #endif #define ALIGNPTR(p, N) ((uint8_t *)p + N - (size_t)p % N) #define P256_LIMBS (256 / BN_BITS2) typedef struct { BN_ULONG X[P256_LIMBS]; BN_ULONG Y[P256_LIMBS]; BN_ULONG Z[P256_LIMBS]; } P256_POINT; typedef struct { BN_ULONG X[P256_LIMBS]; BN_ULONG Y[P256_LIMBS]; } P256_POINT_AFFINE; typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; /* Functions implemented in assembly */ /* Modular mul by 2: res = 2*a mod P */ void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Modular div by 2: res = a/2 mod P */ void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Modular mul by 3: res = 3*a mod P */ void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Modular add: res = a+b mod P */ void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); /* Modular sub: res = a-b mod P */ void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); /* Modular neg: res = -a mod P */ void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Montgomery mul: res = a*b*2^-256 mod P */ void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); /* Montgomery sqr: res = a*a*2^-256 mod P */ void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Convert a number from Montgomery domain, by multiplying with 1 */ void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG in[P256_LIMBS]); /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/ void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG in[P256_LIMBS]); /* Functions that perform constant time access to the precomputed tables */ void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t, int index); void ecp_nistz256_select_w7(P256_POINT_AFFINE *val, const P256_POINT_AFFINE *in_t, int index); /* One converted into the Montgomery domain */ static const BN_ULONG ONE[P256_LIMBS] = { TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), }; /* Precomputed tables for the default generator */ #include "p256-x86_64-table.h" /* Recode window to a signed digit, see ecp_nistputil.c for details */ static unsigned booth_recode_w5(unsigned in) { unsigned s, d; s = ~((in >> 5) - 1); d = (1 << 6) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } static unsigned booth_recode_w7(unsigned in) { unsigned s, d; s = ~((in >> 7) - 1); d = (1 << 8) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } static void copy_conditional(BN_ULONG dst[P256_LIMBS], const BN_ULONG src[P256_LIMBS], BN_ULONG move) { BN_ULONG mask1 = ((BN_ULONG)0) - move; BN_ULONG mask2 = ~mask1; dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); if (P256_LIMBS == 8) { dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); } } static BN_ULONG is_zero(BN_ULONG in) { in |= (0 - in); in = ~in; in &= BN_MASK2; in >>= BN_BITS2 - 1; return in; } static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]) { BN_ULONG res; res = a[0] ^ b[0]; res |= a[1] ^ b[1]; res |= a[2] ^ b[2]; res |= a[3] ^ b[3]; if (P256_LIMBS == 8) { res |= a[4] ^ b[4]; res |= a[5] ^ b[5]; res |= a[6] ^ b[6]; res |= a[7] ^ b[7]; } return is_zero(res); } static BN_ULONG is_one(const BN_ULONG a[P256_LIMBS]) { BN_ULONG res; res = a[0] ^ ONE[0]; res |= a[1] ^ ONE[1]; res |= a[2] ^ ONE[2]; res |= a[3] ^ ONE[3]; if (P256_LIMBS == 8) { res |= a[4] ^ ONE[4]; res |= a[5] ^ ONE[5]; res |= a[6] ^ ONE[6]; } return is_zero(res); } void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b); void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a, const P256_POINT_AFFINE *b); /* r = in^-1 mod p */ static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], const BN_ULONG in[P256_LIMBS]) { /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff We use FLT and used poly-2 as exponent */ BN_ULONG p2[P256_LIMBS]; BN_ULONG p4[P256_LIMBS]; BN_ULONG p8[P256_LIMBS]; BN_ULONG p16[P256_LIMBS]; BN_ULONG p32[P256_LIMBS]; BN_ULONG res[P256_LIMBS]; int i; ecp_nistz256_sqr_mont(res, in); ecp_nistz256_mul_mont(p2, res, in); /* 3*p */ ecp_nistz256_sqr_mont(res, p2); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p4, res, p2); /* f*p */ ecp_nistz256_sqr_mont(res, p4); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */ ecp_nistz256_sqr_mont(res, p8); for (i = 0; i < 7; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */ ecp_nistz256_sqr_mont(res, p16); for (i = 0; i < 15; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */ ecp_nistz256_sqr_mont(res, p32); for (i = 0; i < 31; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, in); for (i = 0; i < 32 * 4; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p32); for (i = 0; i < 32; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p32); for (i = 0; i < 16; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p16); for (i = 0; i < 8; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p8); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p4); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p2); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, in); memcpy(r, res, sizeof(res)); } /* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and * returns one if it fits. Otherwise it returns zero. */ static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], const BIGNUM *in) { if (in->top > P256_LIMBS) { return 0; } memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS); memcpy(out, in->d, sizeof(BN_ULONG) * in->top); return 1; } /* r = sum(scalar[i]*point[i]) */ static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, const BIGNUM **scalar, const EC_POINT **point, int num, BN_CTX *ctx) { static const unsigned kWindowSize = 5; static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; void *table_storage = OPENSSL_malloc(num * 16 * sizeof(P256_POINT) + 64); uint8_t(*p_str)[33] = OPENSSL_malloc(num * 33 * sizeof(uint8_t)); const BIGNUM **scalars = OPENSSL_malloc(num * sizeof(BIGNUM *)); if (table_storage == NULL || p_str == NULL || scalars == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); goto err; } P256_POINT(*table)[16] = (void *)ALIGNPTR(table_storage, 64); int i; for (i = 0; i < num; i++) { P256_POINT *row = table[i]; if (BN_num_bits(scalar[i]) > 256 || BN_is_negative(scalar[i])) { BIGNUM *mod = BN_CTX_get(ctx); if (mod == NULL) { goto err; } if (!BN_nnmod(mod, scalar[i], &group->order, ctx)) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); goto err; } scalars[i] = mod; } else { scalars[i] = scalar[i]; } int j; for (j = 0; j < scalars[i]->top * BN_BYTES; j += BN_BYTES) { BN_ULONG d = scalars[i]->d[j / BN_BYTES]; p_str[i][j + 0] = d & 0xff; p_str[i][j + 1] = (d >> 8) & 0xff; p_str[i][j + 2] = (d >> 16) & 0xff; p_str[i][j + 3] = (d >>= 24) & 0xff; if (BN_BYTES == 8) { d >>= 8; p_str[i][j + 4] = d & 0xff; p_str[i][j + 5] = (d >> 8) & 0xff; p_str[i][j + 6] = (d >> 16) & 0xff; p_str[i][j + 7] = (d >> 24) & 0xff; } } for (; j < 33; j++) { p_str[i][j] = 0; } /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is * not stored. All other values are actually stored with an offset of -1 in * table. */ if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &point[i]->X) || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &point[i]->Y) || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &point[i]->Z)) { OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE); goto err; } ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[16 - 1], &row[15 - 1], &row[1 - 1]); } BN_ULONG tmp[P256_LIMBS]; ALIGN32 P256_POINT h; unsigned index = 255; unsigned wvalue = p_str[0][(index - 1) / 8]; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; ecp_nistz256_select_w5(r, table[0], booth_recode_w5(wvalue) >> 1); while (index >= 5) { for (i = (index == 255 ? 1 : 0); i < num; i++) { unsigned off = (index - 1) / 8; wvalue = p_str[i][off] | p_str[i][off + 1] << 8; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; wvalue = booth_recode_w5(wvalue); ecp_nistz256_select_w5(&h, table[i], wvalue >> 1); ecp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, (wvalue & 1)); ecp_nistz256_point_add(r, r, &h); } index -= kWindowSize; ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); } /* Final window */ for (i = 0; i < num; i++) { wvalue = p_str[i][0]; wvalue = (wvalue << 1) & kMask; wvalue = booth_recode_w5(wvalue); ecp_nistz256_select_w5(&h, table[i], wvalue >> 1); ecp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, wvalue & 1); ecp_nistz256_point_add(r, r, &h); } err: OPENSSL_free(table_storage); OPENSSL_free(p_str); OPENSSL_free((BIGNUM**) scalars); } /* Coordinates of G, for which we have precomputed tables */ const static BN_ULONG def_xG[P256_LIMBS] = { TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6), }; const static BN_ULONG def_yG[P256_LIMBS] = { TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85) }; /* ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256 * generator. */ static int ecp_nistz256_is_affine_G(const EC_POINT *generator) { return (generator->X.top == P256_LIMBS) && (generator->Y.top == P256_LIMBS) && (generator->Z.top == (P256_LIMBS - P256_LIMBS / 8)) && is_equal(generator->X.d, def_xG) && is_equal(generator->Y.d, def_yG) && is_one(generator->Z.d); } /* r = scalar*G + sum(scalars[i]*points[i]) */ static int ecp_nistz256_points_mul( const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { static const unsigned kWindowSize = 7; static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; int ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0; ALIGN32 union { P256_POINT p; P256_POINT_AFFINE a; } t, p; if (scalar == NULL && num == 0) { return EC_POINT_set_to_infinity(group, r); } /* Need 256 bits for space for all coordinates. */ bn_wexpand(&r->X, P256_LIMBS); bn_wexpand(&r->Y, P256_LIMBS); bn_wexpand(&r->Z, P256_LIMBS); r->X.top = P256_LIMBS; r->Y.top = P256_LIMBS; r->Z.top = P256_LIMBS; const EC_POINT *generator = NULL; if (scalar) { generator = EC_GROUP_get0_generator(group); if (generator == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR); goto err; } if (ecp_nistz256_is_affine_G(generator)) { if (BN_num_bits(scalar) > 256 || BN_is_negative(scalar)) { BIGNUM *tmp_scalar = BN_CTX_get(ctx); if (tmp_scalar == NULL) { goto err; } if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); goto err; } scalar = tmp_scalar; } uint8_t p_str[33] = {0}; int i; for (i = 0; i < scalar->top * BN_BYTES; i += BN_BYTES) { BN_ULONG d = scalar->d[i / BN_BYTES]; p_str[i + 0] = d & 0xff; p_str[i + 1] = (d >> 8) & 0xff; p_str[i + 2] = (d >> 16) & 0xff; p_str[i + 3] = (d >>= 24) & 0xff; if (BN_BYTES == 8) { d >>= 8; p_str[i + 4] = d & 0xff; p_str[i + 5] = (d >> 8) & 0xff; p_str[i + 6] = (d >> 16) & 0xff; p_str[i + 7] = (d >> 24) & 0xff; } } for (; i < (int) sizeof(p_str); i++) { p_str[i] = 0; } /* First window */ unsigned wvalue = (p_str[0] << 1) & kMask; unsigned index = kWindowSize; wvalue = booth_recode_w7(wvalue); const PRECOMP256_ROW *const precomputed_table = (const PRECOMP256_ROW *)ecp_nistz256_precomputed; ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1); ecp_nistz256_neg(p.p.Z, p.p.Y); copy_conditional(p.p.Y, p.p.Z, wvalue & 1); memcpy(p.p.Z, ONE, sizeof(ONE)); for (i = 1; i < 37; i++) { unsigned off = (index - 1) / 8; wvalue = p_str[off] | p_str[off + 1] << 8; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; index += kWindowSize; wvalue = booth_recode_w7(wvalue); ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1); ecp_nistz256_neg(t.p.Z, t.a.Y); copy_conditional(t.a.Y, t.p.Z, wvalue & 1); ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); } } else { p_is_infinity = 1; no_precomp_for_generator = 1; } } else { p_is_infinity = 1; } if (no_precomp_for_generator) { /* Without a precomputed table for the generator, it has to be handled like * a normal point. */ const BIGNUM **new_scalars; const EC_POINT **new_points; /* Bound |num| so that all the possible overflows in the following can be * excluded. */ if (0xffffff < num) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); return 0; } new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *)); if (new_scalars == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); return 0; } new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *)); if (new_points == NULL) { OPENSSL_free((BIGNUM**) new_scalars); OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); return 0; } memcpy((BIGNUM**) new_scalars, scalars, num * sizeof(BIGNUM *)); new_scalars[num] = scalar; memcpy((EC_POINT**) new_points, points, num * sizeof(EC_POINT *)); new_points[num] = generator; scalars = new_scalars; points = new_points; num++; } if (num) { P256_POINT *out = &t.p; if (p_is_infinity) { out = &p.p; } ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx); if (!p_is_infinity) { ecp_nistz256_point_add(&p.p, &p.p, out); } } if (no_precomp_for_generator) { OPENSSL_free((BIGNUM **) scalars); OPENSSL_free((EC_POINT **) points); } memcpy(r->X.d, p.p.X, sizeof(p.p.X)); memcpy(r->Y.d, p.p.Y, sizeof(p.p.Y)); memcpy(r->Z.d, p.p.Z, sizeof(p.p.Z)); bn_correct_top(&r->X); bn_correct_top(&r->Y); bn_correct_top(&r->Z); ret = 1; err: return ret; } static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { BN_ULONG z_inv2[P256_LIMBS]; BN_ULONG z_inv3[P256_LIMBS]; BN_ULONG x_aff[P256_LIMBS]; BN_ULONG y_aff[P256_LIMBS]; BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; if (EC_POINT_is_at_infinity(group, point)) { OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); return 0; } if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) || !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) || !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) { OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE); return 0; } ecp_nistz256_mod_inverse(z_inv3, point_z); ecp_nistz256_sqr_mont(z_inv2, z_inv3); ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); if (x != NULL) { bn_wexpand(x, P256_LIMBS); x->top = P256_LIMBS; ecp_nistz256_from_mont(x->d, x_aff); bn_correct_top(x); } if (y != NULL) { ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); bn_wexpand(y, P256_LIMBS); y->top = P256_LIMBS; ecp_nistz256_from_mont(y->d, y_aff); bn_correct_top(y); } return 1; } const EC_METHOD *EC_GFp_nistz256_method(void) { static const EC_METHOD ret = { ec_GFp_mont_group_init, ec_GFp_mont_group_finish, ec_GFp_mont_group_clear_finish, ec_GFp_mont_group_copy, ec_GFp_mont_group_set_curve, ecp_nistz256_get_affine, ecp_nistz256_points_mul, 0, /* precompute_mult */ ec_GFp_mont_field_mul, ec_GFp_mont_field_sqr, ec_GFp_mont_field_encode, ec_GFp_mont_field_decode, ec_GFp_mont_field_set_to_one, }; return &ret; } #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ !defined(OPENSSL_SMALL) */