// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "bytes" "crypto" "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "fmt" "io" "math/big" ) // serverHandshakeState contains details of a server handshake in progress. // It's discarded once the handshake has completed. type serverHandshakeState struct { c *Conn clientHello *clientHelloMsg hello *serverHelloMsg suite *cipherSuite ellipticOk bool ecdsaOk bool sessionState *sessionState finishedHash finishedHash masterSecret []byte certsFromClient [][]byte cert *Certificate finishedBytes []byte } // serverHandshake performs a TLS handshake as a server. func (c *Conn) serverHandshake() error { config := c.config // If this is the first server handshake, we generate a random key to // encrypt the tickets with. config.serverInitOnce.Do(config.serverInit) c.sendHandshakeSeq = 0 c.recvHandshakeSeq = 0 hs := serverHandshakeState{ c: c, } if err := hs.readClientHello(); err != nil { return err } if c.vers >= VersionTLS13 && enableTLS13Handshake { if err := hs.doTLS13Handshake(); err != nil { return err } } else { isResume, err := hs.processClientHello() if err != nil { return err } // For an overview of TLS handshaking, see https://tools.ietf.org/html/rfc5246#section-7.3 if isResume { // The client has included a session ticket and so we do an abbreviated handshake. if err := hs.doResumeHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if c.config.Bugs.RenewTicketOnResume { if err := hs.sendSessionTicket(); err != nil { return err } } if err := hs.sendFinished(c.firstFinished[:]); err != nil { return err } // Most retransmits are triggered by a timeout, but the final // leg of the handshake is retransmited upon re-receiving a // Finished. if err := c.simulatePacketLoss(func() { c.writeRecord(recordTypeHandshake, hs.finishedBytes) c.flushHandshake() }); err != nil { return err } if err := hs.readFinished(nil, isResume); err != nil { return err } c.didResume = true } else { // The client didn't include a session ticket, or it wasn't // valid so we do a full handshake. if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.readFinished(c.firstFinished[:], isResume); err != nil { return err } if c.config.Bugs.AlertBeforeFalseStartTest != 0 { c.sendAlert(c.config.Bugs.AlertBeforeFalseStartTest) } if c.config.Bugs.ExpectFalseStart { if err := c.readRecord(recordTypeApplicationData); err != nil { return fmt.Errorf("tls: peer did not false start: %s", err) } } if err := hs.sendSessionTicket(); err != nil { return err } if err := hs.sendFinished(nil); err != nil { return err } } c.exporterSecret = hs.masterSecret } c.handshakeComplete = true copy(c.clientRandom[:], hs.clientHello.random) copy(c.serverRandom[:], hs.hello.random) return nil } // readClientHello reads a ClientHello message from the client and determines // the protocol version. func (hs *serverHandshakeState) readClientHello() error { config := hs.c.config c := hs.c if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } var ok bool hs.clientHello, ok = msg.(*clientHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(hs.clientHello, msg) } if size := config.Bugs.RequireClientHelloSize; size != 0 && len(hs.clientHello.raw) != size { return fmt.Errorf("tls: ClientHello record size is %d, but expected %d", len(hs.clientHello.raw), size) } if c.isDTLS && !config.Bugs.SkipHelloVerifyRequest { // Per RFC 6347, the version field in HelloVerifyRequest SHOULD // be always DTLS 1.0 helloVerifyRequest := &helloVerifyRequestMsg{ vers: VersionTLS10, cookie: make([]byte, 32), } if _, err := io.ReadFull(c.config.rand(), helloVerifyRequest.cookie); err != nil { c.sendAlert(alertInternalError) return errors.New("dtls: short read from Rand: " + err.Error()) } c.writeRecord(recordTypeHandshake, helloVerifyRequest.marshal()) c.flushHandshake() if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } newClientHello, ok := msg.(*clientHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(hs.clientHello, msg) } if !bytes.Equal(newClientHello.cookie, helloVerifyRequest.cookie) { return errors.New("dtls: invalid cookie") } // Apart from the cookie, the two ClientHellos must // match. Note that clientHello.equal compares the // serialization, so we make a copy. oldClientHelloCopy := *hs.clientHello oldClientHelloCopy.raw = nil oldClientHelloCopy.cookie = nil newClientHelloCopy := *newClientHello newClientHelloCopy.raw = nil newClientHelloCopy.cookie = nil if !oldClientHelloCopy.equal(&newClientHelloCopy) { return errors.New("dtls: retransmitted ClientHello does not match") } hs.clientHello = newClientHello } if config.Bugs.RequireSameRenegoClientVersion && c.clientVersion != 0 { if c.clientVersion != hs.clientHello.vers { return fmt.Errorf("tls: client offered different version on renego") } } c.clientVersion = hs.clientHello.vers // Reject < 1.2 ClientHellos with signature_algorithms. if c.clientVersion < VersionTLS12 && len(hs.clientHello.signatureAlgorithms) > 0 { return fmt.Errorf("tls: client included signature_algorithms before TLS 1.2") } // Check the client cipher list is consistent with the version. if hs.clientHello.vers < VersionTLS12 { for _, id := range hs.clientHello.cipherSuites { if isTLS12Cipher(id) { return fmt.Errorf("tls: client offered TLS 1.2 cipher before TLS 1.2") } } } if config.Bugs.NegotiateVersion != 0 { c.vers = config.Bugs.NegotiateVersion } else { c.vers, ok = config.mutualVersion(hs.clientHello.vers, c.isDTLS) if !ok { c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: client offered an unsupported, maximum protocol version of %x", hs.clientHello.vers) } } c.haveVers = true var scsvFound bool for _, cipherSuite := range hs.clientHello.cipherSuites { if cipherSuite == fallbackSCSV { scsvFound = true break } } if !scsvFound && config.Bugs.FailIfNotFallbackSCSV { return errors.New("tls: no fallback SCSV found when expected") } else if scsvFound && !config.Bugs.FailIfNotFallbackSCSV { return errors.New("tls: fallback SCSV found when not expected") } if config.Bugs.IgnorePeerSignatureAlgorithmPreferences { hs.clientHello.signatureAlgorithms = config.signSignatureAlgorithms() } if config.Bugs.IgnorePeerCurvePreferences { hs.clientHello.supportedCurves = config.curvePreferences() } if config.Bugs.IgnorePeerCipherPreferences { hs.clientHello.cipherSuites = config.cipherSuites() } return nil } func (hs *serverHandshakeState) doTLS13Handshake() error { c := hs.c config := c.config hs.hello = &serverHelloMsg{ isDTLS: c.isDTLS, vers: c.vers, } hs.hello.random = make([]byte, 32) if _, err := io.ReadFull(config.rand(), hs.hello.random); err != nil { c.sendAlert(alertInternalError) return err } // TLS 1.3 forbids clients from advertising any non-null compression. if len(hs.clientHello.compressionMethods) != 1 || hs.clientHello.compressionMethods[0] != compressionNone { return errors.New("tls: client sent compression method other than null for TLS 1.3") } // Prepare an EncryptedExtensions message, but do not send it yet. encryptedExtensions := new(encryptedExtensionsMsg) if err := hs.processClientExtensions(&encryptedExtensions.extensions); err != nil { return err } supportedCurve := false var selectedCurve CurveID preferredCurves := config.curvePreferences() Curves: for _, curve := range hs.clientHello.supportedCurves { for _, supported := range preferredCurves { if supported == curve { supportedCurve = true selectedCurve = curve break Curves } } } _, ecdsaOk := hs.cert.PrivateKey.(*ecdsa.PrivateKey) // TODO(davidben): Implement PSK support. pskOk := false // Select the cipher suite. var preferenceList, supportedList []uint16 if config.PreferServerCipherSuites { preferenceList = config.cipherSuites() supportedList = hs.clientHello.cipherSuites } else { preferenceList = hs.clientHello.cipherSuites supportedList = config.cipherSuites() } for _, id := range preferenceList { if hs.suite = c.tryCipherSuite(id, supportedList, c.vers, supportedCurve, ecdsaOk, pskOk); hs.suite != nil { break } } if hs.suite == nil { c.sendAlert(alertHandshakeFailure) return errors.New("tls: no cipher suite supported by both client and server") } hs.hello.cipherSuite = hs.suite.id hs.finishedHash = newFinishedHash(c.vers, hs.suite) hs.finishedHash.discardHandshakeBuffer() hs.writeClientHash(hs.clientHello.marshal()) // Resolve PSK and compute the early secret. // TODO(davidben): Implement PSK in TLS 1.3. psk := hs.finishedHash.zeroSecret() hs.finishedHash.setResumptionContext(hs.finishedHash.zeroSecret()) earlySecret := hs.finishedHash.extractKey(hs.finishedHash.zeroSecret(), psk) // Resolve ECDHE and compute the handshake secret. var ecdheSecret []byte if hs.suite.flags&suiteECDHE != 0 { // Look for the key share corresponding to our selected curve. var selectedKeyShare *keyShareEntry for i := range hs.clientHello.keyShares { if hs.clientHello.keyShares[i].group == selectedCurve { selectedKeyShare = &hs.clientHello.keyShares[i] break } } if selectedKeyShare == nil { // TODO(davidben,nharper): Implement HelloRetryRequest. return errors.New("tls: HelloRetryRequest not implemented") } // Once a curve has been selected and a key share identified, // the server needs to generate a public value and send it in // the ServerHello. curve, ok := curveForCurveID(selectedKeyShare.group) if !ok { panic("tls: server failed to look up curve ID") } var publicKey []byte var err error publicKey, ecdheSecret, err = curve.accept(config.rand(), selectedKeyShare.keyExchange) if err != nil { c.sendAlert(alertHandshakeFailure) return err } hs.hello.hasKeyShare = true hs.hello.keyShare = keyShareEntry{ group: selectedKeyShare.group, keyExchange: publicKey, } } else { ecdheSecret = hs.finishedHash.zeroSecret() } // Send unencrypted ServerHello. hs.writeServerHash(hs.hello.marshal()) c.writeRecord(recordTypeHandshake, hs.hello.marshal()) c.flushHandshake() // Compute the handshake secret. handshakeSecret := hs.finishedHash.extractKey(earlySecret, ecdheSecret) // Switch to handshake traffic keys. handshakeTrafficSecret := hs.finishedHash.deriveSecret(handshakeSecret, handshakeTrafficLabel) c.out.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, handshakeTrafficSecret, handshakePhase, serverWrite), c.vers) c.in.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, handshakeTrafficSecret, handshakePhase, clientWrite), c.vers) if hs.suite.flags&suitePSK != 0 { return errors.New("tls: PSK ciphers not implemented for TLS 1.3") } else { if hs.clientHello.ocspStapling { encryptedExtensions.extensions.ocspResponse = hs.cert.OCSPStaple } if hs.clientHello.sctListSupported { encryptedExtensions.extensions.sctList = hs.cert.SignedCertificateTimestampList } } // Send EncryptedExtensions. hs.writeServerHash(encryptedExtensions.marshal()) c.writeRecord(recordTypeHandshake, encryptedExtensions.marshal()) if hs.suite.flags&suitePSK == 0 { if config.ClientAuth >= RequestClientCert { // Request a client certificate certReq := &certificateRequestMsg{ hasSignatureAlgorithm: true, hasRequestContext: true, } if !config.Bugs.NoSignatureAlgorithms { certReq.signatureAlgorithms = config.verifySignatureAlgorithms() } // An empty list of certificateAuthorities signals to // the client that it may send any certificate in response // to our request. When we know the CAs we trust, then // we can send them down, so that the client can choose // an appropriate certificate to give to us. if config.ClientCAs != nil { certReq.certificateAuthorities = config.ClientCAs.Subjects() } hs.writeServerHash(certReq.marshal()) c.writeRecord(recordTypeHandshake, certReq.marshal()) } certMsg := &certificateMsg{ hasRequestContext: true, } if !config.Bugs.EmptyCertificateList { certMsg.certificates = hs.cert.Certificate } certMsgBytes := certMsg.marshal() if config.Bugs.WrongCertificateMessageType { certMsgBytes[0] += 42 } hs.writeServerHash(certMsgBytes) c.writeRecord(recordTypeHandshake, certMsgBytes) certVerify := &certificateVerifyMsg{ hasSignatureAlgorithm: true, } // Determine the hash to sign. privKey := hs.cert.PrivateKey var err error certVerify.signatureAlgorithm, err = selectSignatureAlgorithm(c.vers, privKey, config, hs.clientHello.signatureAlgorithms) if err != nil { c.sendAlert(alertInternalError) return err } input := hs.finishedHash.certificateVerifyInput(serverCertificateVerifyContextTLS13) certVerify.signature, err = signMessage(c.vers, privKey, c.config, certVerify.signatureAlgorithm, input) if err != nil { c.sendAlert(alertInternalError) return err } hs.writeServerHash(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } finished := new(finishedMsg) finished.verifyData = hs.finishedHash.serverSum(handshakeTrafficSecret) if config.Bugs.BadFinished { finished.verifyData[0]++ } hs.writeServerHash(finished.marshal()) c.writeRecord(recordTypeHandshake, finished.marshal()) c.flushHandshake() // The various secrets do not incorporate the client's final leg, so // derive them now before updating the handshake context. masterSecret := hs.finishedHash.extractKey(handshakeSecret, hs.finishedHash.zeroSecret()) trafficSecret := hs.finishedHash.deriveSecret(masterSecret, applicationTrafficLabel) // If we requested a client certificate, then the client must send a // certificate message, even if it's empty. if config.ClientAuth >= RequestClientCert { msg, err := c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.writeClientHash(certMsg.marshal()) if len(certMsg.certificates) == 0 { // The client didn't actually send a certificate switch config.ClientAuth { case RequireAnyClientCert, RequireAndVerifyClientCert: c.sendAlert(alertBadCertificate) return errors.New("tls: client didn't provide a certificate") } } pub, err := hs.processCertsFromClient(certMsg.certificates) if err != nil { return err } if len(c.peerCertificates) > 0 { msg, err = c.readHandshake() if err != nil { return err } certVerify, ok := msg.(*certificateVerifyMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certVerify, msg) } c.peerSignatureAlgorithm = certVerify.signatureAlgorithm input := hs.finishedHash.certificateVerifyInput(clientCertificateVerifyContextTLS13) if err := verifyMessage(c.vers, pub, config, certVerify.signatureAlgorithm, input, certVerify.signature); err != nil { c.sendAlert(alertBadCertificate) return err } hs.writeClientHash(certVerify.marshal()) } } // Read the client Finished message. msg, err := c.readHandshake() if err != nil { return err } clientFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(clientFinished, msg) } verify := hs.finishedHash.clientSum(handshakeTrafficSecret) if len(verify) != len(clientFinished.verifyData) || subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: client's Finished message was incorrect") } hs.writeClientHash(clientFinished.marshal()) // Switch to application data keys. c.out.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, trafficSecret, applicationPhase, serverWrite), c.vers) c.in.updateKeys(deriveTrafficAEAD(c.vers, hs.suite, trafficSecret, applicationPhase, clientWrite), c.vers) // TODO(davidben): Derive and save the resumption master secret for receiving tickets. // TODO(davidben): Save the traffic secret for KeyUpdate. c.cipherSuite = hs.suite c.exporterSecret = hs.finishedHash.deriveSecret(masterSecret, exporterLabel) return nil } // processClientHello processes the ClientHello message from the client and // decides whether we will perform session resumption. func (hs *serverHandshakeState) processClientHello() (isResume bool, err error) { config := hs.c.config c := hs.c hs.hello = &serverHelloMsg{ isDTLS: c.isDTLS, vers: c.vers, compressionMethod: compressionNone, } hs.hello.random = make([]byte, 32) _, err = io.ReadFull(config.rand(), hs.hello.random) if err != nil { c.sendAlert(alertInternalError) return false, err } // Signal downgrades in the server random, per draft-ietf-tls-tls13-14, // section 6.3.1.2. if c.vers <= VersionTLS12 && config.maxVersion(c.isDTLS) >= VersionTLS13 { copy(hs.hello.random[len(hs.hello.random)-8:], downgradeTLS13) } if c.vers <= VersionTLS11 && config.maxVersion(c.isDTLS) == VersionTLS12 { copy(hs.hello.random[len(hs.hello.random)-8:], downgradeTLS12) } foundCompression := false // We only support null compression, so check that the client offered it. for _, compression := range hs.clientHello.compressionMethods { if compression == compressionNone { foundCompression = true break } } if !foundCompression { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: client does not support uncompressed connections") } if err := hs.processClientExtensions(&hs.hello.extensions); err != nil { return false, err } supportedCurve := false preferredCurves := config.curvePreferences() Curves: for _, curve := range hs.clientHello.supportedCurves { for _, supported := range preferredCurves { if supported == curve { supportedCurve = true break Curves } } } supportedPointFormat := false for _, pointFormat := range hs.clientHello.supportedPoints { if pointFormat == pointFormatUncompressed { supportedPointFormat = true break } } hs.ellipticOk = supportedCurve && supportedPointFormat _, hs.ecdsaOk = hs.cert.PrivateKey.(*ecdsa.PrivateKey) // For test purposes, check that the peer never offers a session when // renegotiating. if c.cipherSuite != nil && len(hs.clientHello.sessionId) > 0 && c.config.Bugs.FailIfResumeOnRenego { return false, errors.New("tls: offered resumption on renegotiation") } if c.config.Bugs.FailIfSessionOffered && (len(hs.clientHello.sessionTicket) > 0 || len(hs.clientHello.sessionId) > 0) { return false, errors.New("tls: client offered a session ticket or ID") } if hs.checkForResumption() { return true, nil } var preferenceList, supportedList []uint16 if c.config.PreferServerCipherSuites { preferenceList = c.config.cipherSuites() supportedList = hs.clientHello.cipherSuites } else { preferenceList = hs.clientHello.cipherSuites supportedList = c.config.cipherSuites() } for _, id := range preferenceList { if hs.suite = c.tryCipherSuite(id, supportedList, c.vers, hs.ellipticOk, hs.ecdsaOk, true); hs.suite != nil { break } } if hs.suite == nil { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: no cipher suite supported by both client and server") } return false, nil } // processClientExtensions processes all ClientHello extensions not directly // related to cipher suite negotiation and writes responses in serverExtensions. func (hs *serverHandshakeState) processClientExtensions(serverExtensions *serverExtensions) error { config := hs.c.config c := hs.c if c.vers < VersionTLS13 || !enableTLS13Handshake { if !bytes.Equal(c.clientVerify, hs.clientHello.secureRenegotiation) { c.sendAlert(alertHandshakeFailure) return errors.New("tls: renegotiation mismatch") } if len(c.clientVerify) > 0 && !c.config.Bugs.EmptyRenegotiationInfo { serverExtensions.secureRenegotiation = append(serverExtensions.secureRenegotiation, c.clientVerify...) serverExtensions.secureRenegotiation = append(serverExtensions.secureRenegotiation, c.serverVerify...) if c.config.Bugs.BadRenegotiationInfo { serverExtensions.secureRenegotiation[0] ^= 0x80 } } else { serverExtensions.secureRenegotiation = hs.clientHello.secureRenegotiation } if c.noRenegotiationInfo() { serverExtensions.secureRenegotiation = nil } } serverExtensions.duplicateExtension = c.config.Bugs.DuplicateExtension if len(hs.clientHello.serverName) > 0 { c.serverName = hs.clientHello.serverName } if len(config.Certificates) == 0 { c.sendAlert(alertInternalError) return errors.New("tls: no certificates configured") } hs.cert = &config.Certificates[0] if len(hs.clientHello.serverName) > 0 { hs.cert = config.getCertificateForName(hs.clientHello.serverName) } if expected := c.config.Bugs.ExpectServerName; expected != "" && expected != hs.clientHello.serverName { return errors.New("tls: unexpected server name") } if len(hs.clientHello.alpnProtocols) > 0 { if proto := c.config.Bugs.ALPNProtocol; proto != nil { serverExtensions.alpnProtocol = *proto serverExtensions.alpnProtocolEmpty = len(*proto) == 0 c.clientProtocol = *proto c.usedALPN = true } else if selectedProto, fallback := mutualProtocol(hs.clientHello.alpnProtocols, c.config.NextProtos); !fallback { serverExtensions.alpnProtocol = selectedProto c.clientProtocol = selectedProto c.usedALPN = true } } if c.vers < VersionTLS13 || !enableTLS13Handshake { if len(hs.clientHello.alpnProtocols) == 0 || c.config.Bugs.NegotiateALPNAndNPN { // Although sending an empty NPN extension is reasonable, Firefox has // had a bug around this. Best to send nothing at all if // config.NextProtos is empty. See // https://code.google.com/p/go/issues/detail?id=5445. if hs.clientHello.nextProtoNeg && len(config.NextProtos) > 0 { serverExtensions.nextProtoNeg = true serverExtensions.nextProtos = config.NextProtos serverExtensions.npnLast = config.Bugs.SwapNPNAndALPN } } serverExtensions.extendedMasterSecret = c.vers >= VersionTLS10 && hs.clientHello.extendedMasterSecret && !c.config.Bugs.NoExtendedMasterSecret if hs.clientHello.channelIDSupported && config.RequestChannelID { serverExtensions.channelIDRequested = true } } if hs.clientHello.srtpProtectionProfiles != nil { SRTPLoop: for _, p1 := range c.config.SRTPProtectionProfiles { for _, p2 := range hs.clientHello.srtpProtectionProfiles { if p1 == p2 { serverExtensions.srtpProtectionProfile = p1 c.srtpProtectionProfile = p1 break SRTPLoop } } } } if c.config.Bugs.SendSRTPProtectionProfile != 0 { serverExtensions.srtpProtectionProfile = c.config.Bugs.SendSRTPProtectionProfile } if expected := c.config.Bugs.ExpectedCustomExtension; expected != nil { if hs.clientHello.customExtension != *expected { return fmt.Errorf("tls: bad custom extension contents %q", hs.clientHello.customExtension) } } serverExtensions.customExtension = config.Bugs.CustomExtension return nil } // checkForResumption returns true if we should perform resumption on this connection. func (hs *serverHandshakeState) checkForResumption() bool { c := hs.c if len(hs.clientHello.sessionTicket) > 0 { if c.config.SessionTicketsDisabled { return false } var ok bool if hs.sessionState, ok = c.decryptTicket(hs.clientHello.sessionTicket); !ok { return false } } else { if c.config.ServerSessionCache == nil { return false } var ok bool sessionId := string(hs.clientHello.sessionId) if hs.sessionState, ok = c.config.ServerSessionCache.Get(sessionId); !ok { return false } } // Never resume a session for a different SSL version. if !c.config.Bugs.AllowSessionVersionMismatch && c.vers != hs.sessionState.vers { return false } cipherSuiteOk := false // Check that the client is still offering the ciphersuite in the session. for _, id := range hs.clientHello.cipherSuites { if id == hs.sessionState.cipherSuite { cipherSuiteOk = true break } } if !cipherSuiteOk { return false } // Check that we also support the ciphersuite from the session. hs.suite = c.tryCipherSuite(hs.sessionState.cipherSuite, c.config.cipherSuites(), hs.sessionState.vers, hs.ellipticOk, hs.ecdsaOk, true) if hs.suite == nil { return false } sessionHasClientCerts := len(hs.sessionState.certificates) != 0 needClientCerts := c.config.ClientAuth == RequireAnyClientCert || c.config.ClientAuth == RequireAndVerifyClientCert if needClientCerts && !sessionHasClientCerts { return false } if sessionHasClientCerts && c.config.ClientAuth == NoClientCert { return false } return true } func (hs *serverHandshakeState) doResumeHandshake() error { c := hs.c hs.hello.cipherSuite = hs.suite.id if c.config.Bugs.SendCipherSuite != 0 { hs.hello.cipherSuite = c.config.Bugs.SendCipherSuite } // We echo the client's session ID in the ServerHello to let it know // that we're doing a resumption. hs.hello.sessionId = hs.clientHello.sessionId hs.hello.extensions.ticketSupported = c.config.Bugs.RenewTicketOnResume if c.config.Bugs.SendSCTListOnResume != nil { hs.hello.extensions.sctList = c.config.Bugs.SendSCTListOnResume } hs.finishedHash = newFinishedHash(c.vers, hs.suite) hs.finishedHash.discardHandshakeBuffer() hs.writeClientHash(hs.clientHello.marshal()) hs.writeServerHash(hs.hello.marshal()) c.writeRecord(recordTypeHandshake, hs.hello.marshal()) if len(hs.sessionState.certificates) > 0 { if _, err := hs.processCertsFromClient(hs.sessionState.certificates); err != nil { return err } } hs.masterSecret = hs.sessionState.masterSecret c.extendedMasterSecret = hs.sessionState.extendedMasterSecret return nil } func (hs *serverHandshakeState) doFullHandshake() error { config := hs.c.config c := hs.c isPSK := hs.suite.flags&suitePSK != 0 if !isPSK && hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0 { hs.hello.extensions.ocspStapling = true } if hs.clientHello.sctListSupported && len(hs.cert.SignedCertificateTimestampList) > 0 { hs.hello.extensions.sctList = hs.cert.SignedCertificateTimestampList } hs.hello.extensions.ticketSupported = hs.clientHello.ticketSupported && !config.SessionTicketsDisabled && c.vers > VersionSSL30 hs.hello.cipherSuite = hs.suite.id if config.Bugs.SendCipherSuite != 0 { hs.hello.cipherSuite = config.Bugs.SendCipherSuite } c.extendedMasterSecret = hs.hello.extensions.extendedMasterSecret // Generate a session ID if we're to save the session. if !hs.hello.extensions.ticketSupported && config.ServerSessionCache != nil { hs.hello.sessionId = make([]byte, 32) if _, err := io.ReadFull(config.rand(), hs.hello.sessionId); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: short read from Rand: " + err.Error()) } } hs.finishedHash = newFinishedHash(c.vers, hs.suite) hs.writeClientHash(hs.clientHello.marshal()) hs.writeServerHash(hs.hello.marshal()) c.writeRecord(recordTypeHandshake, hs.hello.marshal()) if !isPSK { certMsg := new(certificateMsg) if !config.Bugs.EmptyCertificateList { certMsg.certificates = hs.cert.Certificate } if !config.Bugs.UnauthenticatedECDH { certMsgBytes := certMsg.marshal() if config.Bugs.WrongCertificateMessageType { certMsgBytes[0] += 42 } hs.writeServerHash(certMsgBytes) c.writeRecord(recordTypeHandshake, certMsgBytes) } } if hs.hello.extensions.ocspStapling && !c.config.Bugs.SkipCertificateStatus { certStatus := new(certificateStatusMsg) certStatus.statusType = statusTypeOCSP certStatus.response = hs.cert.OCSPStaple hs.writeServerHash(certStatus.marshal()) c.writeRecord(recordTypeHandshake, certStatus.marshal()) } keyAgreement := hs.suite.ka(c.vers) skx, err := keyAgreement.generateServerKeyExchange(config, hs.cert, hs.clientHello, hs.hello) if err != nil { c.sendAlert(alertHandshakeFailure) return err } if skx != nil && !config.Bugs.SkipServerKeyExchange { hs.writeServerHash(skx.marshal()) c.writeRecord(recordTypeHandshake, skx.marshal()) } if config.ClientAuth >= RequestClientCert { // Request a client certificate certReq := &certificateRequestMsg{ certificateTypes: config.ClientCertificateTypes, } if certReq.certificateTypes == nil { certReq.certificateTypes = []byte{ byte(CertTypeRSASign), byte(CertTypeECDSASign), } } if c.vers >= VersionTLS12 { certReq.hasSignatureAlgorithm = true if !config.Bugs.NoSignatureAlgorithms { certReq.signatureAlgorithms = config.verifySignatureAlgorithms() } } // An empty list of certificateAuthorities signals to // the client that it may send any certificate in response // to our request. When we know the CAs we trust, then // we can send them down, so that the client can choose // an appropriate certificate to give to us. if config.ClientCAs != nil { certReq.certificateAuthorities = config.ClientCAs.Subjects() } hs.writeServerHash(certReq.marshal()) c.writeRecord(recordTypeHandshake, certReq.marshal()) } helloDone := new(serverHelloDoneMsg) hs.writeServerHash(helloDone.marshal()) c.writeRecord(recordTypeHandshake, helloDone.marshal()) c.flushHandshake() var pub crypto.PublicKey // public key for client auth, if any if err := c.simulatePacketLoss(nil); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } var ok bool // If we requested a client certificate, then the client must send a // certificate message, even if it's empty. if config.ClientAuth >= RequestClientCert { var certMsg *certificateMsg var certificates [][]byte if certMsg, ok = msg.(*certificateMsg); ok { if c.vers == VersionSSL30 && len(certMsg.certificates) == 0 { return errors.New("tls: empty certificate message in SSL 3.0") } hs.writeClientHash(certMsg.marshal()) certificates = certMsg.certificates } else if c.vers != VersionSSL30 { // In TLS, the Certificate message is required. In SSL // 3.0, the peer skips it when sending no certificates. c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } if len(certificates) == 0 { // The client didn't actually send a certificate switch config.ClientAuth { case RequireAnyClientCert, RequireAndVerifyClientCert: c.sendAlert(alertBadCertificate) return errors.New("tls: client didn't provide a certificate") } } pub, err = hs.processCertsFromClient(certificates) if err != nil { return err } if ok { msg, err = c.readHandshake() if err != nil { return err } } } // Get client key exchange ckx, ok := msg.(*clientKeyExchangeMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(ckx, msg) } hs.writeClientHash(ckx.marshal()) preMasterSecret, err := keyAgreement.processClientKeyExchange(config, hs.cert, ckx, c.vers) if err != nil { c.sendAlert(alertHandshakeFailure) return err } if c.extendedMasterSecret { hs.masterSecret = extendedMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.finishedHash) } else { if c.config.Bugs.RequireExtendedMasterSecret { return errors.New("tls: extended master secret required but not supported by peer") } hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.clientHello.random, hs.hello.random) } // If we received a client cert in response to our certificate request message, // the client will send us a certificateVerifyMsg immediately after the // clientKeyExchangeMsg. This message is a digest of all preceding // handshake-layer messages that is signed using the private key corresponding // to the client's certificate. This allows us to verify that the client is in // possession of the private key of the certificate. if len(c.peerCertificates) > 0 { msg, err = c.readHandshake() if err != nil { return err } certVerify, ok := msg.(*certificateVerifyMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certVerify, msg) } // Determine the signature type. var sigAlg signatureAlgorithm if certVerify.hasSignatureAlgorithm { sigAlg = certVerify.signatureAlgorithm c.peerSignatureAlgorithm = sigAlg } if c.vers > VersionSSL30 { err = verifyMessage(c.vers, pub, c.config, sigAlg, hs.finishedHash.buffer, certVerify.signature) } else { // SSL 3.0's client certificate construction is // incompatible with signatureAlgorithm. rsaPub, ok := pub.(*rsa.PublicKey) if !ok { err = errors.New("unsupported key type for client certificate") } else { digest := hs.finishedHash.hashForClientCertificateSSL3(hs.masterSecret) err = rsa.VerifyPKCS1v15(rsaPub, crypto.MD5SHA1, digest, certVerify.signature) } } if err != nil { c.sendAlert(alertBadCertificate) return errors.New("could not validate signature of connection nonces: " + err.Error()) } hs.writeClientHash(certVerify.marshal()) } hs.finishedHash.discardHandshakeBuffer() return nil } func (hs *serverHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen(c.vers)) var clientCipher, serverCipher interface{} var clientHash, serverHash macFunction if hs.suite.aead == nil { clientCipher = hs.suite.cipher(clientKey, clientIV, true /* for reading */) clientHash = hs.suite.mac(c.vers, clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, false /* not for reading */) serverHash = hs.suite.mac(c.vers, serverMAC) } else { clientCipher = hs.suite.aead(c.vers, clientKey, clientIV) serverCipher = hs.suite.aead(c.vers, serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, clientCipher, clientHash) c.out.prepareCipherSpec(c.vers, serverCipher, serverHash) return nil } func (hs *serverHandshakeState) readFinished(out []byte, isResume bool) error { c := hs.c c.readRecord(recordTypeChangeCipherSpec) if err := c.in.error(); err != nil { return err } if hs.hello.extensions.nextProtoNeg { msg, err := c.readHandshake() if err != nil { return err } nextProto, ok := msg.(*nextProtoMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(nextProto, msg) } hs.writeClientHash(nextProto.marshal()) c.clientProtocol = nextProto.proto } if hs.hello.extensions.channelIDRequested { msg, err := c.readHandshake() if err != nil { return err } channelIDMsg, ok := msg.(*channelIDMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(channelIDMsg, msg) } x := new(big.Int).SetBytes(channelIDMsg.channelID[0:32]) y := new(big.Int).SetBytes(channelIDMsg.channelID[32:64]) r := new(big.Int).SetBytes(channelIDMsg.channelID[64:96]) s := new(big.Int).SetBytes(channelIDMsg.channelID[96:128]) if !elliptic.P256().IsOnCurve(x, y) { return errors.New("tls: invalid channel ID public key") } channelID := &ecdsa.PublicKey{elliptic.P256(), x, y} var resumeHash []byte if isResume { resumeHash = hs.sessionState.handshakeHash } if !ecdsa.Verify(channelID, hs.finishedHash.hashForChannelID(resumeHash), r, s) { return errors.New("tls: invalid channel ID signature") } c.channelID = channelID hs.writeClientHash(channelIDMsg.marshal()) } msg, err := c.readHandshake() if err != nil { return err } clientFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(clientFinished, msg) } verify := hs.finishedHash.clientSum(hs.masterSecret) if len(verify) != len(clientFinished.verifyData) || subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: client's Finished message is incorrect") } c.clientVerify = append(c.clientVerify[:0], clientFinished.verifyData...) copy(out, clientFinished.verifyData) hs.writeClientHash(clientFinished.marshal()) return nil } func (hs *serverHandshakeState) sendSessionTicket() error { c := hs.c state := sessionState{ vers: c.vers, cipherSuite: hs.suite.id, masterSecret: hs.masterSecret, certificates: hs.certsFromClient, handshakeHash: hs.finishedHash.server.Sum(nil), } if !hs.hello.extensions.ticketSupported || hs.c.config.Bugs.SkipNewSessionTicket { if c.config.ServerSessionCache != nil && len(hs.hello.sessionId) != 0 { c.config.ServerSessionCache.Put(string(hs.hello.sessionId), &state) } return nil } m := new(newSessionTicketMsg) if !c.config.Bugs.SendEmptySessionTicket { var err error m.ticket, err = c.encryptTicket(&state) if err != nil { return err } } hs.writeServerHash(m.marshal()) c.writeRecord(recordTypeHandshake, m.marshal()) return nil } func (hs *serverHandshakeState) sendFinished(out []byte) error { c := hs.c finished := new(finishedMsg) finished.verifyData = hs.finishedHash.serverSum(hs.masterSecret) copy(out, finished.verifyData) if c.config.Bugs.BadFinished { finished.verifyData[0]++ } c.serverVerify = append(c.serverVerify[:0], finished.verifyData...) hs.finishedBytes = finished.marshal() hs.writeServerHash(hs.finishedBytes) postCCSBytes := hs.finishedBytes if c.config.Bugs.FragmentAcrossChangeCipherSpec { c.writeRecord(recordTypeHandshake, postCCSBytes[:5]) postCCSBytes = postCCSBytes[5:] } c.flushHandshake() if !c.config.Bugs.SkipChangeCipherSpec { ccs := []byte{1} if c.config.Bugs.BadChangeCipherSpec != nil { ccs = c.config.Bugs.BadChangeCipherSpec } c.writeRecord(recordTypeChangeCipherSpec, ccs) } if c.config.Bugs.AppDataAfterChangeCipherSpec != nil { c.writeRecord(recordTypeApplicationData, c.config.Bugs.AppDataAfterChangeCipherSpec) } if c.config.Bugs.AlertAfterChangeCipherSpec != 0 { c.sendAlert(c.config.Bugs.AlertAfterChangeCipherSpec) return errors.New("tls: simulating post-CCS alert") } if !c.config.Bugs.SkipFinished { c.writeRecord(recordTypeHandshake, postCCSBytes) c.flushHandshake() } c.cipherSuite = hs.suite return nil } // processCertsFromClient takes a chain of client certificates either from a // Certificates message or from a sessionState and verifies them. It returns // the public key of the leaf certificate. func (hs *serverHandshakeState) processCertsFromClient(certificates [][]byte) (crypto.PublicKey, error) { c := hs.c hs.certsFromClient = certificates certs := make([]*x509.Certificate, len(certificates)) var err error for i, asn1Data := range certificates { if certs[i], err = x509.ParseCertificate(asn1Data); err != nil { c.sendAlert(alertBadCertificate) return nil, errors.New("tls: failed to parse client certificate: " + err.Error()) } } if c.config.ClientAuth >= VerifyClientCertIfGiven && len(certs) > 0 { opts := x509.VerifyOptions{ Roots: c.config.ClientCAs, CurrentTime: c.config.time(), Intermediates: x509.NewCertPool(), KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth}, } for _, cert := range certs[1:] { opts.Intermediates.AddCert(cert) } chains, err := certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return nil, errors.New("tls: failed to verify client's certificate: " + err.Error()) } ok := false for _, ku := range certs[0].ExtKeyUsage { if ku == x509.ExtKeyUsageClientAuth { ok = true break } } if !ok { c.sendAlert(alertHandshakeFailure) return nil, errors.New("tls: client's certificate's extended key usage doesn't permit it to be used for client authentication") } c.verifiedChains = chains } if len(certs) > 0 { var pub crypto.PublicKey switch key := certs[0].PublicKey.(type) { case *ecdsa.PublicKey, *rsa.PublicKey: pub = key default: c.sendAlert(alertUnsupportedCertificate) return nil, fmt.Errorf("tls: client's certificate contains an unsupported public key of type %T", certs[0].PublicKey) } c.peerCertificates = certs return pub, nil } return nil, nil } func (hs *serverHandshakeState) writeServerHash(msg []byte) { // writeServerHash is called before writeRecord. hs.writeHash(msg, hs.c.sendHandshakeSeq) } func (hs *serverHandshakeState) writeClientHash(msg []byte) { // writeClientHash is called after readHandshake. hs.writeHash(msg, hs.c.recvHandshakeSeq-1) } func (hs *serverHandshakeState) writeHash(msg []byte, seqno uint16) { if hs.c.isDTLS { // This is somewhat hacky. DTLS hashes a slightly different format. // First, the TLS header. hs.finishedHash.Write(msg[:4]) // Then the sequence number and reassembled fragment offset (always 0). hs.finishedHash.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) // Then the reassembled fragment (always equal to the message length). hs.finishedHash.Write(msg[1:4]) // And then the message body. hs.finishedHash.Write(msg[4:]) } else { hs.finishedHash.Write(msg) } } // tryCipherSuite returns a cipherSuite with the given id if that cipher suite // is acceptable to use. func (c *Conn) tryCipherSuite(id uint16, supportedCipherSuites []uint16, version uint16, ellipticOk, ecdsaOk, pskOk bool) *cipherSuite { for _, supported := range supportedCipherSuites { if id == supported { var candidate *cipherSuite for _, s := range cipherSuites { if s.id == id { candidate = s break } } if candidate == nil { continue } // Don't select a ciphersuite which we can't // support for this client. if !c.config.Bugs.EnableAllCiphers { if (candidate.flags&suitePSK != 0) && !pskOk { continue } if (candidate.flags&suiteECDHE != 0) && !ellipticOk { continue } if (candidate.flags&suiteECDSA != 0) != ecdsaOk { continue } if version < VersionTLS12 && candidate.flags&suiteTLS12 != 0 { continue } if version >= VersionTLS13 && candidate.flags&suiteTLS13 == 0 { continue } if c.isDTLS && candidate.flags&suiteNoDTLS != 0 { continue } } return candidate } } return nil } func isTLS12Cipher(id uint16) bool { for _, cipher := range cipherSuites { if cipher.id != id { continue } return cipher.flags&suiteTLS12 != 0 } // Unknown cipher. return false }