/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include #include #include #include #include #include "internal.h" #include "../../internal.h" // Most method functions in this file are designed to work with non-trivial // representations of field elements if necessary (see ecp_mont.c): while // standard modular addition and subtraction are used, the field_mul and // field_sqr methods will be used for multiplication, and field_encode and // field_decode (if defined) will be used for converting between // representations. // // Functions here specifically assume that if a non-trivial representation is // used, it is a Montgomery representation (i.e. 'encoding' means multiplying // by some factor R). int ec_GFp_simple_group_init(EC_GROUP *group) { BN_init(&group->field); group->a_is_minus3 = 0; return 1; } void ec_GFp_simple_group_finish(EC_GROUP *group) { BN_free(&group->field); } int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; // p must be a prime > 3 if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); BIGNUM *tmp = BN_CTX_get(ctx); if (tmp == NULL) { goto err; } // group->field if (!BN_copy(&group->field, p)) { goto err; } BN_set_negative(&group->field, 0); // Store the field in minimal form, so it can be used with |BN_ULONG| arrays. bn_set_minimal_width(&group->field); // group->a if (!BN_nnmod(tmp, a, &group->field, ctx) || !ec_bignum_to_felem(group, &group->a, tmp)) { goto err; } // group->a_is_minus3 if (!BN_add_word(tmp, 3)) { goto err; } group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field)); // group->b if (!BN_nnmod(tmp, b, &group->field, ctx) || !ec_bignum_to_felem(group, &group->b, tmp)) { goto err; } if (!ec_bignum_to_felem(group, &group->one, BN_value_one())) { goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b) { if ((p != NULL && !BN_copy(p, &group->field)) || (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { return 0; } return 1; } unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) { return BN_num_bits(&group->field); } void ec_GFp_simple_point_init(EC_RAW_POINT *point) { OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); } void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) { OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); } void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_RAW_POINT *point) { // Although it is strictly only necessary to zero Z, we zero the entire point // in case |point| was stack-allocated and yet to be initialized. ec_GFp_simple_point_init(point); } int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_RAW_POINT *point, const BIGNUM *x, const BIGNUM *y) { if (x == NULL || y == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!ec_bignum_to_felem(group, &point->X, x) || !ec_bignum_to_felem(group, &point->Y, y)) { return 0; } OPENSSL_memcpy(&point->Z, &group->one, sizeof(EC_FELEM)); return 1; } void ec_GFp_simple_add(const EC_GROUP *group, EC_RAW_POINT *out, const EC_RAW_POINT *a, const EC_RAW_POINT *b) { if (a == b) { ec_GFp_simple_dbl(group, out, a); return; } // The method is taken from: // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl // // Coq transcription and correctness proof: // // void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; EC_FELEM x_out, y_out, z_out; BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); // z1z1 = z1z1 = z1**2 EC_FELEM z1z1; felem_sqr(group, &z1z1, &a->Z); // z2z2 = z2**2 EC_FELEM z2z2; felem_sqr(group, &z2z2, &b->Z); // u1 = x1*z2z2 EC_FELEM u1; felem_mul(group, &u1, &a->X, &z2z2); // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 EC_FELEM two_z1z2; ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); felem_sqr(group, &two_z1z2, &two_z1z2); ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); // s1 = y1 * z2**3 EC_FELEM s1; felem_mul(group, &s1, &b->Z, &z2z2); felem_mul(group, &s1, &s1, &a->Y); // u2 = x2*z1z1 EC_FELEM u2; felem_mul(group, &u2, &b->X, &z1z1); // h = u2 - u1 EC_FELEM h; ec_felem_sub(group, &h, &u2, &u1); BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); // z_out = two_z1z2 * h felem_mul(group, &z_out, &h, &two_z1z2); // z1z1z1 = z1 * z1z1 EC_FELEM z1z1z1; felem_mul(group, &z1z1z1, &a->Z, &z1z1); // s2 = y2 * z1**3 EC_FELEM s2; felem_mul(group, &s2, &b->Y, &z1z1z1); // r = (s2 - s1)*2 EC_FELEM r; ec_felem_sub(group, &r, &s2, &s1); ec_felem_add(group, &r, &r, &r); BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); // This case will never occur in the constant-time |ec_GFp_simple_mul|. if (!xneq && !yneq && z1nz && z2nz) { ec_GFp_simple_dbl(group, out, a); return; } // I = (2h)**2 EC_FELEM i; ec_felem_add(group, &i, &h, &h); felem_sqr(group, &i, &i); // J = h * I EC_FELEM j; felem_mul(group, &j, &h, &i); // V = U1 * I EC_FELEM v; felem_mul(group, &v, &u1, &i); // x_out = r**2 - J - 2V felem_sqr(group, &x_out, &r); ec_felem_sub(group, &x_out, &x_out, &j); ec_felem_sub(group, &x_out, &x_out, &v); ec_felem_sub(group, &x_out, &x_out, &v); // y_out = r(V-x_out) - 2 * s1 * J ec_felem_sub(group, &y_out, &v, &x_out); felem_mul(group, &y_out, &y_out, &r); EC_FELEM s1j; felem_mul(group, &s1j, &s1, &j); ec_felem_sub(group, &y_out, &y_out, &s1j); ec_felem_sub(group, &y_out, &y_out, &s1j); ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); } void ec_GFp_simple_dbl(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a) { void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; if (group->a_is_minus3) { // The method is taken from: // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b // // Coq transcription and correctness proof: // // EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; // delta = z^2 felem_sqr(group, &delta, &a->Z); // gamma = y^2 felem_sqr(group, &gamma, &a->Y); // beta = x*gamma felem_mul(group, &beta, &a->X, &gamma); // alpha = 3*(x-delta)*(x+delta) ec_felem_sub(group, &ftmp, &a->X, &delta); ec_felem_add(group, &ftmp2, &a->X, &delta); ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); felem_mul(group, &alpha, &ftmp, &ftmp2); // x' = alpha^2 - 8*beta felem_sqr(group, &r->X, &alpha); ec_felem_add(group, &fourbeta, &beta, &beta); ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); ec_felem_sub(group, &r->X, &r->X, &tmptmp); // z' = (y + z)^2 - gamma - delta ec_felem_add(group, &delta, &gamma, &delta); ec_felem_add(group, &ftmp, &a->Y, &a->Z); felem_sqr(group, &r->Z, &ftmp); ec_felem_sub(group, &r->Z, &r->Z, &delta); // y' = alpha*(4*beta - x') - 8*gamma^2 ec_felem_sub(group, &r->Y, &fourbeta, &r->X); ec_felem_add(group, &gamma, &gamma, &gamma); felem_sqr(group, &gamma, &gamma); felem_mul(group, &r->Y, &alpha, &r->Y); ec_felem_add(group, &gamma, &gamma, &gamma); ec_felem_sub(group, &r->Y, &r->Y, &gamma); } else { // The method is taken from: // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl // // Coq transcription and correctness proof: // // EC_FELEM xx, yy, yyyy, zz; felem_sqr(group, &xx, &a->X); felem_sqr(group, &yy, &a->Y); felem_sqr(group, &yyyy, &yy); felem_sqr(group, &zz, &a->Z); // s = 2*((x_in + yy)^2 - xx - yyyy) EC_FELEM s; ec_felem_add(group, &s, &a->X, &yy); felem_sqr(group, &s, &s); ec_felem_sub(group, &s, &s, &xx); ec_felem_sub(group, &s, &s, &yyyy); ec_felem_add(group, &s, &s, &s); // m = 3*xx + a*zz^2 EC_FELEM m; felem_sqr(group, &m, &zz); felem_mul(group, &m, &group->a, &m); ec_felem_add(group, &m, &m, &xx); ec_felem_add(group, &m, &m, &xx); ec_felem_add(group, &m, &m, &xx); // x_out = m^2 - 2*s felem_sqr(group, &r->X, &m); ec_felem_sub(group, &r->X, &r->X, &s); ec_felem_sub(group, &r->X, &r->X, &s); // z_out = (y_in + z_in)^2 - yy - zz ec_felem_add(group, &r->Z, &a->Y, &a->Z); felem_sqr(group, &r->Z, &r->Z); ec_felem_sub(group, &r->Z, &r->Z, &yy); ec_felem_sub(group, &r->Z, &r->Z, &zz); // y_out = m*(s-x_out) - 8*yyyy ec_felem_add(group, &yyyy, &yyyy, &yyyy); ec_felem_add(group, &yyyy, &yyyy, &yyyy); ec_felem_add(group, &yyyy, &yyyy, &yyyy); ec_felem_sub(group, &r->Y, &s, &r->X); felem_mul(group, &r->Y, &r->Y, &m); ec_felem_sub(group, &r->Y, &r->Y, &yyyy); } } void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { ec_felem_neg(group, &point->Y, &point->Y); } int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_RAW_POINT *point) { return ec_felem_non_zero_mask(group, &point->Z) == 0; } int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_RAW_POINT *point) { if (ec_GFp_simple_is_at_infinity(group, point)) { return 1; } // We have a curve defined by a Weierstrass equation // y^2 = x^3 + a*x + b. // The point to consider is given in Jacobian projective coordinates // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). // Substituting this and multiplying by Z^6 transforms the above equation // into // Y^2 = X^3 + a*X*Z^4 + b*Z^6. // To test this, we add up the right-hand side in 'rh'. void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; // rh := X^2 EC_FELEM rh; felem_sqr(group, &rh, &point->X); EC_FELEM tmp, Z4, Z6; if (!ec_felem_equal(group, &point->Z, &group->one)) { felem_sqr(group, &tmp, &point->Z); felem_sqr(group, &Z4, &tmp); felem_mul(group, &Z6, &Z4, &tmp); // rh := (rh + a*Z^4)*X if (group->a_is_minus3) { ec_felem_add(group, &tmp, &Z4, &Z4); ec_felem_add(group, &tmp, &tmp, &Z4); ec_felem_sub(group, &rh, &rh, &tmp); felem_mul(group, &rh, &rh, &point->X); } else { felem_mul(group, &tmp, &Z4, &group->a); ec_felem_add(group, &rh, &rh, &tmp); felem_mul(group, &rh, &rh, &point->X); } // rh := rh + b*Z^6 felem_mul(group, &tmp, &group->b, &Z6); ec_felem_add(group, &rh, &rh, &tmp); } else { // rh := (rh + a)*X ec_felem_add(group, &rh, &rh, &group->a); felem_mul(group, &rh, &rh, &point->X); // rh := rh + b ec_felem_add(group, &rh, &rh, &group->b); } // 'lh' := Y^2 felem_sqr(group, &tmp, &point->Y); return ec_felem_equal(group, &tmp, &rh); } int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_RAW_POINT *a, const EC_RAW_POINT *b) { // Note this function returns zero if |a| and |b| are equal and 1 if they are // not equal. if (ec_GFp_simple_is_at_infinity(group, a)) { return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1; } if (ec_GFp_simple_is_at_infinity(group, b)) { return 1; } int a_Z_is_one = ec_felem_equal(group, &a->Z, &group->one); int b_Z_is_one = ec_felem_equal(group, &b->Z, &group->one); if (a_Z_is_one && b_Z_is_one) { return !ec_felem_equal(group, &a->X, &b->X) || !ec_felem_equal(group, &a->Y, &b->Y); } void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; // We have to decide whether // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), // or equivalently, whether // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). EC_FELEM tmp1, tmp2, Za23, Zb23; const EC_FELEM *tmp1_, *tmp2_; if (!b_Z_is_one) { felem_sqr(group, &Zb23, &b->Z); felem_mul(group, &tmp1, &a->X, &Zb23); tmp1_ = &tmp1; } else { tmp1_ = &a->X; } if (!a_Z_is_one) { felem_sqr(group, &Za23, &a->Z); felem_mul(group, &tmp2, &b->X, &Za23); tmp2_ = &tmp2; } else { tmp2_ = &b->X; } // Compare X_a*Z_b^2 with X_b*Z_a^2. if (!ec_felem_equal(group, tmp1_, tmp2_)) { return 1; // The points differ. } if (!b_Z_is_one) { felem_mul(group, &Zb23, &Zb23, &b->Z); felem_mul(group, &tmp1, &a->Y, &Zb23); // tmp1_ = &tmp1 } else { tmp1_ = &a->Y; } if (!a_Z_is_one) { felem_mul(group, &Za23, &Za23, &a->Z); felem_mul(group, &tmp2, &b->Y, &Za23); // tmp2_ = &tmp2 } else { tmp2_ = &b->Y; } // Compare Y_a*Z_b^3 with Y_b*Z_a^3. if (!ec_felem_equal(group, tmp1_, tmp2_)) { return 1; // The points differ. } // The points are equal. return 0; }