Fuchsia/Zircon recently added support for exposing arm64 CPU features; this CL uses the new system call to set OPENSSL_armcap_P. Change-Id: I045dc0b58117afe6dae315a82bf9acfd8d99be1a Reviewed-on: https://boringssl-review.googlesource.com/25865 Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
16 KiB
Porting from OpenSSL to BoringSSL
BoringSSL is an OpenSSL derivative and is mostly source-compatible, for the subset of OpenSSL retained. Libraries ideally need little to no changes for BoringSSL support, provided they do not use removed APIs. In general, see if the library compiles and, on failure, consult the documentation in the header files and see if problematic features can be removed.
BoringSSL's OPENSSL_VERSION_NUMBER
matches the OpenSSL version it targets.
Version checks for OpenSSL should ideally work as-is in BoringSSL. BoringSSL
also defines upstream's OPENSSL_NO_*
feature macros corresponding to removed
features. If the preprocessor is needed, use these version checks or feature
macros where possible, especially when patching third-party projects. Such
patches are more generally useful to OpenSSL consumers and thus more
appropriate to send upstream.
In some cases, BoringSSL-specific code may be necessary. Use the
OPENSSL_IS_BORINGSSL
preprocessor macro in #ifdef
s. However, first contact
the BoringSSL maintainers about the missing APIs. We will typically add
compatibility functions for convenience. In particular, contact BoringSSL
maintainers before working around missing OpenSSL 1.1.0 accessors. BoringSSL
was originally derived from OpenSSL 1.0.2 but now targets OpenSSL 1.1.0. Some
newer APIs may be missing but can be added on request. (Not all projects have
been ported to OpenSSL 1.1.0, so BoringSSL also remains largely compatible with
OpenSSL 1.0.2.)
The OPENSSL_IS_BORINGSSL
macro may also be used to distinguish OpenSSL from
BoringSSL in configure scripts. Do not use the presence or absence of particular
symbols to detect BoringSSL.
Note: BoringSSL does not have a stable API or ABI. It must be updated with its consumers. It is not suitable for, say, a system library in a traditional Linux distribution. For instance, Chromium statically links the specific revision of BoringSSL it was built against. Likewise, Android's system-internal copy of BoringSSL is not exposed by the NDK and must not be used by third-party applications.
Major API changes
Integer types
Some APIs have been converted to use size_t
for consistency and to avoid
integer overflows at the API boundary. (Existing logic uses a mismash of int
,
long
, and unsigned
.) For the most part, implicit casts mean that existing
code continues to compile. In some cases, this may require BoringSSL-specific
code, particularly to avoid compiler warnings.
Most notably, the STACK_OF(T)
types have all been converted to use size_t
instead of int
for indices and lengths.
Reference counts and opaque types
Some external consumers increment reference counts directly by calling
CRYPTO_add
with the corresponding CRYPTO_LOCK_*
value. These APIs no longer
exist in BoringSSL. Instead, code which increments reference counts should call
the corresponding FOO_up_ref
function, such as EVP_PKEY_up_ref
.
BoringSSL also hides some structs which were previously exposed in OpenSSL 1.0.2, particularly in libssl. Use the relevant accessors instead.
Note that some of these APIs were added in OpenSSL 1.1.0, so projects which do
not yet support 1.1.0 may need additional #ifdef
s. Projects supporting OpenSSL
1.1.0 should not require modification.
Error codes
OpenSSL's errors are extremely specific, leaking internals of the library,
including even a function code for the function which emitted the error! As some
logic in BoringSSL has been rewritten, code which conditions on the error may
break (grep for ERR_GET_REASON
and ERR_GET_FUNC
). This danger also exists
when upgrading OpenSSL versions.
Where possible, avoid conditioning on the exact error reason. Otherwise, a
BoringSSL #ifdef
may be necessary. Exactly how best to resolve this issue is
still being determined. It's possible some new APIs will be added in the future.
Function codes have been completely removed. Remove code which conditions on these as it will break with the slightest change in the library, OpenSSL or BoringSSL.
*_ctrl
functions
Some OpenSSL APIs are implemented with ioctl
-style functions such as
SSL_ctrl
and EVP_PKEY_CTX_ctrl
, combined with convenience macros, such as
# define SSL_CTX_set_mode(ctx,op) \
SSL_CTX_ctrl((ctx),SSL_CTRL_MODE,(op),NULL)
In BoringSSL, these macros have been replaced with proper functions. The
underlying _ctrl
functions have been removed.
For convenience, SSL_CTRL_*
values are retained as macros to doesnt_exist
so
existing code which uses them (or the wrapper macros) in #ifdef
expressions
will continue to function. However, the macros themselves will not work.
Switch any *_ctrl
callers to the macro/function versions. This works in both
OpenSSL and BoringSSL. Note that BoringSSL's function versions will be
type-checked and may require more care with types. See the end of this
document for a table of functions to use.
HMAC EVP_PKEY
s
EVP_PKEY_HMAC
is removed. Use the HMAC_*
functions in hmac.h
instead. This
is compatible with OpenSSL.
DSA EVP_PKEY
s
EVP_PKEY_DSA
is deprecated. It is currently still possible to parse DER into a
DSA EVP_PKEY
, but signing or verifying with those objects will not work.
DES
The DES_cblock
type has been switched from an array to a struct to avoid the
pitfalls around array types in C. Where features which require DES cannot be
disabled, BoringSSL-specific codepaths may be necessary.
TLS renegotiation
OpenSSL enables TLS renegotiation by default and accepts renegotiation requests from the peer transparently. Renegotiation is an extremely problematic protocol feature, so BoringSSL rejects peer renegotiations by default.
To enable renegotiation, call SSL_set_renegotiate_mode
and set it to
ssl_renegotiate_once
or ssl_renegotiate_freely
. Renegotiation is only
supported as a client in SSL3/TLS and the HelloRequest must be received at a
quiet point in the application protocol. This is sufficient to support the
common use of requesting a new client certificate between an HTTP request and
response in (unpipelined) HTTP/1.1.
Things which do not work:
-
There is no support for renegotiation as a server. (Attempts by clients will result in a fatal alert so that ClientHello messages cannot be used to flood a server and escape higher-level limits.)
-
There is no support for renegotiation in DTLS.
-
There is no support for initiating renegotiation;
SSL_renegotiate
always fails andSSL_set_state
does nothing. -
Interleaving application data with the new handshake is forbidden.
-
If a HelloRequest is received while
SSL_write
has unsent application data, the renegotiation is rejected. -
Renegotiation does not participate in session resumption. The client will not offer a session on renegotiation or resume any session established by a renegotiation handshake.
-
The server may not change its certificate in the renegotiation. This mitigates the triple handshake attack. Any new stapled OCSP response and SCT list will be ignored. As no authentication state may change, BoringSSL will not re-verify the certificate on a renegotiation. Callbacks such as
SSL_CTX_set_custom_verify
will only run on the initial handshake.
Lowercase hexadecimal
BoringSSL's BN_bn2hex
function uses lowercase hexadecimal digits instead of
uppercase. Some code may require changes to avoid being sensitive to this
difference.
Legacy ASN.1 functions
OpenSSL's ASN.1 stack uses d2i
functions for parsing. They have the form:
RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len);
In addition to returning the result, OpenSSL places it in *out
if out
is
not NULL
. On input, if *out
is not NULL
, OpenSSL will usually (but not
always) reuse that object rather than allocating a new one. In BoringSSL, these
functions are compatibility wrappers over a newer ASN.1 stack. Even if *out
is not NULL
, these wrappers will always allocate a new object and free the
previous one.
Ensure that callers do not rely on this object reuse behavior. It is
recommended to avoid the out
parameter completely and always pass in NULL
.
Note that less error-prone APIs are available for BoringSSL-specific code (see
below).
Memory allocation
OpenSSL provides wrappers OPENSSL_malloc
and OPENSSL_free
over the standard
malloc
and free
. Memory allocated by OpenSSL should be released with
OPENSSL_free
, not the standard free
. However, by default, they are
implemented directly using malloc
and free
, so code which mixes them up
usually works.
In BoringSSL, these functions maintain additional book-keeping to zero memory
on OPENSSL_free
, so any mixups must be fixed.
Optional BoringSSL-specific simplifications
BoringSSL makes some changes to OpenSSL which simplify the API but remain compatible with OpenSSL consumers. In general, consult the BoringSSL documentation for any functions in new BoringSSL-only code.
Return values
Most OpenSSL APIs return 1 on success and either 0 or -1 on failure. BoringSSL
has narrowed most of these to 1 on success and 0 on failure. BoringSSL-specific
code may take advantage of the less error-prone APIs and use !
to check for
errors.
Initialization
OpenSSL has a number of different initialization functions for setting up error strings and loading algorithms, etc. All of these functions still exist in BoringSSL for convenience, but they do nothing and are not necessary.
The one exception is CRYPTO_library_init
. In BORINGSSL_NO_STATIC_INITIALIZER
builds, it must be called to query CPU capabilities before the rest of the
library. In the default configuration, this is done with a static initializer
and is also unnecessary.
Threading
OpenSSL provides a number of APIs to configure threading callbacks and set up locks. Without initializing these, the library is not thread-safe. Configuring these does nothing in BoringSSL. Instead, BoringSSL calls pthreads and the corresponding Windows APIs internally and is always thread-safe where the API guarantees it.
ASN.1
BoringSSL is in the process of deprecating OpenSSL's d2i
and i2d
in favor of
new functions using the much less error-prone CBS
and CBB
types.
BoringSSL-only code should use those functions where available.
Replacements for CTRL
values
When porting code which uses SSL_CTX_ctrl
or SSL_ctrl
, use the replacement
functions below. If a function has both SSL_CTX
and SSL
variants, only the
SSL_CTX
version is listed.
Note some values correspond to multiple functions depending on the larg
parameter.
CTRL value |
Replacement function(s) |
---|---|
DTLS_CTRL_GET_TIMEOUT |
DTLSv1_get_timeout |
DTLS_CTRL_HANDLE_TIMEOUT |
DTLSv1_handle_timeout |
SSL_CTRL_CHAIN |
SSL_CTX_set0_chain or SSL_CTX_set1_chain |
SSL_CTRL_CHAIN_CERT |
SSL_add0_chain_cert or SSL_add1_chain_cert |
SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS |
SSL_CTX_clear_extra_chain_certs |
SSL_CTRL_CLEAR_MODE |
SSL_CTX_clear_mode |
SSL_CTRL_CLEAR_OPTIONS |
SSL_CTX_clear_options |
SSL_CTRL_EXTRA_CHAIN_CERT |
SSL_CTX_add_extra_chain_cert |
SSL_CTRL_GET_CHAIN_CERTS |
SSL_CTX_get0_chain_certs |
SSL_CTRL_GET_CLIENT_CERT_TYPES |
SSL_get0_certificate_types |
SSL_CTRL_GET_EXTRA_CHAIN_CERTS |
SSL_CTX_get_extra_chain_certs or SSL_CTX_get_extra_chain_certs_only |
SSL_CTRL_GET_MAX_CERT_LIST |
SSL_CTX_get_max_cert_list |
SSL_CTRL_GET_NUM_RENEGOTIATIONS |
SSL_num_renegotiations |
SSL_CTRL_GET_READ_AHEAD |
SSL_CTX_get_read_ahead |
SSL_CTRL_GET_RI_SUPPORT |
SSL_get_secure_renegotiation_support |
SSL_CTRL_GET_SESSION_REUSED |
SSL_session_reused |
SSL_CTRL_GET_SESS_CACHE_MODE |
SSL_CTX_get_session_cache_mode |
SSL_CTRL_GET_SESS_CACHE_SIZE |
SSL_CTX_sess_get_cache_size |
SSL_CTRL_GET_TLSEXT_TICKET_KEYS |
SSL_CTX_get_tlsext_ticket_keys |
SSL_CTRL_GET_TOTAL_RENEGOTIATIONS |
SSL_total_renegotiations |
SSL_CTRL_MODE |
SSL_CTX_get_mode or SSL_CTX_set_mode |
SSL_CTRL_NEED_TMP_RSA |
SSL_CTX_need_tmp_RSA is equivalent, but do not use this function. (It is a no-op in BoringSSL.) |
SSL_CTRL_OPTIONS |
SSL_CTX_get_options or SSL_CTX_set_options |
SSL_CTRL_SESS_NUMBER |
SSL_CTX_sess_number |
SSL_CTRL_SET_CURVES |
SSL_CTX_set1_curves |
SSL_CTRL_SET_ECDH_AUTO |
SSL_CTX_set_ecdh_auto |
SSL_CTRL_SET_MAX_CERT_LIST |
SSL_CTX_set_max_cert_list |
SSL_CTRL_SET_MAX_SEND_FRAGMENT |
SSL_CTX_set_max_send_fragment |
SSL_CTRL_SET_MSG_CALLBACK |
SSL_set_msg_callback |
SSL_CTRL_SET_MSG_CALLBACK_ARG |
SSL_set_msg_callback_arg |
SSL_CTRL_SET_MTU |
SSL_set_mtu |
SSL_CTRL_SET_READ_AHEAD |
SSL_CTX_set_read_ahead |
SSL_CTRL_SET_SESS_CACHE_MODE |
SSL_CTX_set_session_cache_mode |
SSL_CTRL_SET_SESS_CACHE_SIZE |
SSL_CTX_sess_set_cache_size |
SSL_CTRL_SET_TLSEXT_HOSTNAME |
SSL_set_tlsext_host_name |
SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG |
SSL_CTX_set_tlsext_servername_arg |
SSL_CTRL_SET_TLSEXT_SERVERNAME_CB |
SSL_CTX_set_tlsext_servername_callback |
SSL_CTRL_SET_TLSEXT_TICKET_KEYS |
SSL_CTX_set_tlsext_ticket_keys |
SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB |
SSL_CTX_set_tlsext_ticket_key_cb |
SSL_CTRL_SET_TMP_DH |
SSL_CTX_set_tmp_dh |
SSL_CTRL_SET_TMP_DH_CB |
SSL_CTX_set_tmp_dh_callback |
SSL_CTRL_SET_TMP_ECDH |
SSL_CTX_set_tmp_ecdh |
SSL_CTRL_SET_TMP_ECDH_CB |
SSL_CTX_set_tmp_ecdh_callback |
SSL_CTRL_SET_TMP_RSA |
SSL_CTX_set_tmp_rsa is equivalent, but do not use this function. (It is a no-op in BoringSSL.) |
SSL_CTRL_SET_TMP_RSA_CB |
SSL_CTX_set_tmp_rsa_callback is equivalent, but do not use this function. (It is a no-op in BoringSSL.) |
Significant API additions
In some places, BoringSSL has added significant APIs. Use of these APIs goes beyound “porting” and means giving up on OpenSSL compatibility.
One example of this has already been mentioned: the CBS and CBB functions should be used whenever parsing or serialising data.
CRYPTO_BUFFER
With the standard OpenSSL APIs, when making many TLS connections, the certificate data for each connection is retained in memory in an expensive X509
structure. Additionally, common certificates often appear in the chains for multiple connections and are needlessly duplicated in memory.
A CRYPTO_BUFFER
is just an opaque byte string. A CRYPTO_BUFFER_POOL
is an intern table for these buffers, i.e. it ensures that only a single copy of any given byte string is kept for each pool.
The function TLS_with_buffers_method
returns an SSL_METHOD
that avoids creating X509
objects for certificates. Additionally, SSL_CTX_set0_buffer_pool
can be used to install a pool on an SSL_CTX
so that certificates can be deduplicated across connections and across SSL_CTX
s.
When using these functions, the application also needs to ensure that it doesn't call other functions that deal with X509
or X509_NAME
objects. For example, SSL_get_peer_certificate
or SSL_get_peer_cert_chain
. Doing so will trigger an assert in debug mode and will result in NULLs in release mode. Instead, call the buffer-based alternatives such as SSL_get0_peer_certificates
. (See ssl.h for functions taking or returning CRYPTO_BUFFER
.) The buffer-based alternative functions will work even when not using TLS_with_buffers_method
, thus application code can transition gradually.
In order to use buffers, the application code also needs to implement its own certificate verification using SSL_[CTX_]set_custom_verify
. Otherwise all connections will fail with a verification error. Auto-chaining is also disabled when using buffers.
Once those changes have been completed, the whole of the OpenSSL X.509 and ASN.1 code should be eliminated by the linker if BoringSSL is linked statically.
Asynchronous and opaque private keys
OpenSSL offers the ENGINE API for implementing opaque private keys (i.e. private keys where software only has oracle access because the secrets are held in special hardware or on another machine). While the ENGINE API has been mostly removed from BoringSSL, it is still possible to support opaque keys in this way. However, when using such keys with TLS and BoringSSL, you should strongly prefer using SSL_PRIVATE_KEY_METHOD
via SSL[_CTX]_set_private_key_method
. This allows a handshake to be suspended while the private operation is in progress. It also supports more forms of opaque key as it exposes higher-level information about the operation to be performed.