54c217cc6b
We'll enable them once we've gotten it working. For now, our TLS 1.3 believes there is no PSK. Change-Id: I5ae51266927c8469c671844da9a0f7387c297050 Reviewed-on: https://boringssl-review.googlesource.com/8760 Reviewed-by: Steven Valdez <svaldez@google.com> Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2127 lines
57 KiB
C
2127 lines
57 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
* ECC cipher suite support in OpenSSL originally developed by
|
|
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2005 Nokia. All rights reserved.
|
|
*
|
|
* The portions of the attached software ("Contribution") is developed by
|
|
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
|
|
* license.
|
|
*
|
|
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
|
|
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
|
|
* support (see RFC 4279) to OpenSSL.
|
|
*
|
|
* No patent licenses or other rights except those expressly stated in
|
|
* the OpenSSL open source license shall be deemed granted or received
|
|
* expressly, by implication, estoppel, or otherwise.
|
|
*
|
|
* No assurances are provided by Nokia that the Contribution does not
|
|
* infringe the patent or other intellectual property rights of any third
|
|
* party or that the license provides you with all the necessary rights
|
|
* to make use of the Contribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
|
|
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
|
|
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
|
|
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
|
|
* OTHERWISE. */
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/buf.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/md5.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/stack.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
/* kCiphers is an array of all supported ciphers, sorted by id. */
|
|
static const SSL_CIPHER kCiphers[] = {
|
|
/* The RSA ciphers */
|
|
/* Cipher 02 */
|
|
{
|
|
SSL3_TXT_RSA_NULL_SHA,
|
|
SSL3_CK_RSA_NULL_SHA,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_eNULL,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 04 */
|
|
{
|
|
SSL3_TXT_RSA_RC4_128_MD5,
|
|
SSL3_CK_RSA_RC4_128_MD5,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_RC4,
|
|
SSL_MD5,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 05 */
|
|
{
|
|
SSL3_TXT_RSA_RC4_128_SHA,
|
|
SSL3_CK_RSA_RC4_128_SHA,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_RC4,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 0A */
|
|
{
|
|
SSL3_TXT_RSA_DES_192_CBC3_SHA,
|
|
SSL3_CK_RSA_DES_192_CBC3_SHA,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_3DES,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
|
|
/* New AES ciphersuites */
|
|
|
|
/* Cipher 2F */
|
|
{
|
|
TLS1_TXT_RSA_WITH_AES_128_SHA,
|
|
TLS1_CK_RSA_WITH_AES_128_SHA,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_AES128,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 33 */
|
|
{
|
|
TLS1_TXT_DHE_RSA_WITH_AES_128_SHA,
|
|
TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
|
|
SSL_kDHE,
|
|
SSL_aRSA,
|
|
SSL_AES128,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 35 */
|
|
{
|
|
TLS1_TXT_RSA_WITH_AES_256_SHA,
|
|
TLS1_CK_RSA_WITH_AES_256_SHA,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_AES256,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 39 */
|
|
{
|
|
TLS1_TXT_DHE_RSA_WITH_AES_256_SHA,
|
|
TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
|
|
SSL_kDHE,
|
|
SSL_aRSA,
|
|
SSL_AES256,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
|
|
/* TLS v1.2 ciphersuites */
|
|
|
|
/* Cipher 3C */
|
|
{
|
|
TLS1_TXT_RSA_WITH_AES_128_SHA256,
|
|
TLS1_CK_RSA_WITH_AES_128_SHA256,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_AES128,
|
|
SSL_SHA256,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 3D */
|
|
{
|
|
TLS1_TXT_RSA_WITH_AES_256_SHA256,
|
|
TLS1_CK_RSA_WITH_AES_256_SHA256,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_AES256,
|
|
SSL_SHA256,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 67 */
|
|
{
|
|
TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
|
|
TLS1_CK_DHE_RSA_WITH_AES_128_SHA256,
|
|
SSL_kDHE,
|
|
SSL_aRSA,
|
|
SSL_AES128,
|
|
SSL_SHA256,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 6B */
|
|
{
|
|
TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
|
|
TLS1_CK_DHE_RSA_WITH_AES_256_SHA256,
|
|
SSL_kDHE,
|
|
SSL_aRSA,
|
|
SSL_AES256,
|
|
SSL_SHA256,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* PSK cipher suites. */
|
|
|
|
/* Cipher 8A */
|
|
{
|
|
TLS1_TXT_PSK_WITH_RC4_128_SHA,
|
|
TLS1_CK_PSK_WITH_RC4_128_SHA,
|
|
SSL_kPSK,
|
|
SSL_aPSK,
|
|
SSL_RC4,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 8C */
|
|
{
|
|
TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
|
|
TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
|
|
SSL_kPSK,
|
|
SSL_aPSK,
|
|
SSL_AES128,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher 8D */
|
|
{
|
|
TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
|
|
TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
|
|
SSL_kPSK,
|
|
SSL_aPSK,
|
|
SSL_AES256,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* GCM ciphersuites from RFC5288 */
|
|
|
|
/* Cipher 9C */
|
|
{
|
|
TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
|
|
TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_AES128GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 9D */
|
|
{
|
|
TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
|
|
SSL_kRSA,
|
|
SSL_aRSA,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* Cipher 9E */
|
|
{
|
|
TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
SSL_kDHE,
|
|
SSL_aRSA,
|
|
SSL_AES128GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 9F */
|
|
{
|
|
TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
SSL_kDHE,
|
|
SSL_aRSA,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* CECPQ1 (combined elliptic curve + post-quantum) suites. */
|
|
|
|
/* Cipher 16B7 */
|
|
{
|
|
TLS1_TXT_CECPQ1_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
TLS1_CK_CECPQ1_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
SSL_kCECPQ1,
|
|
SSL_aRSA,
|
|
SSL_CHACHA20POLY1305,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 16B8 */
|
|
{
|
|
TLS1_TXT_CECPQ1_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
TLS1_CK_CECPQ1_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
SSL_kCECPQ1,
|
|
SSL_aECDSA,
|
|
SSL_CHACHA20POLY1305,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher 16B9 */
|
|
{
|
|
TLS1_TXT_CECPQ1_RSA_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_CECPQ1_RSA_WITH_AES_256_GCM_SHA384,
|
|
SSL_kCECPQ1,
|
|
SSL_aRSA,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* Cipher 16BA */
|
|
{
|
|
TLS1_TXT_CECPQ1_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_CECPQ1_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
SSL_kCECPQ1,
|
|
SSL_aECDSA,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* Cipher C007 */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_RC4,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher C009 */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_AES128,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher C00A */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_AES256,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher C011 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA,
|
|
TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_RC4,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher C013 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
|
|
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_AES128,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher C014 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
|
|
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_AES256,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
|
|
/* HMAC based TLS v1.2 ciphersuites from RFC5289 */
|
|
|
|
/* Cipher C023 */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_AES128,
|
|
SSL_SHA256,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher C024 */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_AES256,
|
|
SSL_SHA384,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* Cipher C027 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
|
|
TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_AES128,
|
|
SSL_SHA256,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher C028 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
|
|
TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_AES256,
|
|
SSL_SHA384,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
|
|
/* GCM based TLS v1.2 ciphersuites from RFC5289 */
|
|
|
|
/* Cipher C02B */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_AES128GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher C02C */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* Cipher C02F */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_AES128GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher C030 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
/* ECDHE-PSK cipher suites. */
|
|
|
|
/* Cipher C035 */
|
|
{
|
|
TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
|
|
TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aPSK,
|
|
SSL_AES128,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* Cipher C036 */
|
|
{
|
|
TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
|
|
TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
|
|
SSL_kECDHE,
|
|
SSL_aPSK,
|
|
SSL_AES256,
|
|
SSL_SHA1,
|
|
SSL_HANDSHAKE_MAC_DEFAULT,
|
|
},
|
|
|
|
/* ChaCha20-Poly1305 cipher suites. */
|
|
|
|
#if !defined(BORINGSSL_ANDROID_SYSTEM)
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_OLD,
|
|
TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_CHACHA20POLY1305_OLD,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_OLD,
|
|
TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_CHACHA20POLY1305_OLD,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
#endif
|
|
|
|
/* Cipher CCA8 */
|
|
{
|
|
TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aRSA,
|
|
SSL_CHACHA20POLY1305,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher CCA9 */
|
|
{
|
|
TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aECDSA,
|
|
SSL_CHACHA20POLY1305,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher CCAB */
|
|
{
|
|
TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
|
|
TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aPSK,
|
|
SSL_CHACHA20POLY1305,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher D001 */
|
|
{
|
|
TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
|
|
TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
|
|
SSL_kECDHE,
|
|
SSL_aPSK,
|
|
SSL_AES128GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA256,
|
|
},
|
|
|
|
/* Cipher D002 */
|
|
{
|
|
TLS1_TXT_ECDHE_PSK_WITH_AES_256_GCM_SHA384,
|
|
TLS1_CK_ECDHE_PSK_WITH_AES_256_GCM_SHA384,
|
|
SSL_kECDHE,
|
|
SSL_aPSK,
|
|
SSL_AES256GCM,
|
|
SSL_AEAD,
|
|
SSL_HANDSHAKE_MAC_SHA384,
|
|
},
|
|
|
|
};
|
|
|
|
static const size_t kCiphersLen = sizeof(kCiphers) / sizeof(kCiphers[0]);
|
|
|
|
#define CIPHER_ADD 1
|
|
#define CIPHER_KILL 2
|
|
#define CIPHER_DEL 3
|
|
#define CIPHER_ORD 4
|
|
#define CIPHER_SPECIAL 5
|
|
|
|
typedef struct cipher_order_st {
|
|
const SSL_CIPHER *cipher;
|
|
int active;
|
|
int in_group;
|
|
struct cipher_order_st *next, *prev;
|
|
} CIPHER_ORDER;
|
|
|
|
typedef struct cipher_alias_st {
|
|
/* name is the name of the cipher alias. */
|
|
const char *name;
|
|
|
|
/* The following fields are bitmasks for the corresponding fields on
|
|
* |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
|
|
* bit corresponding to the cipher's value is set to 1. If any bitmask is
|
|
* all zeroes, the alias matches nothing. Use |~0u| for the default value. */
|
|
uint32_t algorithm_mkey;
|
|
uint32_t algorithm_auth;
|
|
uint32_t algorithm_enc;
|
|
uint32_t algorithm_mac;
|
|
|
|
/* min_version, if non-zero, matches all ciphers which were added in that
|
|
* particular protocol version. */
|
|
uint16_t min_version;
|
|
} CIPHER_ALIAS;
|
|
|
|
static const CIPHER_ALIAS kCipherAliases[] = {
|
|
/* "ALL" doesn't include eNULL nor kCECPQ1. These must be explicitly
|
|
* enabled. */
|
|
{"ALL", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, 0},
|
|
|
|
/* The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. */
|
|
|
|
/* key exchange aliases
|
|
* (some of those using only a single bit here combine
|
|
* multiple key exchange algs according to the RFCs,
|
|
* e.g. kEDH combines DHE_DSS and DHE_RSA) */
|
|
{"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
|
|
|
|
{"kDHE", SSL_kDHE, ~0u, ~0u, ~0u, 0},
|
|
{"kEDH", SSL_kDHE, ~0u, ~0u, ~0u, 0},
|
|
{"DH", SSL_kDHE, ~0u, ~0u, ~0u, 0},
|
|
|
|
{"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
|
|
{"kCECPQ1", SSL_kCECPQ1, ~0u, ~0u, ~0u, 0},
|
|
{"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
|
|
{"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
|
|
|
|
{"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
|
|
|
|
/* server authentication aliases */
|
|
{"aRSA", ~SSL_kCECPQ1, SSL_aRSA, ~SSL_eNULL, ~0u, 0},
|
|
{"aECDSA", ~SSL_kCECPQ1, SSL_aECDSA, ~0u, ~0u, 0},
|
|
{"ECDSA", ~SSL_kCECPQ1, SSL_aECDSA, ~0u, ~0u, 0},
|
|
{"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
|
|
|
|
/* aliases combining key exchange and server authentication */
|
|
{"DHE", SSL_kDHE, ~0u, ~0u, ~0u, 0},
|
|
{"EDH", SSL_kDHE, ~0u, ~0u, ~0u, 0},
|
|
{"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
|
|
{"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
|
|
{"RSA", SSL_kRSA, SSL_aRSA, ~SSL_eNULL, ~0u, 0},
|
|
{"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
|
|
|
|
/* symmetric encryption aliases */
|
|
{"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0},
|
|
{"RC4", ~0u, ~0u, SSL_RC4, ~0u, 0},
|
|
{"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0},
|
|
{"AES256", ~SSL_kCECPQ1, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0},
|
|
{"AES", ~SSL_kCECPQ1, ~0u, SSL_AES, ~0u, 0},
|
|
{"AESGCM", ~SSL_kCECPQ1, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0},
|
|
{"CHACHA20", ~SSL_kCECPQ1, ~0u, SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD, ~0u,
|
|
0},
|
|
|
|
/* MAC aliases */
|
|
{"MD5", ~0u, ~0u, ~0u, SSL_MD5, 0},
|
|
{"SHA1", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0},
|
|
{"SHA", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0},
|
|
{"SHA256", ~SSL_kCECPQ1, ~0u, ~0u, SSL_SHA256, 0},
|
|
{"SHA384", ~SSL_kCECPQ1, ~0u, ~0u, SSL_SHA384, 0},
|
|
|
|
/* Legacy protocol minimum version aliases. "TLSv1" is intentionally the
|
|
* same as "SSLv3". */
|
|
{"SSLv3", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION},
|
|
{"TLSv1", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION},
|
|
{"TLSv1.2", ~SSL_kCECPQ1, ~0u, ~SSL_eNULL, ~0u, TLS1_2_VERSION},
|
|
|
|
/* Legacy strength classes. */
|
|
{"MEDIUM", ~0u, ~0u, SSL_RC4, ~0u, 0},
|
|
{"HIGH", ~SSL_kCECPQ1, ~0u, ~(SSL_eNULL|SSL_RC4), ~0u, 0},
|
|
{"FIPS", ~SSL_kCECPQ1, ~0u, ~(SSL_eNULL|SSL_RC4), ~0u, 0},
|
|
};
|
|
|
|
static const size_t kCipherAliasesLen =
|
|
sizeof(kCipherAliases) / sizeof(kCipherAliases[0]);
|
|
|
|
static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
|
|
const SSL_CIPHER *a = in_a;
|
|
const SSL_CIPHER *b = in_b;
|
|
|
|
if (a->id > b->id) {
|
|
return 1;
|
|
} else if (a->id < b->id) {
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int ssl_cipher_ptr_id_cmp(const SSL_CIPHER **a, const SSL_CIPHER **b) {
|
|
return ssl_cipher_id_cmp(*a, *b);
|
|
}
|
|
|
|
const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
|
|
SSL_CIPHER c;
|
|
|
|
c.id = 0x03000000L | value;
|
|
return bsearch(&c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER),
|
|
ssl_cipher_id_cmp);
|
|
}
|
|
|
|
int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
|
|
size_t *out_mac_secret_len,
|
|
size_t *out_fixed_iv_len,
|
|
const SSL_CIPHER *cipher, uint16_t version) {
|
|
*out_aead = NULL;
|
|
*out_mac_secret_len = 0;
|
|
*out_fixed_iv_len = 0;
|
|
|
|
switch (cipher->algorithm_enc) {
|
|
case SSL_AES128GCM:
|
|
*out_aead = EVP_aead_aes_128_gcm();
|
|
*out_fixed_iv_len = 4;
|
|
break;
|
|
|
|
case SSL_AES256GCM:
|
|
*out_aead = EVP_aead_aes_256_gcm();
|
|
*out_fixed_iv_len = 4;
|
|
break;
|
|
|
|
#if !defined(BORINGSSL_ANDROID_SYSTEM)
|
|
case SSL_CHACHA20POLY1305_OLD:
|
|
*out_aead = EVP_aead_chacha20_poly1305_old();
|
|
*out_fixed_iv_len = 0;
|
|
break;
|
|
#endif
|
|
|
|
case SSL_CHACHA20POLY1305:
|
|
*out_aead = EVP_aead_chacha20_poly1305();
|
|
*out_fixed_iv_len = 12;
|
|
break;
|
|
|
|
case SSL_RC4:
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_MD5:
|
|
if (version == SSL3_VERSION) {
|
|
*out_aead = EVP_aead_rc4_md5_ssl3();
|
|
} else {
|
|
*out_aead = EVP_aead_rc4_md5_tls();
|
|
}
|
|
*out_mac_secret_len = MD5_DIGEST_LENGTH;
|
|
break;
|
|
case SSL_SHA1:
|
|
if (version == SSL3_VERSION) {
|
|
*out_aead = EVP_aead_rc4_sha1_ssl3();
|
|
} else {
|
|
*out_aead = EVP_aead_rc4_sha1_tls();
|
|
}
|
|
*out_mac_secret_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case SSL_AES128:
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_SHA1:
|
|
if (version == SSL3_VERSION) {
|
|
*out_aead = EVP_aead_aes_128_cbc_sha1_ssl3();
|
|
*out_fixed_iv_len = 16;
|
|
} else if (version == TLS1_VERSION) {
|
|
*out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
|
|
*out_fixed_iv_len = 16;
|
|
} else {
|
|
*out_aead = EVP_aead_aes_128_cbc_sha1_tls();
|
|
}
|
|
*out_mac_secret_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
case SSL_SHA256:
|
|
*out_aead = EVP_aead_aes_128_cbc_sha256_tls();
|
|
*out_mac_secret_len = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case SSL_AES256:
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_SHA1:
|
|
if (version == SSL3_VERSION) {
|
|
*out_aead = EVP_aead_aes_256_cbc_sha1_ssl3();
|
|
*out_fixed_iv_len = 16;
|
|
} else if (version == TLS1_VERSION) {
|
|
*out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
|
|
*out_fixed_iv_len = 16;
|
|
} else {
|
|
*out_aead = EVP_aead_aes_256_cbc_sha1_tls();
|
|
}
|
|
*out_mac_secret_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
case SSL_SHA256:
|
|
*out_aead = EVP_aead_aes_256_cbc_sha256_tls();
|
|
*out_mac_secret_len = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
case SSL_SHA384:
|
|
*out_aead = EVP_aead_aes_256_cbc_sha384_tls();
|
|
*out_mac_secret_len = SHA384_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case SSL_3DES:
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_SHA1:
|
|
if (version == SSL3_VERSION) {
|
|
*out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3();
|
|
*out_fixed_iv_len = 8;
|
|
} else if (version == TLS1_VERSION) {
|
|
*out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
|
|
*out_fixed_iv_len = 8;
|
|
} else {
|
|
*out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
|
|
}
|
|
*out_mac_secret_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case SSL_eNULL:
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_SHA1:
|
|
if (version == SSL3_VERSION) {
|
|
*out_aead = EVP_aead_null_sha1_ssl3();
|
|
} else {
|
|
*out_aead = EVP_aead_null_sha1_tls();
|
|
}
|
|
*out_mac_secret_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
|
|
* above computes the TLS 1.2 construction.
|
|
*
|
|
* TODO(davidben,svaldez): Avoid computing the wrong value and fixing it. */
|
|
if (version >= TLS1_3_VERSION) {
|
|
*out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
|
|
assert(*out_fixed_iv_len >= 8);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf) {
|
|
switch (algorithm_prf) {
|
|
case SSL_HANDSHAKE_MAC_DEFAULT:
|
|
return EVP_sha1();
|
|
case SSL_HANDSHAKE_MAC_SHA256:
|
|
return EVP_sha256();
|
|
case SSL_HANDSHAKE_MAC_SHA384:
|
|
return EVP_sha384();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#define ITEM_SEP(a) \
|
|
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
|
|
|
|
/* rule_equals returns one iff the NUL-terminated string |rule| is equal to the
|
|
* |buf_len| bytes at |buf|. */
|
|
static int rule_equals(const char *rule, const char *buf, size_t buf_len) {
|
|
/* |strncmp| alone only checks that |buf| is a prefix of |rule|. */
|
|
return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
|
|
}
|
|
|
|
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
|
|
CIPHER_ORDER **tail) {
|
|
if (curr == *tail) {
|
|
return;
|
|
}
|
|
if (curr == *head) {
|
|
*head = curr->next;
|
|
}
|
|
if (curr->prev != NULL) {
|
|
curr->prev->next = curr->next;
|
|
}
|
|
if (curr->next != NULL) {
|
|
curr->next->prev = curr->prev;
|
|
}
|
|
(*tail)->next = curr;
|
|
curr->prev = *tail;
|
|
curr->next = NULL;
|
|
*tail = curr;
|
|
}
|
|
|
|
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
|
|
CIPHER_ORDER **tail) {
|
|
if (curr == *head) {
|
|
return;
|
|
}
|
|
if (curr == *tail) {
|
|
*tail = curr->prev;
|
|
}
|
|
if (curr->next != NULL) {
|
|
curr->next->prev = curr->prev;
|
|
}
|
|
if (curr->prev != NULL) {
|
|
curr->prev->next = curr->next;
|
|
}
|
|
(*head)->prev = curr;
|
|
curr->next = *head;
|
|
curr->prev = NULL;
|
|
*head = curr;
|
|
}
|
|
|
|
static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method,
|
|
CIPHER_ORDER *co_list,
|
|
CIPHER_ORDER **head_p,
|
|
CIPHER_ORDER **tail_p) {
|
|
/* The set of ciphers is static, but some subset may be unsupported by
|
|
* |ssl_method|, so the list may be smaller. */
|
|
size_t co_list_num = 0;
|
|
size_t i;
|
|
for (i = 0; i < kCiphersLen; i++) {
|
|
const SSL_CIPHER *cipher = &kCiphers[i];
|
|
if (ssl_method->supports_cipher(cipher)) {
|
|
co_list[co_list_num].cipher = cipher;
|
|
co_list[co_list_num].next = NULL;
|
|
co_list[co_list_num].prev = NULL;
|
|
co_list[co_list_num].active = 0;
|
|
co_list[co_list_num].in_group = 0;
|
|
co_list_num++;
|
|
}
|
|
}
|
|
|
|
/* Prepare linked list from list entries. */
|
|
if (co_list_num > 0) {
|
|
co_list[0].prev = NULL;
|
|
|
|
if (co_list_num > 1) {
|
|
co_list[0].next = &co_list[1];
|
|
|
|
for (i = 1; i < co_list_num - 1; i++) {
|
|
co_list[i].prev = &co_list[i - 1];
|
|
co_list[i].next = &co_list[i + 1];
|
|
}
|
|
|
|
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
|
|
}
|
|
|
|
co_list[co_list_num - 1].next = NULL;
|
|
|
|
*head_p = &co_list[0];
|
|
*tail_p = &co_list[co_list_num - 1];
|
|
}
|
|
}
|
|
|
|
/* ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
|
|
* parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
|
|
* head and tail of the list to |*head_p| and |*tail_p|, respectively.
|
|
*
|
|
* - If |cipher_id| is non-zero, only that cipher is selected.
|
|
* - Otherwise, if |strength_bits| is non-negative, it selects ciphers
|
|
* of that strength.
|
|
* - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
|
|
* |min_version|. */
|
|
static void ssl_cipher_apply_rule(
|
|
uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
|
|
uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule,
|
|
int strength_bits, int in_group, CIPHER_ORDER **head_p,
|
|
CIPHER_ORDER **tail_p) {
|
|
CIPHER_ORDER *head, *tail, *curr, *next, *last;
|
|
const SSL_CIPHER *cp;
|
|
int reverse = 0;
|
|
|
|
if (cipher_id == 0 && strength_bits == -1 && min_version == 0 &&
|
|
(alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) {
|
|
/* The rule matches nothing, so bail early. */
|
|
return;
|
|
}
|
|
|
|
if (rule == CIPHER_DEL) {
|
|
/* needed to maintain sorting between currently deleted ciphers */
|
|
reverse = 1;
|
|
}
|
|
|
|
head = *head_p;
|
|
tail = *tail_p;
|
|
|
|
if (reverse) {
|
|
next = tail;
|
|
last = head;
|
|
} else {
|
|
next = head;
|
|
last = tail;
|
|
}
|
|
|
|
curr = NULL;
|
|
for (;;) {
|
|
if (curr == last) {
|
|
break;
|
|
}
|
|
|
|
curr = next;
|
|
if (curr == NULL) {
|
|
break;
|
|
}
|
|
|
|
next = reverse ? curr->prev : curr->next;
|
|
cp = curr->cipher;
|
|
|
|
/* Selection criteria is either a specific cipher, the value of
|
|
* |strength_bits|, or the algorithms used. */
|
|
if (cipher_id != 0) {
|
|
if (cipher_id != cp->id) {
|
|
continue;
|
|
}
|
|
} else if (strength_bits >= 0) {
|
|
if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
|
|
continue;
|
|
}
|
|
} else if (!(alg_mkey & cp->algorithm_mkey) ||
|
|
!(alg_auth & cp->algorithm_auth) ||
|
|
!(alg_enc & cp->algorithm_enc) ||
|
|
!(alg_mac & cp->algorithm_mac) ||
|
|
(min_version != 0 &&
|
|
SSL_CIPHER_get_min_version(cp) != min_version)) {
|
|
continue;
|
|
}
|
|
|
|
/* add the cipher if it has not been added yet. */
|
|
if (rule == CIPHER_ADD) {
|
|
/* reverse == 0 */
|
|
if (!curr->active) {
|
|
ll_append_tail(&head, curr, &tail);
|
|
curr->active = 1;
|
|
curr->in_group = in_group;
|
|
}
|
|
}
|
|
|
|
/* Move the added cipher to this location */
|
|
else if (rule == CIPHER_ORD) {
|
|
/* reverse == 0 */
|
|
if (curr->active) {
|
|
ll_append_tail(&head, curr, &tail);
|
|
curr->in_group = 0;
|
|
}
|
|
} else if (rule == CIPHER_DEL) {
|
|
/* reverse == 1 */
|
|
if (curr->active) {
|
|
/* most recently deleted ciphersuites get best positions
|
|
* for any future CIPHER_ADD (note that the CIPHER_DEL loop
|
|
* works in reverse to maintain the order) */
|
|
ll_append_head(&head, curr, &tail);
|
|
curr->active = 0;
|
|
curr->in_group = 0;
|
|
}
|
|
} else if (rule == CIPHER_KILL) {
|
|
/* reverse == 0 */
|
|
if (head == curr) {
|
|
head = curr->next;
|
|
} else {
|
|
curr->prev->next = curr->next;
|
|
}
|
|
|
|
if (tail == curr) {
|
|
tail = curr->prev;
|
|
}
|
|
curr->active = 0;
|
|
if (curr->next != NULL) {
|
|
curr->next->prev = curr->prev;
|
|
}
|
|
if (curr->prev != NULL) {
|
|
curr->prev->next = curr->next;
|
|
}
|
|
curr->next = NULL;
|
|
curr->prev = NULL;
|
|
}
|
|
}
|
|
|
|
*head_p = head;
|
|
*tail_p = tail;
|
|
}
|
|
|
|
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
|
|
CIPHER_ORDER **tail_p) {
|
|
int max_strength_bits, i, *number_uses;
|
|
CIPHER_ORDER *curr;
|
|
|
|
/* This routine sorts the ciphers with descending strength. The sorting must
|
|
* keep the pre-sorted sequence, so we apply the normal sorting routine as
|
|
* '+' movement to the end of the list. */
|
|
max_strength_bits = 0;
|
|
curr = *head_p;
|
|
while (curr != NULL) {
|
|
if (curr->active &&
|
|
SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
|
|
max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
|
|
}
|
|
curr = curr->next;
|
|
}
|
|
|
|
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
|
|
if (!number_uses) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
|
|
|
|
/* Now find the strength_bits values actually used. */
|
|
curr = *head_p;
|
|
while (curr != NULL) {
|
|
if (curr->active) {
|
|
number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
|
|
}
|
|
curr = curr->next;
|
|
}
|
|
|
|
/* Go through the list of used strength_bits values in descending order. */
|
|
for (i = max_strength_bits; i >= 0; i--) {
|
|
if (number_uses[i] > 0) {
|
|
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p);
|
|
}
|
|
}
|
|
|
|
OPENSSL_free(number_uses);
|
|
return 1;
|
|
}
|
|
|
|
static int ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD *ssl_method,
|
|
const char *rule_str,
|
|
CIPHER_ORDER **head_p,
|
|
CIPHER_ORDER **tail_p) {
|
|
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
|
|
uint16_t min_version;
|
|
const char *l, *buf;
|
|
int multi, skip_rule, rule, retval, ok, in_group = 0, has_group = 0;
|
|
size_t j, buf_len;
|
|
uint32_t cipher_id;
|
|
char ch;
|
|
|
|
retval = 1;
|
|
l = rule_str;
|
|
for (;;) {
|
|
ch = *l;
|
|
|
|
if (ch == '\0') {
|
|
break; /* done */
|
|
}
|
|
|
|
if (in_group) {
|
|
if (ch == ']') {
|
|
if (*tail_p) {
|
|
(*tail_p)->in_group = 0;
|
|
}
|
|
in_group = 0;
|
|
l++;
|
|
continue;
|
|
}
|
|
|
|
if (ch == '|') {
|
|
rule = CIPHER_ADD;
|
|
l++;
|
|
continue;
|
|
} else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
|
|
!(ch >= '0' && ch <= '9')) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
|
|
retval = in_group = 0;
|
|
break;
|
|
} else {
|
|
rule = CIPHER_ADD;
|
|
}
|
|
} else if (ch == '-') {
|
|
rule = CIPHER_DEL;
|
|
l++;
|
|
} else if (ch == '+') {
|
|
rule = CIPHER_ORD;
|
|
l++;
|
|
} else if (ch == '!') {
|
|
rule = CIPHER_KILL;
|
|
l++;
|
|
} else if (ch == '@') {
|
|
rule = CIPHER_SPECIAL;
|
|
l++;
|
|
} else if (ch == '[') {
|
|
if (in_group) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_NESTED_GROUP);
|
|
retval = in_group = 0;
|
|
break;
|
|
}
|
|
in_group = 1;
|
|
has_group = 1;
|
|
l++;
|
|
continue;
|
|
} else {
|
|
rule = CIPHER_ADD;
|
|
}
|
|
|
|
/* If preference groups are enabled, the only legal operator is +.
|
|
* Otherwise the in_group bits will get mixed up. */
|
|
if (has_group && rule != CIPHER_ADD) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
|
|
retval = in_group = 0;
|
|
break;
|
|
}
|
|
|
|
if (ITEM_SEP(ch)) {
|
|
l++;
|
|
continue;
|
|
}
|
|
|
|
multi = 0;
|
|
cipher_id = 0;
|
|
alg_mkey = ~0u;
|
|
alg_auth = ~0u;
|
|
alg_enc = ~0u;
|
|
alg_mac = ~0u;
|
|
min_version = 0;
|
|
skip_rule = 0;
|
|
|
|
for (;;) {
|
|
ch = *l;
|
|
buf = l;
|
|
buf_len = 0;
|
|
while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) ||
|
|
((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) {
|
|
ch = *(++l);
|
|
buf_len++;
|
|
}
|
|
|
|
if (buf_len == 0) {
|
|
/* We hit something we cannot deal with, it is no command or separator
|
|
* nor alphanumeric, so we call this an error. */
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
|
|
retval = in_group = 0;
|
|
l++;
|
|
break;
|
|
}
|
|
|
|
if (rule == CIPHER_SPECIAL) {
|
|
break;
|
|
}
|
|
|
|
/* Look for a matching exact cipher. These aren't allowed in multipart
|
|
* rules. */
|
|
if (!multi && ch != '+') {
|
|
for (j = 0; j < kCiphersLen; j++) {
|
|
const SSL_CIPHER *cipher = &kCiphers[j];
|
|
if (rule_equals(cipher->name, buf, buf_len)) {
|
|
cipher_id = cipher->id;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (cipher_id == 0) {
|
|
/* If not an exact cipher, look for a matching cipher alias. */
|
|
for (j = 0; j < kCipherAliasesLen; j++) {
|
|
if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
|
|
alg_mkey &= kCipherAliases[j].algorithm_mkey;
|
|
alg_auth &= kCipherAliases[j].algorithm_auth;
|
|
alg_enc &= kCipherAliases[j].algorithm_enc;
|
|
alg_mac &= kCipherAliases[j].algorithm_mac;
|
|
|
|
if (min_version != 0 &&
|
|
min_version != kCipherAliases[j].min_version) {
|
|
skip_rule = 1;
|
|
} else {
|
|
min_version = kCipherAliases[j].min_version;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (j == kCipherAliasesLen) {
|
|
skip_rule = 1;
|
|
}
|
|
}
|
|
|
|
/* Check for a multipart rule. */
|
|
if (ch != '+') {
|
|
break;
|
|
}
|
|
l++;
|
|
multi = 1;
|
|
}
|
|
|
|
/* If one of the CHACHA20_POLY1305 variants is selected, include the other
|
|
* as well. They have the same name to avoid requiring changes in
|
|
* configuration. Apply this transformation late so that the cipher name
|
|
* still behaves as an exact name and not an alias in multipart rules.
|
|
*
|
|
* This is temporary and will be removed when the pre-standard construction
|
|
* is removed. */
|
|
if (cipher_id == TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD ||
|
|
cipher_id == TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256) {
|
|
cipher_id = 0;
|
|
alg_mkey = SSL_kECDHE;
|
|
alg_auth = SSL_aRSA;
|
|
alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD;
|
|
alg_mac = SSL_AEAD;
|
|
} else if (cipher_id == TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD ||
|
|
cipher_id == TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256) {
|
|
cipher_id = 0;
|
|
alg_mkey = SSL_kECDHE;
|
|
alg_auth = SSL_aECDSA;
|
|
alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD;
|
|
alg_mac = SSL_AEAD;
|
|
}
|
|
|
|
/* Ok, we have the rule, now apply it. */
|
|
if (rule == CIPHER_SPECIAL) {
|
|
/* special command */
|
|
ok = 0;
|
|
if (buf_len == 8 && !strncmp(buf, "STRENGTH", 8)) {
|
|
ok = ssl_cipher_strength_sort(head_p, tail_p);
|
|
} else {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
|
|
}
|
|
|
|
if (ok == 0) {
|
|
retval = 0;
|
|
}
|
|
|
|
/* We do not support any "multi" options together with "@", so throw away
|
|
* the rest of the command, if any left, until end or ':' is found. */
|
|
while (*l != '\0' && !ITEM_SEP(*l)) {
|
|
l++;
|
|
}
|
|
} else if (!skip_rule) {
|
|
ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
|
|
min_version, rule, -1, in_group, head_p, tail_p);
|
|
}
|
|
}
|
|
|
|
if (in_group) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
|
|
retval = 0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
STACK_OF(SSL_CIPHER) *
|
|
ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method,
|
|
struct ssl_cipher_preference_list_st **out_cipher_list,
|
|
STACK_OF(SSL_CIPHER) **out_cipher_list_by_id,
|
|
const char *rule_str) {
|
|
int ok;
|
|
STACK_OF(SSL_CIPHER) *cipherstack = NULL, *tmp_cipher_list = NULL;
|
|
const char *rule_p;
|
|
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
|
|
uint8_t *in_group_flags = NULL;
|
|
unsigned int num_in_group_flags = 0;
|
|
struct ssl_cipher_preference_list_st *pref_list = NULL;
|
|
|
|
/* Return with error if nothing to do. */
|
|
if (rule_str == NULL || out_cipher_list == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Now we have to collect the available ciphers from the compiled in ciphers.
|
|
* We cannot get more than the number compiled in, so it is used for
|
|
* allocation. */
|
|
co_list = OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen);
|
|
if (co_list == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
ssl_cipher_collect_ciphers(ssl_method, co_list, &head, &tail);
|
|
|
|
/* Now arrange all ciphers by preference:
|
|
* TODO(davidben): Compute this order once and copy it. */
|
|
|
|
/* Everything else being equal, prefer ECDHE_ECDSA then ECDHE_RSA over other
|
|
* key exchange mechanisms */
|
|
|
|
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1,
|
|
0, &head, &tail);
|
|
ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0,
|
|
&head, &tail);
|
|
|
|
/* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
|
|
* CHACHA20 unless there is hardware support for fast and constant-time
|
|
* AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the
|
|
* old one. */
|
|
if (EVP_has_aes_hardware()) {
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
|
|
-1, 0, &head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0,
|
|
CIPHER_ADD, -1, 0, &head, &tail);
|
|
} else {
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
|
|
-1, 0, &head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0,
|
|
CIPHER_ADD, -1, 0, &head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
}
|
|
|
|
/* Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC,
|
|
* 3DES_EDE_CBC_SHA, RC4_128_SHA, RC4_128_MD5. */
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, 0, &head,
|
|
&tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_RC4, ~SSL_MD5, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_RC4, SSL_MD5, 0, CIPHER_ADD, -1, 0,
|
|
&head, &tail);
|
|
|
|
/* Temporarily enable everything else for sorting */
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head,
|
|
&tail);
|
|
|
|
/* Move ciphers without forward secrecy to the end. */
|
|
ssl_cipher_apply_rule(0, ~(SSL_kDHE | SSL_kECDHE), ~0u, ~0u, ~0u, 0,
|
|
CIPHER_ORD, -1, 0, &head, &tail);
|
|
|
|
/* Now disable everything (maintaining the ordering!) */
|
|
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head,
|
|
&tail);
|
|
|
|
/* If the rule_string begins with DEFAULT, apply the default rule before
|
|
* using the (possibly available) additional rules. */
|
|
ok = 1;
|
|
rule_p = rule_str;
|
|
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
|
|
ok = ssl_cipher_process_rulestr(ssl_method, SSL_DEFAULT_CIPHER_LIST, &head,
|
|
&tail);
|
|
rule_p += 7;
|
|
if (*rule_p == ':') {
|
|
rule_p++;
|
|
}
|
|
}
|
|
|
|
if (ok && strlen(rule_p) > 0) {
|
|
ok = ssl_cipher_process_rulestr(ssl_method, rule_p, &head, &tail);
|
|
}
|
|
|
|
if (!ok) {
|
|
goto err;
|
|
}
|
|
|
|
/* Allocate new "cipherstack" for the result, return with error
|
|
* if we cannot get one. */
|
|
cipherstack = sk_SSL_CIPHER_new_null();
|
|
if (cipherstack == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
in_group_flags = OPENSSL_malloc(kCiphersLen);
|
|
if (!in_group_flags) {
|
|
goto err;
|
|
}
|
|
|
|
/* The cipher selection for the list is done. The ciphers are added
|
|
* to the resulting precedence to the STACK_OF(SSL_CIPHER). */
|
|
for (curr = head; curr != NULL; curr = curr->next) {
|
|
if (curr->active) {
|
|
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
|
|
goto err;
|
|
}
|
|
in_group_flags[num_in_group_flags++] = curr->in_group;
|
|
}
|
|
}
|
|
OPENSSL_free(co_list); /* Not needed any longer */
|
|
co_list = NULL;
|
|
|
|
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
|
|
if (tmp_cipher_list == NULL) {
|
|
goto err;
|
|
}
|
|
pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
|
|
if (!pref_list) {
|
|
goto err;
|
|
}
|
|
pref_list->ciphers = cipherstack;
|
|
pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags);
|
|
if (!pref_list->in_group_flags) {
|
|
goto err;
|
|
}
|
|
memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags);
|
|
OPENSSL_free(in_group_flags);
|
|
in_group_flags = NULL;
|
|
if (*out_cipher_list != NULL) {
|
|
ssl_cipher_preference_list_free(*out_cipher_list);
|
|
}
|
|
*out_cipher_list = pref_list;
|
|
pref_list = NULL;
|
|
|
|
if (out_cipher_list_by_id != NULL) {
|
|
sk_SSL_CIPHER_free(*out_cipher_list_by_id);
|
|
*out_cipher_list_by_id = tmp_cipher_list;
|
|
tmp_cipher_list = NULL;
|
|
(void) sk_SSL_CIPHER_set_cmp_func(*out_cipher_list_by_id,
|
|
ssl_cipher_ptr_id_cmp);
|
|
|
|
sk_SSL_CIPHER_sort(*out_cipher_list_by_id);
|
|
} else {
|
|
sk_SSL_CIPHER_free(tmp_cipher_list);
|
|
tmp_cipher_list = NULL;
|
|
}
|
|
|
|
return cipherstack;
|
|
|
|
err:
|
|
OPENSSL_free(co_list);
|
|
OPENSSL_free(in_group_flags);
|
|
sk_SSL_CIPHER_free(cipherstack);
|
|
sk_SSL_CIPHER_free(tmp_cipher_list);
|
|
if (pref_list) {
|
|
OPENSSL_free(pref_list->in_group_flags);
|
|
}
|
|
OPENSSL_free(pref_list);
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
|
|
|
|
uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
|
|
uint32_t id = cipher->id;
|
|
/* All ciphers are SSLv3. */
|
|
assert((id & 0xff000000) == 0x03000000);
|
|
return id & 0xffff;
|
|
}
|
|
|
|
int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & SSL_AES) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_mac & SSL_MD5) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_has_SHA1_HMAC(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_mac & SSL_SHA1) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_has_SHA256_HMAC(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_mac & SSL_SHA256) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_AES128GCM(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & SSL_AES128GCM) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_AES128CBC(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & SSL_AES128) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_AES256CBC(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & SSL_AES256) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc &
|
|
(SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD)) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_NULL(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & SSL_eNULL) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_RC4(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_enc & SSL_RC4) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
|
|
/* Neither stream cipher nor AEAD. */
|
|
return (cipher->algorithm_enc & (SSL_RC4 | SSL_eNULL)) == 0 &&
|
|
cipher->algorithm_mac != SSL_AEAD;
|
|
}
|
|
|
|
int SSL_CIPHER_is_ECDSA(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_auth & SSL_aECDSA) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_DHE(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_mkey & SSL_kDHE) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_ECDHE(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
|
|
}
|
|
|
|
int SSL_CIPHER_is_CECPQ1(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_mkey & SSL_kCECPQ1) != 0;
|
|
}
|
|
|
|
uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
|
|
if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
|
|
/* Cipher suites before TLS 1.2 use the default PRF, while all those added
|
|
* afterwards specify a particular hash. */
|
|
return TLS1_2_VERSION;
|
|
}
|
|
return SSL3_VERSION;
|
|
}
|
|
|
|
uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
|
|
if (cipher->algorithm_mac == SSL_AEAD &&
|
|
(cipher->algorithm_enc & SSL_CHACHA20POLY1305_OLD) == 0 &&
|
|
(cipher->algorithm_mkey & SSL_kECDHE) != 0 &&
|
|
/* TODO(davidben,svaldez): Support PSK-based ciphers in TLS 1.3. */
|
|
(cipher->algorithm_auth & SSL_aCERT) != 0) {
|
|
return TLS1_3_VERSION;
|
|
}
|
|
return TLS1_2_VERSION;
|
|
}
|
|
|
|
/* return the actual cipher being used */
|
|
const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
|
|
if (cipher != NULL) {
|
|
return cipher->name;
|
|
}
|
|
|
|
return "(NONE)";
|
|
}
|
|
|
|
const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
|
|
if (cipher == NULL) {
|
|
return "";
|
|
}
|
|
|
|
switch (cipher->algorithm_mkey) {
|
|
case SSL_kRSA:
|
|
return "RSA";
|
|
|
|
case SSL_kDHE:
|
|
switch (cipher->algorithm_auth) {
|
|
case SSL_aRSA:
|
|
return "DHE_RSA";
|
|
default:
|
|
assert(0);
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
case SSL_kECDHE:
|
|
switch (cipher->algorithm_auth) {
|
|
case SSL_aECDSA:
|
|
return "ECDHE_ECDSA";
|
|
case SSL_aRSA:
|
|
return "ECDHE_RSA";
|
|
case SSL_aPSK:
|
|
return "ECDHE_PSK";
|
|
default:
|
|
assert(0);
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
case SSL_kCECPQ1:
|
|
switch (cipher->algorithm_auth) {
|
|
case SSL_aECDSA:
|
|
return "CECPQ1_ECDSA";
|
|
case SSL_aRSA:
|
|
return "CECPQ1_RSA";
|
|
default:
|
|
assert(0);
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
case SSL_kPSK:
|
|
assert(cipher->algorithm_auth == SSL_aPSK);
|
|
return "PSK";
|
|
|
|
default:
|
|
assert(0);
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
static const char *ssl_cipher_get_enc_name(const SSL_CIPHER *cipher) {
|
|
switch (cipher->algorithm_enc) {
|
|
case SSL_3DES:
|
|
return "3DES_EDE_CBC";
|
|
case SSL_RC4:
|
|
return "RC4";
|
|
case SSL_AES128:
|
|
return "AES_128_CBC";
|
|
case SSL_AES256:
|
|
return "AES_256_CBC";
|
|
case SSL_AES128GCM:
|
|
return "AES_128_GCM";
|
|
case SSL_AES256GCM:
|
|
return "AES_256_GCM";
|
|
case SSL_CHACHA20POLY1305:
|
|
case SSL_CHACHA20POLY1305_OLD:
|
|
return "CHACHA20_POLY1305";
|
|
break;
|
|
default:
|
|
assert(0);
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
static const char *ssl_cipher_get_prf_name(const SSL_CIPHER *cipher) {
|
|
switch (cipher->algorithm_prf) {
|
|
case SSL_HANDSHAKE_MAC_DEFAULT:
|
|
/* Before TLS 1.2, the PRF component is the hash used in the HMAC, which is
|
|
* only ever MD5 or SHA-1. */
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_MD5:
|
|
return "MD5";
|
|
case SSL_SHA1:
|
|
return "SHA";
|
|
}
|
|
break;
|
|
case SSL_HANDSHAKE_MAC_SHA256:
|
|
return "SHA256";
|
|
case SSL_HANDSHAKE_MAC_SHA384:
|
|
return "SHA384";
|
|
}
|
|
assert(0);
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
|
|
if (cipher == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
const char *kx_name = SSL_CIPHER_get_kx_name(cipher);
|
|
const char *enc_name = ssl_cipher_get_enc_name(cipher);
|
|
const char *prf_name = ssl_cipher_get_prf_name(cipher);
|
|
|
|
/* The final name is TLS_{kx_name}_WITH_{enc_name}_{prf_name}. */
|
|
size_t len = 4 + strlen(kx_name) + 6 + strlen(enc_name) + 1 +
|
|
strlen(prf_name) + 1;
|
|
char *ret = OPENSSL_malloc(len);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
if (BUF_strlcpy(ret, "TLS_", len) >= len ||
|
|
BUF_strlcat(ret, kx_name, len) >= len ||
|
|
BUF_strlcat(ret, "_WITH_", len) >= len ||
|
|
BUF_strlcat(ret, enc_name, len) >= len ||
|
|
BUF_strlcat(ret, "_", len) >= len ||
|
|
BUF_strlcat(ret, prf_name, len) >= len) {
|
|
assert(0);
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
assert(strlen(ret) + 1 == len);
|
|
return ret;
|
|
}
|
|
|
|
int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
|
|
if (cipher == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
int alg_bits, strength_bits;
|
|
switch (cipher->algorithm_enc) {
|
|
case SSL_AES128:
|
|
case SSL_AES128GCM:
|
|
case SSL_RC4:
|
|
alg_bits = 128;
|
|
strength_bits = 128;
|
|
break;
|
|
|
|
case SSL_AES256:
|
|
case SSL_AES256GCM:
|
|
#if !defined(BORINGSSL_ANDROID_SYSTEM)
|
|
case SSL_CHACHA20POLY1305_OLD:
|
|
#endif
|
|
case SSL_CHACHA20POLY1305:
|
|
alg_bits = 256;
|
|
strength_bits = 256;
|
|
break;
|
|
|
|
case SSL_3DES:
|
|
alg_bits = 168;
|
|
strength_bits = 112;
|
|
break;
|
|
|
|
case SSL_eNULL:
|
|
alg_bits = 0;
|
|
strength_bits = 0;
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
alg_bits = 0;
|
|
strength_bits = 0;
|
|
}
|
|
|
|
if (out_alg_bits != NULL) {
|
|
*out_alg_bits = alg_bits;
|
|
}
|
|
return strength_bits;
|
|
}
|
|
|
|
const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
|
|
int len) {
|
|
const char *kx, *au, *enc, *mac;
|
|
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
|
|
|
|
alg_mkey = cipher->algorithm_mkey;
|
|
alg_auth = cipher->algorithm_auth;
|
|
alg_enc = cipher->algorithm_enc;
|
|
alg_mac = cipher->algorithm_mac;
|
|
|
|
switch (alg_mkey) {
|
|
case SSL_kRSA:
|
|
kx = "RSA";
|
|
break;
|
|
|
|
case SSL_kDHE:
|
|
kx = "DH";
|
|
break;
|
|
|
|
case SSL_kECDHE:
|
|
kx = "ECDH";
|
|
break;
|
|
|
|
case SSL_kCECPQ1:
|
|
kx = "CECPQ1";
|
|
break;
|
|
|
|
case SSL_kPSK:
|
|
kx = "PSK";
|
|
break;
|
|
|
|
default:
|
|
kx = "unknown";
|
|
}
|
|
|
|
switch (alg_auth) {
|
|
case SSL_aRSA:
|
|
au = "RSA";
|
|
break;
|
|
|
|
case SSL_aECDSA:
|
|
au = "ECDSA";
|
|
break;
|
|
|
|
case SSL_aPSK:
|
|
au = "PSK";
|
|
break;
|
|
|
|
default:
|
|
au = "unknown";
|
|
break;
|
|
}
|
|
|
|
switch (alg_enc) {
|
|
case SSL_3DES:
|
|
enc = "3DES(168)";
|
|
break;
|
|
|
|
case SSL_RC4:
|
|
enc = "RC4(128)";
|
|
break;
|
|
|
|
case SSL_AES128:
|
|
enc = "AES(128)";
|
|
break;
|
|
|
|
case SSL_AES256:
|
|
enc = "AES(256)";
|
|
break;
|
|
|
|
case SSL_AES128GCM:
|
|
enc = "AESGCM(128)";
|
|
break;
|
|
|
|
case SSL_AES256GCM:
|
|
enc = "AESGCM(256)";
|
|
break;
|
|
|
|
case SSL_CHACHA20POLY1305_OLD:
|
|
enc = "ChaCha20-Poly1305-Old";
|
|
break;
|
|
|
|
case SSL_CHACHA20POLY1305:
|
|
enc = "ChaCha20-Poly1305";
|
|
break;
|
|
|
|
case SSL_eNULL:
|
|
enc="None";
|
|
break;
|
|
|
|
default:
|
|
enc = "unknown";
|
|
break;
|
|
}
|
|
|
|
switch (alg_mac) {
|
|
case SSL_MD5:
|
|
mac = "MD5";
|
|
break;
|
|
|
|
case SSL_SHA1:
|
|
mac = "SHA1";
|
|
break;
|
|
|
|
case SSL_SHA256:
|
|
mac = "SHA256";
|
|
break;
|
|
|
|
case SSL_SHA384:
|
|
mac = "SHA384";
|
|
break;
|
|
|
|
case SSL_AEAD:
|
|
mac = "AEAD";
|
|
break;
|
|
|
|
default:
|
|
mac = "unknown";
|
|
break;
|
|
}
|
|
|
|
if (buf == NULL) {
|
|
len = 128;
|
|
buf = OPENSSL_malloc(len);
|
|
if (buf == NULL) {
|
|
return NULL;
|
|
}
|
|
} else if (len < 128) {
|
|
return "Buffer too small";
|
|
}
|
|
|
|
BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
|
|
cipher->name, kx, au, enc, mac);
|
|
return buf;
|
|
}
|
|
|
|
const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
|
|
return "TLSv1/SSLv3";
|
|
}
|
|
|
|
COMP_METHOD *SSL_COMP_get_compression_methods(void) { return NULL; }
|
|
|
|
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
|
|
|
|
const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
|
|
|
|
int ssl_cipher_get_key_type(const SSL_CIPHER *cipher) {
|
|
uint32_t alg_a = cipher->algorithm_auth;
|
|
|
|
if (alg_a & SSL_aECDSA) {
|
|
return EVP_PKEY_EC;
|
|
} else if (alg_a & SSL_aRSA) {
|
|
return EVP_PKEY_RSA;
|
|
}
|
|
|
|
return EVP_PKEY_NONE;
|
|
}
|
|
|
|
int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
|
|
return (cipher->algorithm_auth & SSL_aCERT) != 0;
|
|
}
|
|
|
|
int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
|
|
/* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */
|
|
if (cipher->algorithm_mkey & SSL_kDHE ||
|
|
cipher->algorithm_mkey & SSL_kECDHE ||
|
|
cipher->algorithm_mkey & SSL_kCECPQ1) {
|
|
return 1;
|
|
}
|
|
|
|
/* It is optional in all others. */
|
|
return 0;
|
|
}
|
|
|
|
size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
|
|
size_t block_size;
|
|
switch (cipher->algorithm_enc) {
|
|
case SSL_3DES:
|
|
block_size = 8;
|
|
break;
|
|
case SSL_AES128:
|
|
case SSL_AES256:
|
|
block_size = 16;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
size_t mac_len;
|
|
switch (cipher->algorithm_mac) {
|
|
case SSL_MD5:
|
|
mac_len = MD5_DIGEST_LENGTH;
|
|
break;
|
|
case SSL_SHA1:
|
|
mac_len = SHA_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
size_t ret = 1 + mac_len;
|
|
ret += block_size - (ret % block_size);
|
|
return ret;
|
|
}
|