boringssl/crypto/bytestring/bytestring_test.cc
David Benjamin 4ff41f614c Check for overflow in CBB_add_u24.
All other CBB_add_u<N> functions take a narrowed type, but not every
uint32_t may fit in a u24. Check for this rather than silently truncate.

Change-Id: I23879ad0f4d2934f257e39e795cf93c6e3e878bf
Reviewed-on: https://boringssl-review.googlesource.com/8940
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-07-26 15:19:41 +00:00

904 lines
25 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(__STDC_CONSTANT_MACROS)
#define __STDC_CONSTANT_MACROS
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <openssl/crypto.h>
#include <openssl/bytestring.h>
#include "internal.h"
#include "../test/scoped_types.h"
static bool TestSkip() {
static const uint8_t kData[] = {1, 2, 3};
CBS data;
CBS_init(&data, kData, sizeof(kData));
return CBS_len(&data) == 3 &&
CBS_skip(&data, 1) &&
CBS_len(&data) == 2 &&
CBS_skip(&data, 2) &&
CBS_len(&data) == 0 &&
!CBS_skip(&data, 1);
}
static bool TestGetUint() {
static const uint8_t kData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
uint8_t u8;
uint16_t u16;
uint32_t u32;
CBS data;
CBS_init(&data, kData, sizeof(kData));
return CBS_get_u8(&data, &u8) &&
u8 == 1 &&
CBS_get_u16(&data, &u16) &&
u16 == 0x203 &&
CBS_get_u24(&data, &u32) &&
u32 == 0x40506 &&
CBS_get_u32(&data, &u32) &&
u32 == 0x708090a &&
CBS_get_last_u8(&data, &u8) &&
u8 == 0xb &&
!CBS_get_u8(&data, &u8) &&
!CBS_get_last_u8(&data, &u8);
}
static bool TestGetPrefixed() {
static const uint8_t kData[] = {1, 2, 0, 2, 3, 4, 0, 0, 3, 3, 2, 1};
uint8_t u8;
uint16_t u16;
uint32_t u32;
CBS data, prefixed;
CBS_init(&data, kData, sizeof(kData));
return CBS_get_u8_length_prefixed(&data, &prefixed) &&
CBS_len(&prefixed) == 1 &&
CBS_get_u8(&prefixed, &u8) &&
u8 == 2 &&
CBS_get_u16_length_prefixed(&data, &prefixed) &&
CBS_len(&prefixed) == 2 &&
CBS_get_u16(&prefixed, &u16) &&
u16 == 0x304 &&
CBS_get_u24_length_prefixed(&data, &prefixed) &&
CBS_len(&prefixed) == 3 &&
CBS_get_u24(&prefixed, &u32) &&
u32 == 0x30201;
}
static bool TestGetPrefixedBad() {
static const uint8_t kData1[] = {2, 1};
static const uint8_t kData2[] = {0, 2, 1};
static const uint8_t kData3[] = {0, 0, 2, 1};
CBS data, prefixed;
CBS_init(&data, kData1, sizeof(kData1));
if (CBS_get_u8_length_prefixed(&data, &prefixed)) {
return false;
}
CBS_init(&data, kData2, sizeof(kData2));
if (CBS_get_u16_length_prefixed(&data, &prefixed)) {
return false;
}
CBS_init(&data, kData3, sizeof(kData3));
if (CBS_get_u24_length_prefixed(&data, &prefixed)) {
return false;
}
return true;
}
static bool TestGetASN1() {
static const uint8_t kData1[] = {0x30, 2, 1, 2};
static const uint8_t kData2[] = {0x30, 3, 1, 2};
static const uint8_t kData3[] = {0x30, 0x80};
static const uint8_t kData4[] = {0x30, 0x81, 1, 1};
static const uint8_t kData5[4 + 0x80] = {0x30, 0x82, 0, 0x80};
static const uint8_t kData6[] = {0xa1, 3, 0x4, 1, 1};
static const uint8_t kData7[] = {0xa1, 3, 0x4, 2, 1};
static const uint8_t kData8[] = {0xa1, 3, 0x2, 1, 1};
static const uint8_t kData9[] = {0xa1, 3, 0x2, 1, 0xff};
CBS data, contents;
int present;
uint64_t value;
CBS_init(&data, kData1, sizeof(kData1));
if (CBS_peek_asn1_tag(&data, 0x1) ||
!CBS_peek_asn1_tag(&data, 0x30)) {
return false;
}
if (!CBS_get_asn1(&data, &contents, 0x30) ||
CBS_len(&contents) != 2 ||
memcmp(CBS_data(&contents), "\x01\x02", 2) != 0) {
return false;
}
CBS_init(&data, kData2, sizeof(kData2));
// data is truncated
if (CBS_get_asn1(&data, &contents, 0x30)) {
return false;
}
CBS_init(&data, kData3, sizeof(kData3));
// zero byte length of length
if (CBS_get_asn1(&data, &contents, 0x30)) {
return false;
}
CBS_init(&data, kData4, sizeof(kData4));
// long form mistakenly used.
if (CBS_get_asn1(&data, &contents, 0x30)) {
return false;
}
CBS_init(&data, kData5, sizeof(kData5));
// length takes too many bytes.
if (CBS_get_asn1(&data, &contents, 0x30)) {
return false;
}
CBS_init(&data, kData1, sizeof(kData1));
// wrong tag.
if (CBS_get_asn1(&data, &contents, 0x31)) {
return false;
}
CBS_init(&data, NULL, 0);
// peek at empty data.
if (CBS_peek_asn1_tag(&data, 0x30)) {
return false;
}
CBS_init(&data, NULL, 0);
// optional elements at empty data.
if (!CBS_get_optional_asn1(&data, &contents, &present, 0xa0) ||
present ||
!CBS_get_optional_asn1_octet_string(&data, &contents, &present, 0xa0) ||
present ||
CBS_len(&contents) != 0 ||
!CBS_get_optional_asn1_octet_string(&data, &contents, NULL, 0xa0) ||
CBS_len(&contents) != 0 ||
!CBS_get_optional_asn1_uint64(&data, &value, 0xa0, 42) ||
value != 42) {
return false;
}
CBS_init(&data, kData6, sizeof(kData6));
// optional element.
if (!CBS_get_optional_asn1(&data, &contents, &present, 0xa0) ||
present ||
!CBS_get_optional_asn1(&data, &contents, &present, 0xa1) ||
!present ||
CBS_len(&contents) != 3 ||
memcmp(CBS_data(&contents), "\x04\x01\x01", 3) != 0) {
return false;
}
CBS_init(&data, kData6, sizeof(kData6));
// optional octet string.
if (!CBS_get_optional_asn1_octet_string(&data, &contents, &present, 0xa0) ||
present ||
CBS_len(&contents) != 0 ||
!CBS_get_optional_asn1_octet_string(&data, &contents, &present, 0xa1) ||
!present ||
CBS_len(&contents) != 1 ||
CBS_data(&contents)[0] != 1) {
return false;
}
CBS_init(&data, kData7, sizeof(kData7));
// invalid optional octet string.
if (CBS_get_optional_asn1_octet_string(&data, &contents, &present, 0xa1)) {
return false;
}
CBS_init(&data, kData8, sizeof(kData8));
// optional octet string.
if (!CBS_get_optional_asn1_uint64(&data, &value, 0xa0, 42) ||
value != 42 ||
!CBS_get_optional_asn1_uint64(&data, &value, 0xa1, 42) ||
value != 1) {
return false;
}
CBS_init(&data, kData9, sizeof(kData9));
// invalid optional integer.
if (CBS_get_optional_asn1_uint64(&data, &value, 0xa1, 42)) {
return false;
}
return true;
}
static bool TestGetOptionalASN1Bool() {
static const uint8_t kTrue[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0xff};
static const uint8_t kFalse[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x00};
static const uint8_t kInvalid[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x01};
CBS data;
CBS_init(&data, NULL, 0);
int val = 2;
if (!CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0) ||
val != 0) {
return false;
}
CBS_init(&data, kTrue, sizeof(kTrue));
val = 2;
if (!CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0) ||
val != 1) {
return false;
}
CBS_init(&data, kFalse, sizeof(kFalse));
val = 2;
if (!CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1) ||
val != 0) {
return false;
}
CBS_init(&data, kInvalid, sizeof(kInvalid));
if (CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1)) {
return false;
}
return true;
}
static bool TestCBBBasic() {
static const uint8_t kExpected[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc};
uint8_t *buf;
size_t buf_len;
CBB cbb;
if (!CBB_init(&cbb, 100)) {
return false;
}
CBB_cleanup(&cbb);
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_u8(&cbb, 1) ||
!CBB_add_u16(&cbb, 0x203) ||
!CBB_add_u24(&cbb, 0x40506) ||
!CBB_add_u32(&cbb, 0x708090a) ||
!CBB_add_bytes(&cbb, (const uint8_t*) "\x0b\x0c", 2) ||
!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes scoper(buf);
return buf_len == sizeof(kExpected) && memcmp(buf, kExpected, buf_len) == 0;
}
static bool TestCBBFixed() {
ScopedCBB cbb;
uint8_t buf[1];
uint8_t *out_buf;
size_t out_size;
if (!CBB_init_fixed(cbb.get(), NULL, 0) ||
!CBB_finish(cbb.get(), &out_buf, &out_size) ||
out_buf != NULL ||
out_size != 0) {
return false;
}
cbb.Reset();
if (!CBB_init_fixed(cbb.get(), buf, 1) ||
!CBB_add_u8(cbb.get(), 1) ||
!CBB_finish(cbb.get(), &out_buf, &out_size) ||
out_buf != buf ||
out_size != 1 ||
buf[0] != 1) {
return false;
}
cbb.Reset();
if (!CBB_init_fixed(cbb.get(), buf, 1) ||
!CBB_add_u8(cbb.get(), 1) ||
CBB_add_u8(cbb.get(), 2)) {
return false;
}
return true;
}
static bool TestCBBFinishChild() {
CBB cbb, child;
uint8_t *out_buf;
size_t out_size;
if (!CBB_init(&cbb, 16)) {
return false;
}
if (!CBB_add_u8_length_prefixed(&cbb, &child) ||
CBB_finish(&child, &out_buf, &out_size) ||
!CBB_finish(&cbb, &out_buf, &out_size)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes scoper(out_buf);
return out_size == 1 && out_buf[0] == 0;
}
static bool TestCBBPrefixed() {
static const uint8_t kExpected[] = {0, 1, 1, 0, 2, 2, 3, 0, 0, 3,
4, 5, 6, 5, 4, 1, 0, 1, 2};
uint8_t *buf;
size_t buf_len;
CBB cbb, contents, inner_contents, inner_inner_contents;
if (!CBB_init(&cbb, 0) ||
CBB_len(&cbb) != 0 ||
!CBB_add_u8_length_prefixed(&cbb, &contents) ||
!CBB_add_u8_length_prefixed(&cbb, &contents) ||
!CBB_add_u8(&contents, 1) ||
CBB_len(&contents) != 1 ||
!CBB_flush(&cbb) ||
CBB_len(&cbb) != 3 ||
!CBB_add_u16_length_prefixed(&cbb, &contents) ||
!CBB_add_u16(&contents, 0x203) ||
!CBB_add_u24_length_prefixed(&cbb, &contents) ||
!CBB_add_u24(&contents, 0x40506) ||
!CBB_add_u8_length_prefixed(&cbb, &contents) ||
!CBB_add_u8_length_prefixed(&contents, &inner_contents) ||
!CBB_add_u8(&inner_contents, 1) ||
!CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents) ||
!CBB_add_u8(&inner_inner_contents, 2) ||
!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes scoper(buf);
return buf_len == sizeof(kExpected) && memcmp(buf, kExpected, buf_len) == 0;
}
static bool TestCBBDiscardChild() {
ScopedCBB cbb;
CBB contents, inner_contents, inner_inner_contents;
if (!CBB_init(cbb.get(), 0) ||
!CBB_add_u8(cbb.get(), 0xaa)) {
return false;
}
// Discarding |cbb|'s children preserves the byte written.
CBB_discard_child(cbb.get());
if (!CBB_add_u8_length_prefixed(cbb.get(), &contents) ||
!CBB_add_u8_length_prefixed(cbb.get(), &contents) ||
!CBB_add_u8(&contents, 0xbb) ||
!CBB_add_u16_length_prefixed(cbb.get(), &contents) ||
!CBB_add_u16(&contents, 0xcccc) ||
!CBB_add_u24_length_prefixed(cbb.get(), &contents) ||
!CBB_add_u24(&contents, 0xdddddd) ||
!CBB_add_u8_length_prefixed(cbb.get(), &contents) ||
!CBB_add_u8(&contents, 0xff) ||
!CBB_add_u8_length_prefixed(&contents, &inner_contents) ||
!CBB_add_u8(&inner_contents, 0x42) ||
!CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents) ||
!CBB_add_u8(&inner_inner_contents, 0x99)) {
return false;
}
// Discard everything from |inner_contents| down.
CBB_discard_child(&contents);
uint8_t *buf;
size_t buf_len;
if (!CBB_finish(cbb.get(), &buf, &buf_len)) {
return false;
}
ScopedOpenSSLBytes scoper(buf);
static const uint8_t kExpected[] = {
0xaa,
0,
1, 0xbb,
0, 2, 0xcc, 0xcc,
0, 0, 3, 0xdd, 0xdd, 0xdd,
1, 0xff,
};
return buf_len == sizeof(kExpected) && memcmp(buf, kExpected, buf_len) == 0;
}
static bool TestCBBMisuse() {
CBB cbb, child, contents;
uint8_t *buf;
size_t buf_len;
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_u8_length_prefixed(&cbb, &child) ||
!CBB_add_u8(&child, 1) ||
!CBB_add_u8(&cbb, 2)) {
CBB_cleanup(&cbb);
return false;
}
// Since we wrote to |cbb|, |child| is now invalid and attempts to write to
// it should fail.
if (CBB_add_u8(&child, 1) ||
CBB_add_u16(&child, 1) ||
CBB_add_u24(&child, 1) ||
CBB_add_u8_length_prefixed(&child, &contents) ||
CBB_add_u16_length_prefixed(&child, &contents) ||
CBB_add_asn1(&child, &contents, 1) ||
CBB_add_bytes(&child, (const uint8_t*) "a", 1)) {
fprintf(stderr, "CBB operation on invalid CBB did not fail.\n");
CBB_cleanup(&cbb);
return false;
}
if (!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes scoper(buf);
if (buf_len != 3 ||
memcmp(buf, "\x01\x01\x02", 3) != 0) {
return false;
}
return true;
}
static bool TestCBBASN1() {
static const uint8_t kExpected[] = {0x30, 3, 1, 2, 3};
uint8_t *buf;
size_t buf_len;
CBB cbb, contents, inner_contents;
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_asn1(&cbb, &contents, 0x30) ||
!CBB_add_bytes(&contents, (const uint8_t*) "\x01\x02\x03", 3) ||
!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes scoper(buf);
if (buf_len != sizeof(kExpected) || memcmp(buf, kExpected, buf_len) != 0) {
return false;
}
std::vector<uint8_t> test_data(100000, 0x42);
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_asn1(&cbb, &contents, 0x30) ||
!CBB_add_bytes(&contents, test_data.data(), 130) ||
!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
scoper.reset(buf);
if (buf_len != 3 + 130 ||
memcmp(buf, "\x30\x81\x82", 3) != 0 ||
memcmp(buf + 3, test_data.data(), 130) != 0) {
return false;
}
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_asn1(&cbb, &contents, 0x30) ||
!CBB_add_bytes(&contents, test_data.data(), 1000) ||
!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
scoper.reset(buf);
if (buf_len != 4 + 1000 ||
memcmp(buf, "\x30\x82\x03\xe8", 4) != 0 ||
memcmp(buf + 4, test_data.data(), 1000)) {
return false;
}
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_asn1(&cbb, &contents, 0x30) ||
!CBB_add_asn1(&contents, &inner_contents, 0x30) ||
!CBB_add_bytes(&inner_contents, test_data.data(), 100000) ||
!CBB_finish(&cbb, &buf, &buf_len)) {
CBB_cleanup(&cbb);
return false;
}
scoper.reset(buf);
if (buf_len != 5 + 5 + 100000 ||
memcmp(buf, "\x30\x83\x01\x86\xa5\x30\x83\x01\x86\xa0", 10) != 0 ||
memcmp(buf + 10, test_data.data(), 100000)) {
return false;
}
return true;
}
static bool DoBerConvert(const char *name,
const uint8_t *der_expected, size_t der_len,
const uint8_t *ber, size_t ber_len) {
CBS in;
uint8_t *out;
size_t out_len;
CBS_init(&in, ber, ber_len);
if (!CBS_asn1_ber_to_der(&in, &out, &out_len)) {
fprintf(stderr, "%s: CBS_asn1_ber_to_der failed.\n", name);
return false;
}
ScopedOpenSSLBytes scoper(out);
if (out == NULL) {
if (ber_len != der_len ||
memcmp(der_expected, ber, ber_len) != 0) {
fprintf(stderr, "%s: incorrect unconverted result.\n", name);
return false;
}
return true;
}
if (out_len != der_len ||
memcmp(out, der_expected, der_len) != 0) {
fprintf(stderr, "%s: incorrect converted result.\n", name);
return false;
}
return true;
}
static bool TestBerConvert() {
static const uint8_t kSimpleBER[] = {0x01, 0x01, 0x00};
// kIndefBER contains a SEQUENCE with an indefinite length.
static const uint8_t kIndefBER[] = {0x30, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00};
static const uint8_t kIndefDER[] = {0x30, 0x03, 0x01, 0x01, 0x02};
// kOctetStringBER contains an indefinite length OCTET STRING with two parts.
// These parts need to be concatenated in DER form.
static const uint8_t kOctetStringBER[] = {0x24, 0x80, 0x04, 0x02, 0, 1,
0x04, 0x02, 2, 3, 0x00, 0x00};
static const uint8_t kOctetStringDER[] = {0x04, 0x04, 0, 1, 2, 3};
// kNSSBER is part of a PKCS#12 message generated by NSS that uses indefinite
// length elements extensively.
static const uint8_t kNSSBER[] = {
0x30, 0x80, 0x02, 0x01, 0x03, 0x30, 0x80, 0x06, 0x09, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x80, 0x24, 0x80, 0x04, 0x04,
0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90,
0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04,
0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b,
0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, 0x00, 0x00,
};
static const uint8_t kNSSDER[] = {
0x30, 0x53, 0x02, 0x01, 0x03, 0x30, 0x13, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x06, 0x04, 0x04,
0x01, 0x02, 0x03, 0x04, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06,
0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84,
0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8,
0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38,
0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0,
0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0,
};
// kConstructedStringBER contains a deeply-nested constructed OCTET STRING.
// The BER conversion collapses this to one level deep, but not completely.
static const uint8_t kConstructedStringBER[] = {
0xa0, 0x10, 0x24, 0x06, 0x04, 0x01, 0x00, 0x04, 0x01,
0x01, 0x24, 0x06, 0x04, 0x01, 0x02, 0x04, 0x01, 0x03,
};
static const uint8_t kConstructedStringDER[] = {
0xa0, 0x08, 0x04, 0x02, 0x00, 0x01, 0x04, 0x02, 0x02, 0x03,
};
return DoBerConvert("kSimpleBER", kSimpleBER, sizeof(kSimpleBER),
kSimpleBER, sizeof(kSimpleBER)) &&
DoBerConvert("kIndefBER", kIndefDER, sizeof(kIndefDER), kIndefBER,
sizeof(kIndefBER)) &&
DoBerConvert("kOctetStringBER", kOctetStringDER,
sizeof(kOctetStringDER), kOctetStringBER,
sizeof(kOctetStringBER)) &&
DoBerConvert("kNSSBER", kNSSDER, sizeof(kNSSDER), kNSSBER,
sizeof(kNSSBER)) &&
DoBerConvert("kConstructedStringBER", kConstructedStringDER,
sizeof(kConstructedStringDER), kConstructedStringBER,
sizeof(kConstructedStringBER));
}
struct ImplicitStringTest {
const char *in;
size_t in_len;
bool ok;
const char *out;
size_t out_len;
};
static const ImplicitStringTest kImplicitStringTests[] = {
// A properly-encoded string.
{"\x80\x03\x61\x61\x61", 5, true, "aaa", 3},
// An implicit-tagged string.
{"\xa0\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, true, "aaa", 3},
// |CBS_get_asn1_implicit_string| only accepts one level deep of nesting.
{"\xa0\x0b\x24\x06\x04\x01\x61\x04\x01\x61\x04\x01\x61", 13, false, nullptr,
0},
// The outer tag must match.
{"\x81\x03\x61\x61\x61", 5, false, nullptr, 0},
{"\xa1\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, false, nullptr, 0},
// The inner tag must match.
{"\xa1\x09\x0c\x01\x61\x0c\x01\x61\x0c\x01\x61", 11, false, nullptr, 0},
};
static bool TestImplicitString() {
for (const auto &test : kImplicitStringTests) {
uint8_t *storage = nullptr;
CBS in, out;
CBS_init(&in, reinterpret_cast<const uint8_t *>(test.in), test.in_len);
int ok = CBS_get_asn1_implicit_string(&in, &out, &storage,
CBS_ASN1_CONTEXT_SPECIFIC | 0,
CBS_ASN1_OCTETSTRING);
ScopedOpenSSLBytes scoper(storage);
if (static_cast<bool>(ok) != test.ok) {
fprintf(stderr, "CBS_get_asn1_implicit_string unexpectedly %s\n",
ok ? "succeeded" : "failed");
return false;
}
if (ok && (CBS_len(&out) != test.out_len ||
memcmp(CBS_data(&out), test.out, test.out_len) != 0)) {
fprintf(stderr, "CBS_get_asn1_implicit_string gave the wrong output\n");
return false;
}
}
return true;
}
struct ASN1Uint64Test {
uint64_t value;
const char *encoding;
size_t encoding_len;
};
static const ASN1Uint64Test kASN1Uint64Tests[] = {
{0, "\x02\x01\x00", 3},
{1, "\x02\x01\x01", 3},
{127, "\x02\x01\x7f", 3},
{128, "\x02\x02\x00\x80", 4},
{0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7},
{UINT64_C(0x0102030405060708),
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
{UINT64_C(0xffffffffffffffff),
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
};
struct ASN1InvalidUint64Test {
const char *encoding;
size_t encoding_len;
};
static const ASN1InvalidUint64Test kASN1InvalidUint64Tests[] = {
// Bad tag.
{"\x03\x01\x00", 3},
// Empty contents.
{"\x02\x00", 2},
// Negative number.
{"\x02\x01\x80", 3},
// Overflow.
{"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11},
// Leading zeros.
{"\x02\x02\x00\x01", 4},
};
static bool TestASN1Uint64() {
for (size_t i = 0; i < sizeof(kASN1Uint64Tests) / sizeof(kASN1Uint64Tests[0]);
i++) {
const ASN1Uint64Test *test = &kASN1Uint64Tests[i];
CBS cbs;
uint64_t value;
CBB cbb;
uint8_t *out;
size_t len;
CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len);
if (!CBS_get_asn1_uint64(&cbs, &value) ||
CBS_len(&cbs) != 0 ||
value != test->value) {
return false;
}
if (!CBB_init(&cbb, 0)) {
return false;
}
if (!CBB_add_asn1_uint64(&cbb, test->value) ||
!CBB_finish(&cbb, &out, &len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes scoper(out);
if (len != test->encoding_len || memcmp(out, test->encoding, len) != 0) {
return false;
}
}
for (size_t i = 0;
i < sizeof(kASN1InvalidUint64Tests) / sizeof(kASN1InvalidUint64Tests[0]);
i++) {
const ASN1InvalidUint64Test *test = &kASN1InvalidUint64Tests[i];
CBS cbs;
uint64_t value;
CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len);
if (CBS_get_asn1_uint64(&cbs, &value)) {
return false;
}
}
return true;
}
static bool TestZero() {
CBB cbb;
CBB_zero(&cbb);
// Calling |CBB_cleanup| on a zero-state |CBB| must not crash.
CBB_cleanup(&cbb);
return true;
}
static bool TestCBBReserve() {
uint8_t buf[10];
uint8_t *ptr;
size_t len;
ScopedCBB cbb;
if (!CBB_init_fixed(cbb.get(), buf, sizeof(buf)) ||
// Too large.
CBB_reserve(cbb.get(), &ptr, 11)) {
return false;
}
cbb.Reset();
if (!CBB_init_fixed(cbb.get(), buf, sizeof(buf)) ||
// Successfully reserve the entire space.
!CBB_reserve(cbb.get(), &ptr, 10) ||
ptr != buf ||
// Advancing under the maximum bytes is legal.
!CBB_did_write(cbb.get(), 5) ||
!CBB_finish(cbb.get(), NULL, &len) ||
len != 5) {
return false;
}
return true;
}
static bool TestStickyError() {
// Write an input that exceeds the limit for its length prefix.
ScopedCBB cbb;
CBB child;
static const uint8_t kZeros[256] = {0};
if (!CBB_init(cbb.get(), 0) ||
!CBB_add_u8_length_prefixed(cbb.get(), &child) ||
!CBB_add_bytes(&child, kZeros, sizeof(kZeros))) {
return false;
}
if (CBB_flush(cbb.get())) {
fprintf(stderr, "CBB_flush unexpectedly succeeded.\n");
return false;
}
// All future operations should fail.
uint8_t *ptr;
size_t len;
if (CBB_add_u8(cbb.get(), 0) ||
CBB_finish(cbb.get(), &ptr, &len)) {
fprintf(stderr, "Future operations unexpectedly succeeded.\n");
return false;
}
// Write an input that cannot fit in a fixed CBB.
cbb.Reset();
uint8_t buf;
if (!CBB_init_fixed(cbb.get(), &buf, 1)) {
return false;
}
if (CBB_add_bytes(cbb.get(), kZeros, sizeof(kZeros))) {
fprintf(stderr, "CBB_add_bytes unexpectedly succeeded.\n");
return false;
}
// All future operations should fail.
if (CBB_add_u8(cbb.get(), 0) ||
CBB_finish(cbb.get(), &ptr, &len)) {
fprintf(stderr, "Future operations unexpectedly succeeded.\n");
return false;
}
// Write a u32 that cannot fit in a u24.
cbb.Reset();
if (!CBB_init(cbb.get(), 0)) {
return false;
}
if (CBB_add_u24(cbb.get(), 1u << 24)) {
fprintf(stderr, "CBB_add_u24 unexpectedly succeeded.\n");
return false;
}
// All future operations should fail.
if (CBB_add_u8(cbb.get(), 0) ||
CBB_finish(cbb.get(), &ptr, &len)) {
fprintf(stderr, "Future operations unexpectedly succeeded.\n");
return false;
}
return true;
}
int main(void) {
CRYPTO_library_init();
if (!TestSkip() ||
!TestGetUint() ||
!TestGetPrefixed() ||
!TestGetPrefixedBad() ||
!TestGetASN1() ||
!TestCBBBasic() ||
!TestCBBFixed() ||
!TestCBBFinishChild() ||
!TestCBBMisuse() ||
!TestCBBPrefixed() ||
!TestCBBDiscardChild() ||
!TestCBBASN1() ||
!TestBerConvert() ||
!TestImplicitString() ||
!TestASN1Uint64() ||
!TestGetOptionalASN1Bool() ||
!TestZero() ||
!TestCBBReserve() ||
!TestStickyError()) {
return 1;
}
printf("PASS\n");
return 0;
}