boringssl/crypto/ec/wnaf.c
Brian Smith f3376ace43 Remove |EC_POINTs_mul| & simplify p256-x86_64.
Without |EC_POINTs_mul|, there's never more than one variable point
passed to a |EC_METHOD|'s |mul| method. This allows them to be
simplified considerably. In this commit, the p256-x86_64 implementation
has been simplified to eliminate the heap allocation and looping
related that was previously necessary to deal with the possibility of
there being multiple input points. The other implementations were left
mostly as-is; they should be similarly simplified in the future.

Change-Id: I70751d1d5296be2562af0730e7ccefdba7a1acae
Reviewed-on: https://boringssl-review.googlesource.com/6493
Reviewed-by: Adam Langley <agl@google.com>
2015-11-19 01:08:46 +00:00

450 lines
13 KiB
C

/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "internal.h"
#include "../internal.h"
/* This file implements the wNAF-based interleaving multi-exponentation method
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
* */
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
* This is an array r[] of values that are either zero or odd with an
* absolute value less than 2^w satisfying
* scalar = \sum_j r[j]*2^j
* where at most one of any w+1 consecutive digits is non-zero
* with the exception that the most significant digit may be only
* w-1 zeros away from that next non-zero digit.
*/
static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
int window_val;
int ok = 0;
signed char *r = NULL;
int sign = 1;
int bit, next_bit, mask;
size_t len = 0, j;
if (BN_is_zero(scalar)) {
r = OPENSSL_malloc(1);
if (!r) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
r[0] = 0;
*ret_len = 1;
return r;
}
if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute
values less than 2^7 */
{
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
bit = 1 << w; /* at most 128 */
next_bit = bit << 1; /* at most 256 */
mask = next_bit - 1; /* at most 255 */
if (BN_is_negative(scalar)) {
sign = -1;
}
if (scalar->d == NULL || scalar->top == 0) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
len = BN_num_bits(scalar);
r = OPENSSL_malloc(
len +
1); /* modified wNAF may be one digit longer than binary representation
* (*ret_len will be set to the actual length, i.e. at most
* BN_num_bits(scalar) + 1) */
if (r == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
window_val = scalar->d[0] & mask;
j = 0;
while ((window_val != 0) ||
(j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
{
int digit = 0;
/* 0 <= window_val <= 2^(w+1) */
if (window_val & 1) {
/* 0 < window_val < 2^(w+1) */
if (window_val & bit) {
digit = window_val - next_bit; /* -2^w < digit < 0 */
#if 1 /* modified wNAF */
if (j + w + 1 >= len) {
/* special case for generating modified wNAFs:
* no new bits will be added into window_val,
* so using a positive digit here will decrease
* the total length of the representation */
digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
}
#endif
} else {
digit = window_val; /* 0 < digit < 2^w */
}
if (digit <= -bit || digit >= bit || !(digit & 1)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
window_val -= digit;
/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
* for modified window NAFs, it may also be 2^w
*/
if (window_val != 0 && window_val != next_bit && window_val != bit) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
}
r[j++] = sign * digit;
window_val >>= 1;
window_val += bit * BN_is_bit_set(scalar, j + w);
if (window_val > next_bit) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (j > len + 1) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
len = j;
ok = 1;
err:
if (!ok) {
OPENSSL_free(r);
r = NULL;
}
if (ok) {
*ret_len = len;
}
return r;
}
/* TODO: table should be optimised for the wNAF-based implementation,
* sometimes smaller windows will give better performance
* (thus the boundaries should be increased)
*/
#define EC_window_bits_for_scalar_size(b) \
((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 \
? 4 \
: (b) >= 70 ? 3 : (b) >= 20 \
? 2 \
: 1))
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
const EC_POINT *generator = NULL;
EC_POINT *tmp = NULL;
size_t total_num;
size_t i, j;
int k;
int r_is_inverted = 0;
int r_is_at_infinity = 1;
size_t *wsize = NULL; /* individual window sizes */
signed char **wNAF = NULL; /* individual wNAFs */
size_t *wNAF_len = NULL;
size_t max_len = 0;
size_t num_val;
EC_POINT **val = NULL; /* precomputation */
EC_POINT **v;
EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
int ret = 0;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
}
/* TODO: This function used to take |points| and |scalars| as arrays of
* |num| elements. The code below should be simplified to work in terms of |p|
* and |p_scalar|. */
size_t num = p != NULL ? 1 : 0;
const EC_POINT **points = p != NULL ? &p : NULL;
const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
total_num = num;
if (g_scalar != NULL) {
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
goto err;
}
++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
}
wsize = OPENSSL_malloc(total_num * sizeof wsize[0]);
wNAF_len = OPENSSL_malloc(total_num * sizeof wNAF_len[0]);
wNAF = OPENSSL_malloc((total_num + 1) *
sizeof wNAF[0]); /* includes space for pivot */
val_sub = OPENSSL_malloc(total_num * sizeof val_sub[0]);
/* Ensure wNAF is initialised in case we end up going to err. */
if (wNAF) {
wNAF[0] = NULL; /* preliminary pivot */
}
if (!wsize || !wNAF_len || !wNAF || !val_sub) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
/* num_val will be the total number of temporarily precomputed points */
num_val = 0;
for (i = 0; i < total_num; i++) {
size_t bits;
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
wsize[i] = EC_window_bits_for_scalar_size(bits);
num_val += (size_t)1 << (wsize[i] - 1);
wNAF[i + 1] = NULL; /* make sure we always have a pivot */
wNAF[i] =
compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
if (wNAF[i] == NULL) {
goto err;
}
if (wNAF_len[i] > max_len) {
max_len = wNAF_len[i];
}
}
/* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
* a pointer to the subarray for the i-th point. */
val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
if (val == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
val[num_val] = NULL; /* pivot element */
/* allocate points for precomputation */
v = val;
for (i = 0; i < total_num; i++) {
val_sub[i] = v;
for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
*v = EC_POINT_new(group);
if (*v == NULL) {
goto err;
}
v++;
}
}
if (!(v == val + num_val)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!(tmp = EC_POINT_new(group))) {
goto err;
}
/* prepare precomputed values:
* val_sub[i][0] := points[i]
* val_sub[i][1] := 3 * points[i]
* val_sub[i][2] := 5 * points[i]
* ...
*/
for (i = 0; i < total_num; i++) {
if (i < num) {
if (!EC_POINT_copy(val_sub[i][0], points[i])) {
goto err;
}
} else if (!EC_POINT_copy(val_sub[i][0], generator)) {
goto err;
}
if (wsize[i] > 1) {
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
goto err;
}
for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
goto err;
}
}
}
}
#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
goto err;
}
#endif
r_is_at_infinity = 1;
for (k = max_len - 1; k >= 0; k--) {
if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
goto err;
}
for (i = 0; i < total_num; i++) {
if (wNAF_len[i] > (size_t)k) {
int digit = wNAF[i][k];
int is_neg;
if (digit) {
is_neg = digit < 0;
if (is_neg) {
digit = -digit;
}
if (is_neg != r_is_inverted) {
if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
goto err;
}
r_is_inverted = !r_is_inverted;
}
/* digit > 0 */
if (r_is_at_infinity) {
if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
goto err;
}
r_is_at_infinity = 0;
} else {
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
goto err;
}
}
}
}
}
}
if (r_is_at_infinity) {
if (!EC_POINT_set_to_infinity(group, r)) {
goto err;
}
} else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
goto err;
}
ret = 1;
err:
BN_CTX_free(new_ctx);
EC_POINT_free(tmp);
OPENSSL_free(wsize);
OPENSSL_free(wNAF_len);
if (wNAF != NULL) {
signed char **w;
for (w = wNAF; *w != NULL; w++) {
OPENSSL_free(*w);
}
OPENSSL_free(wNAF);
}
if (val != NULL) {
for (v = val; *v != NULL; v++) {
EC_POINT_clear_free(*v);
}
OPENSSL_free(val);
}
OPENSSL_free(val_sub);
return ret;
}