77c3c0b025
OPENSSL_SMALL will still cause the smaller base-point table to be used and so won't be as fast at signing as the full version, but Ed25519 will now work in those builds. Without OPENSSL_SMALL: Did 20000 Ed25519 key generation operations in 1008347us (19834.4 ops/sec) Did 20000 Ed25519 signing operations in 1025594us (19500.9 ops/sec) Did 6138 Ed25519 verify operations in 1001712us (6127.5 ops/sec) Did 21000 Curve25519 base-point multiplication operations in 1019237us (20603.6 ops/sec) Did 7095 Curve25519 arbitrary point multiplication operations in 1065986us (6655.8 ops/sec) With (on the same machine): Did 8415 Ed25519 key generation operations in 1020958us (8242.3 ops/sec) Did 8952 Ed25519 signing operations in 1077635us (8307.1 ops/sec) Did 6358 Ed25519 verify operations in 1047533us (6069.5 ops/sec) Did 6620 Curve25519 base-point multiplication operations in 1008922us (6561.5 ops/sec) Did 7183 Curve25519 arbitrary point multiplication operations in 1096285us (6552.1 ops/sec) Change-Id: Ib443c0e2bdfd11e044087e66efd55b651a5667e7 Reviewed-on: https://boringssl-review.googlesource.com/6772 Reviewed-by: David Benjamin <davidben@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
555 lines
17 KiB
C++
555 lines
17 KiB
C++
/* Copyright (c) 2014, Google Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
#include <string>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/aead.h>
|
|
#include <openssl/curve25519.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/rsa.h>
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
#pragma warning(push, 3)
|
|
#include <windows.h>
|
|
#pragma warning(pop)
|
|
#elif defined(OPENSSL_APPLE)
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#include "../crypto/test/scoped_types.h"
|
|
#include "internal.h"
|
|
|
|
|
|
// TimeResults represents the results of benchmarking a function.
|
|
struct TimeResults {
|
|
// num_calls is the number of function calls done in the time period.
|
|
unsigned num_calls;
|
|
// us is the number of microseconds that elapsed in the time period.
|
|
unsigned us;
|
|
|
|
void Print(const std::string &description) {
|
|
printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
|
|
description.c_str(), us,
|
|
(static_cast<double>(num_calls) / us) * 1000000);
|
|
}
|
|
|
|
void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
|
|
printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
|
|
num_calls, description.c_str(), us,
|
|
(static_cast<double>(num_calls) / us) * 1000000,
|
|
static_cast<double>(bytes_per_call * num_calls) / us);
|
|
}
|
|
};
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
static uint64_t time_now() { return GetTickCount64() * 1000; }
|
|
#elif defined(OPENSSL_APPLE)
|
|
static uint64_t time_now() {
|
|
struct timeval tv;
|
|
uint64_t ret;
|
|
|
|
gettimeofday(&tv, NULL);
|
|
ret = tv.tv_sec;
|
|
ret *= 1000000;
|
|
ret += tv.tv_usec;
|
|
return ret;
|
|
}
|
|
#else
|
|
static uint64_t time_now() {
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
|
|
uint64_t ret = ts.tv_sec;
|
|
ret *= 1000000;
|
|
ret += ts.tv_nsec / 1000;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
|
|
// kTotalMS is the total amount of time that we'll aim to measure a function
|
|
// for.
|
|
static const uint64_t kTotalUS = 1000000;
|
|
uint64_t start = time_now(), now, delta;
|
|
unsigned done = 0, iterations_between_time_checks;
|
|
|
|
if (!func()) {
|
|
return false;
|
|
}
|
|
now = time_now();
|
|
delta = now - start;
|
|
if (delta == 0) {
|
|
iterations_between_time_checks = 250;
|
|
} else {
|
|
// Aim for about 100ms between time checks.
|
|
iterations_between_time_checks =
|
|
static_cast<double>(100000) / static_cast<double>(delta);
|
|
if (iterations_between_time_checks > 1000) {
|
|
iterations_between_time_checks = 1000;
|
|
} else if (iterations_between_time_checks < 1) {
|
|
iterations_between_time_checks = 1;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
for (unsigned i = 0; i < iterations_between_time_checks; i++) {
|
|
if (!func()) {
|
|
return false;
|
|
}
|
|
done++;
|
|
}
|
|
|
|
now = time_now();
|
|
if (now - start > kTotalUS) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
results->us = now - start;
|
|
results->num_calls = done;
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedRSA(const std::string &key_name, RSA *key,
|
|
const std::string &selected) {
|
|
if (!selected.empty() && key_name.find(selected) == std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
|
|
const uint8_t fake_sha256_hash[32] = {0};
|
|
unsigned sig_len;
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results,
|
|
[key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
|
|
return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
|
|
sig.get(), &sig_len, key);
|
|
})) {
|
|
fprintf(stderr, "RSA_sign failed.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
results.Print(key_name + " signing");
|
|
|
|
if (!TimeFunction(&results,
|
|
[key, &fake_sha256_hash, &sig, sig_len]() -> bool {
|
|
return RSA_verify(NID_sha256, fake_sha256_hash,
|
|
sizeof(fake_sha256_hash), sig.get(), sig_len, key);
|
|
})) {
|
|
fprintf(stderr, "RSA_verify failed.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
results.Print(key_name + " verify");
|
|
|
|
return true;
|
|
}
|
|
|
|
static uint8_t *align(uint8_t *in, unsigned alignment) {
|
|
return reinterpret_cast<uint8_t *>(
|
|
(reinterpret_cast<uintptr_t>(in) + alignment) &
|
|
~static_cast<size_t>(alignment - 1));
|
|
}
|
|
|
|
static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
|
|
size_t chunk_len, size_t ad_len) {
|
|
static const unsigned kAlignment = 16;
|
|
|
|
EVP_AEAD_CTX ctx;
|
|
const size_t key_len = EVP_AEAD_key_length(aead);
|
|
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
|
|
const size_t overhead_len = EVP_AEAD_max_overhead(aead);
|
|
|
|
std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
|
|
memset(key.get(), 0, key_len);
|
|
std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
|
|
memset(nonce.get(), 0, nonce_len);
|
|
std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
|
|
std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]);
|
|
std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
|
|
memset(ad.get(), 0, ad_len);
|
|
|
|
uint8_t *const in = align(in_storage.get(), kAlignment);
|
|
memset(in, 0, chunk_len);
|
|
uint8_t *const out = align(out_storage.get(), kAlignment);
|
|
memset(out, 0, chunk_len + overhead_len);
|
|
|
|
if (!EVP_AEAD_CTX_init_with_direction(&ctx, aead, key.get(), key_len,
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH,
|
|
evp_aead_seal)) {
|
|
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in,
|
|
out, &ctx, &nonce, &ad]() -> bool {
|
|
size_t out_len;
|
|
|
|
return EVP_AEAD_CTX_seal(
|
|
&ctx, out, &out_len, chunk_len + overhead_len, nonce.get(),
|
|
nonce_len, in, chunk_len, ad.get(), ad_len);
|
|
})) {
|
|
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
results.PrintWithBytes(name + " seal", chunk_len);
|
|
|
|
EVP_AEAD_CTX_cleanup(&ctx);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
|
|
size_t ad_len, const std::string &selected) {
|
|
if (!selected.empty() && name.find(selected) == std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) &&
|
|
SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) &&
|
|
SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len);
|
|
}
|
|
|
|
static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
|
|
size_t chunk_len) {
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_create();
|
|
uint8_t scratch[8192];
|
|
|
|
if (chunk_len > sizeof(scratch)) {
|
|
return false;
|
|
}
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
|
|
uint8_t digest[EVP_MAX_MD_SIZE];
|
|
unsigned int md_len;
|
|
|
|
return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
|
|
EVP_DigestUpdate(ctx, scratch, chunk_len) &&
|
|
EVP_DigestFinal_ex(ctx, digest, &md_len);
|
|
})) {
|
|
fprintf(stderr, "EVP_DigestInit_ex failed.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
results.PrintWithBytes(name, chunk_len);
|
|
|
|
EVP_MD_CTX_destroy(ctx);
|
|
|
|
return true;
|
|
}
|
|
static bool SpeedHash(const EVP_MD *md, const std::string &name,
|
|
const std::string &selected) {
|
|
if (!selected.empty() && name.find(selected) == std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
|
|
SpeedHashChunk(md, name + " (256 bytes)", 256) &&
|
|
SpeedHashChunk(md, name + " (8192 bytes)", 8192);
|
|
}
|
|
|
|
static bool SpeedRandomChunk(const std::string name, size_t chunk_len) {
|
|
uint8_t scratch[8192];
|
|
|
|
if (chunk_len > sizeof(scratch)) {
|
|
return false;
|
|
}
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
|
|
RAND_bytes(scratch, chunk_len);
|
|
return true;
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
results.PrintWithBytes(name, chunk_len);
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedRandom(const std::string &selected) {
|
|
if (!selected.empty() && selected != "RNG") {
|
|
return true;
|
|
}
|
|
|
|
return SpeedRandomChunk("RNG (16 bytes)", 16) &&
|
|
SpeedRandomChunk("RNG (256 bytes)", 256) &&
|
|
SpeedRandomChunk("RNG (8192 bytes)", 8192);
|
|
}
|
|
|
|
static bool SpeedECDHCurve(const std::string &name, int nid,
|
|
const std::string &selected) {
|
|
if (!selected.empty() && name.find(selected) == std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [nid]() -> bool {
|
|
ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
|
|
if (!key ||
|
|
!EC_KEY_generate_key(key.get())) {
|
|
return false;
|
|
}
|
|
const EC_GROUP *const group = EC_KEY_get0_group(key.get());
|
|
ScopedEC_POINT point(EC_POINT_new(group));
|
|
ScopedBN_CTX ctx(BN_CTX_new());
|
|
|
|
ScopedBIGNUM x(BN_new());
|
|
ScopedBIGNUM y(BN_new());
|
|
|
|
if (!point || !ctx || !x || !y ||
|
|
!EC_POINT_mul(group, point.get(), NULL,
|
|
EC_KEY_get0_public_key(key.get()),
|
|
EC_KEY_get0_private_key(key.get()), ctx.get()) ||
|
|
!EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
|
|
y.get(), ctx.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
results.Print(name);
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedECDSACurve(const std::string &name, int nid,
|
|
const std::string &selected) {
|
|
if (!selected.empty() && name.find(selected) == std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
|
|
if (!key ||
|
|
!EC_KEY_generate_key(key.get())) {
|
|
return false;
|
|
}
|
|
|
|
uint8_t signature[256];
|
|
if (ECDSA_size(key.get()) > sizeof(signature)) {
|
|
return false;
|
|
}
|
|
uint8_t digest[20];
|
|
memset(digest, 42, sizeof(digest));
|
|
unsigned sig_len;
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
|
|
return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
|
|
key.get()) == 1;
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
results.Print(name + " signing");
|
|
|
|
if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
|
|
return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
|
|
key.get()) == 1;
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
results.Print(name + " verify");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedECDH(const std::string &selected) {
|
|
return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
|
|
SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
|
|
SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
|
|
SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
|
|
}
|
|
|
|
static bool SpeedECDSA(const std::string &selected) {
|
|
return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
|
|
SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
|
|
SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
|
|
SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
|
|
}
|
|
|
|
static bool Speed25519(const std::string &selected) {
|
|
if (!selected.empty() && selected.find("25519") == std::string::npos) {
|
|
return true;
|
|
}
|
|
|
|
TimeResults results;
|
|
|
|
uint8_t public_key[32], private_key[64];
|
|
|
|
if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
|
|
ED25519_keypair(public_key, private_key);
|
|
return true;
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
results.Print("Ed25519 key generation");
|
|
|
|
static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
|
|
uint8_t signature[64];
|
|
|
|
if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
|
|
return ED25519_sign(signature, kMessage, sizeof(kMessage),
|
|
private_key) == 1;
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
results.Print("Ed25519 signing");
|
|
|
|
if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
|
|
return ED25519_verify(kMessage, sizeof(kMessage), signature,
|
|
public_key) == 1;
|
|
})) {
|
|
fprintf(stderr, "Ed25519 verify failed.\n");
|
|
return false;
|
|
}
|
|
|
|
results.Print("Ed25519 verify");
|
|
|
|
if (!TimeFunction(&results, []() -> bool {
|
|
uint8_t out[32], in[32];
|
|
memset(in, 0, sizeof(in));
|
|
X25519_public_from_private(out, in);
|
|
return true;
|
|
})) {
|
|
fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
|
|
return false;
|
|
}
|
|
|
|
results.Print("Curve25519 base-point multiplication");
|
|
|
|
if (!TimeFunction(&results, []() -> bool {
|
|
uint8_t out[32], in1[32], in2[32];
|
|
memset(in1, 0, sizeof(in1));
|
|
memset(in2, 0, sizeof(in2));
|
|
in1[0] = 1;
|
|
in2[0] = 9;
|
|
return X25519(out, in1, in2) == 1;
|
|
})) {
|
|
fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
|
|
return false;
|
|
}
|
|
|
|
results.Print("Curve25519 arbitrary point multiplication");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Speed(const std::vector<std::string> &args) {
|
|
std::string selected;
|
|
if (args.size() > 1) {
|
|
fprintf(stderr, "Usage: bssl speed [speed test selector, i.e. 'RNG']\n");
|
|
return false;
|
|
}
|
|
if (args.size() > 0) {
|
|
selected = args[0];
|
|
}
|
|
|
|
RSA *key = RSA_private_key_from_bytes(kDERRSAPrivate2048,
|
|
kDERRSAPrivate2048Len);
|
|
if (key == NULL) {
|
|
fprintf(stderr, "Failed to parse RSA key.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
if (!SpeedRSA("RSA 2048", key, selected)) {
|
|
return false;
|
|
}
|
|
|
|
RSA_free(key);
|
|
key = RSA_private_key_from_bytes(kDERRSAPrivate3Prime2048,
|
|
kDERRSAPrivate3Prime2048Len);
|
|
if (key == NULL) {
|
|
fprintf(stderr, "Failed to parse RSA key.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
if (!SpeedRSA("RSA 2048 (3 prime, e=3)", key, selected)) {
|
|
return false;
|
|
}
|
|
|
|
RSA_free(key);
|
|
key = RSA_private_key_from_bytes(kDERRSAPrivate4096,
|
|
kDERRSAPrivate4096Len);
|
|
if (key == NULL) {
|
|
fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return 1;
|
|
}
|
|
|
|
if (!SpeedRSA("RSA 4096", key, selected)) {
|
|
return false;
|
|
}
|
|
|
|
RSA_free(key);
|
|
|
|
// kTLSADLen is the number of bytes of additional data that TLS passes to
|
|
// AEADs.
|
|
static const size_t kTLSADLen = 13;
|
|
// kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
|
|
// These are AEADs that weren't originally defined as AEADs, but which we use
|
|
// via the AEAD interface. In order for that to work, they have some TLS
|
|
// knowledge in them and construct a couple of the AD bytes internally.
|
|
static const size_t kLegacyADLen = kTLSADLen - 2;
|
|
|
|
if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
|
|
selected) ||
|
|
!SpeedAEAD(EVP_aead_chacha20_poly1305_old(), "ChaCha20-Poly1305-Old",
|
|
kTLSADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_rc4_sha1_tls(), "RC4-SHA1", kLegacyADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
|
|
kLegacyADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
|
|
kLegacyADLen, selected) ||
|
|
!SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
|
|
kLegacyADLen, selected) ||
|
|
!SpeedHash(EVP_sha1(), "SHA-1", selected) ||
|
|
!SpeedHash(EVP_sha256(), "SHA-256", selected) ||
|
|
!SpeedHash(EVP_sha512(), "SHA-512", selected) ||
|
|
!SpeedRandom(selected) ||
|
|
!SpeedECDH(selected) ||
|
|
!SpeedECDSA(selected) ||
|
|
!Speed25519(selected)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|