bf82aede67
Both sides' signature and Finished checks still occur, but the results are ignored. Also, all ciphers behave like the NULL cipher. Conveniently, this isn't that much code since all ciphers and their size computations funnel into SSL_AEAD_CTX. This does carry some risk that we'll mess up this code. Up until now, we've tried to avoid test-only changes to the SSL stack. There is little risk that anyone will ship a BORINGSSL_UNSAFE_FUZZER_MODE build for anything since it doesn't interop anyway. There is some risk that we'll end up messing up the disableable checks. However, both skipped checks have negative tests in runner (see tests that set InvalidSKXSignature and BadFinished). For good measure, I've added a server variant of the existing BadFinished test to this CL, although they hit the same code. Change-Id: I37f6b4d62b43bc08fab7411965589b423d86f4b8 Reviewed-on: https://boringssl-review.googlesource.com/7287 Reviewed-by: Adam Langley <agl@google.com>
382 lines
14 KiB
C
382 lines
14 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
/* kMaxEmptyRecords is the number of consecutive, empty records that will be
|
|
* processed. Without this limit an attacker could send empty records at a
|
|
* faster rate than we can process and cause record processing to loop
|
|
* forever. */
|
|
static const uint8_t kMaxEmptyRecords = 32;
|
|
|
|
/* ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
|
|
* state needs record-splitting and zero otherwise. */
|
|
static int ssl_needs_record_splitting(const SSL *ssl) {
|
|
return ssl->s3->aead_write_ctx != NULL &&
|
|
ssl3_protocol_version(ssl) < TLS1_1_VERSION &&
|
|
(ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 &&
|
|
SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher);
|
|
}
|
|
|
|
int ssl_record_sequence_update(uint8_t *seq, size_t seq_len) {
|
|
size_t i;
|
|
for (i = seq_len - 1; i < seq_len; i--) {
|
|
++seq[i];
|
|
if (seq[i] != 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
|
|
size_t ssl_record_prefix_len(const SSL *ssl) {
|
|
if (SSL_IS_DTLS(ssl)) {
|
|
return DTLS1_RT_HEADER_LENGTH +
|
|
SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_read_ctx);
|
|
} else {
|
|
return SSL3_RT_HEADER_LENGTH +
|
|
SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_read_ctx);
|
|
}
|
|
}
|
|
|
|
size_t ssl_seal_prefix_len(const SSL *ssl) {
|
|
if (SSL_IS_DTLS(ssl)) {
|
|
return DTLS1_RT_HEADER_LENGTH +
|
|
SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx);
|
|
} else {
|
|
size_t ret = SSL3_RT_HEADER_LENGTH +
|
|
SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx);
|
|
if (ssl_needs_record_splitting(ssl)) {
|
|
ret += SSL3_RT_HEADER_LENGTH;
|
|
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
size_t ssl_max_seal_overhead(const SSL *ssl) {
|
|
if (SSL_IS_DTLS(ssl)) {
|
|
return DTLS1_RT_HEADER_LENGTH +
|
|
SSL_AEAD_CTX_max_overhead(ssl->s3->aead_write_ctx);
|
|
} else {
|
|
size_t ret = SSL3_RT_HEADER_LENGTH +
|
|
SSL_AEAD_CTX_max_overhead(ssl->s3->aead_write_ctx);
|
|
if (ssl_needs_record_splitting(ssl)) {
|
|
ret *= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
enum ssl_open_record_t tls_open_record(
|
|
SSL *ssl, uint8_t *out_type, uint8_t *out, size_t *out_len,
|
|
size_t *out_consumed, uint8_t *out_alert, size_t max_out, const uint8_t *in,
|
|
size_t in_len) {
|
|
CBS cbs;
|
|
CBS_init(&cbs, in, in_len);
|
|
|
|
/* Decode the record header. */
|
|
uint8_t type;
|
|
uint16_t version, ciphertext_len;
|
|
if (!CBS_get_u8(&cbs, &type) ||
|
|
!CBS_get_u16(&cbs, &version) ||
|
|
!CBS_get_u16(&cbs, &ciphertext_len)) {
|
|
*out_consumed = SSL3_RT_HEADER_LENGTH;
|
|
return ssl_open_record_partial;
|
|
}
|
|
|
|
/* Check the version. */
|
|
if ((ssl->s3->have_version && version != ssl->version) ||
|
|
(version >> 8) != SSL3_VERSION_MAJOR) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
|
|
*out_alert = SSL_AD_PROTOCOL_VERSION;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
/* Check the ciphertext length. */
|
|
if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
|
|
*out_alert = SSL_AD_RECORD_OVERFLOW;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
/* Extract the body. */
|
|
CBS body;
|
|
if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) {
|
|
*out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len;
|
|
return ssl_open_record_partial;
|
|
}
|
|
|
|
if (ssl->msg_callback != NULL) {
|
|
ssl->msg_callback(0 /* read */, 0, SSL3_RT_HEADER, in,
|
|
SSL3_RT_HEADER_LENGTH, ssl, ssl->msg_callback_arg);
|
|
}
|
|
|
|
/* Decrypt the body. */
|
|
size_t plaintext_len;
|
|
if (!SSL_AEAD_CTX_open(ssl->s3->aead_read_ctx, out, &plaintext_len, max_out,
|
|
type, version, ssl->s3->read_sequence, CBS_data(&body),
|
|
CBS_len(&body))) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
|
|
*out_alert = SSL_AD_BAD_RECORD_MAC;
|
|
return ssl_open_record_error;
|
|
}
|
|
if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
/* Check the plaintext length. */
|
|
if (plaintext_len > SSL3_RT_MAX_PLAIN_LENGTH) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
|
|
*out_alert = SSL_AD_RECORD_OVERFLOW;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
/* Limit the number of consecutive empty records. */
|
|
if (plaintext_len == 0) {
|
|
ssl->s3->empty_record_count++;
|
|
if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
|
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
|
|
return ssl_open_record_error;
|
|
}
|
|
/* Apart from the limit, empty records are returned up to the caller. This
|
|
* allows the caller to reject records of the wrong type. */
|
|
} else {
|
|
ssl->s3->empty_record_count = 0;
|
|
}
|
|
|
|
*out_type = type;
|
|
*out_len = plaintext_len;
|
|
*out_consumed = in_len - CBS_len(&cbs);
|
|
return ssl_open_record_success;
|
|
}
|
|
|
|
static int do_seal_record(SSL *ssl, uint8_t *out, size_t *out_len,
|
|
size_t max_out, uint8_t type, const uint8_t *in,
|
|
size_t in_len) {
|
|
if (max_out < SSL3_RT_HEADER_LENGTH) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
/* Check the record header does not alias any part of the input.
|
|
* |SSL_AEAD_CTX_seal| will internally enforce other aliasing requirements. */
|
|
if (in < out + SSL3_RT_HEADER_LENGTH && out < in + in_len) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
|
|
return 0;
|
|
}
|
|
|
|
out[0] = type;
|
|
|
|
/* Some servers hang if initial ClientHello is larger than 256 bytes and
|
|
* record version number > TLS 1.0. */
|
|
uint16_t wire_version = ssl->version;
|
|
if (!ssl->s3->have_version && ssl->version > SSL3_VERSION) {
|
|
wire_version = TLS1_VERSION;
|
|
}
|
|
out[1] = wire_version >> 8;
|
|
out[2] = wire_version & 0xff;
|
|
|
|
size_t ciphertext_len;
|
|
if (!SSL_AEAD_CTX_seal(ssl->s3->aead_write_ctx, out + SSL3_RT_HEADER_LENGTH,
|
|
&ciphertext_len, max_out - SSL3_RT_HEADER_LENGTH,
|
|
type, wire_version, ssl->s3->write_sequence, in,
|
|
in_len) ||
|
|
!ssl_record_sequence_update(ssl->s3->write_sequence, 8)) {
|
|
return 0;
|
|
}
|
|
|
|
if (ciphertext_len >= 1 << 16) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
out[3] = ciphertext_len >> 8;
|
|
out[4] = ciphertext_len & 0xff;
|
|
|
|
*out_len = SSL3_RT_HEADER_LENGTH + ciphertext_len;
|
|
|
|
if (ssl->msg_callback) {
|
|
ssl->msg_callback(1 /* write */, 0, SSL3_RT_HEADER, out,
|
|
SSL3_RT_HEADER_LENGTH, ssl, ssl->msg_callback_arg);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
|
|
uint8_t type, const uint8_t *in, size_t in_len) {
|
|
size_t frag_len = 0;
|
|
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
|
|
ssl_needs_record_splitting(ssl)) {
|
|
/* |do_seal_record| will notice if it clobbers |in[0]|, but not if it
|
|
* aliases the rest of |in|. */
|
|
if (in + 1 <= out && out < in + in_len) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
|
|
return 0;
|
|
}
|
|
/* Ensure |do_seal_record| does not write beyond |in[0]|. */
|
|
size_t frag_max_out = max_out;
|
|
if (out <= in + 1 && in + 1 < out + frag_max_out) {
|
|
frag_max_out = (size_t)(in + 1 - out);
|
|
}
|
|
if (!do_seal_record(ssl, out, &frag_len, frag_max_out, type, in, 1)) {
|
|
return 0;
|
|
}
|
|
in++;
|
|
in_len--;
|
|
out += frag_len;
|
|
max_out -= frag_len;
|
|
|
|
#if !defined(BORINGSSL_UNSAFE_FUZZER_MODE)
|
|
assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len(
|
|
ssl->s3->aead_write_ctx->cipher) ==
|
|
frag_len);
|
|
#endif
|
|
}
|
|
|
|
if (!do_seal_record(ssl, out, out_len, max_out, type, in, in_len)) {
|
|
return 0;
|
|
}
|
|
*out_len += frag_len;
|
|
return 1;
|
|
}
|
|
|
|
void ssl_set_read_state(SSL *ssl, SSL_AEAD_CTX *aead_ctx) {
|
|
if (SSL_IS_DTLS(ssl)) {
|
|
ssl->d1->r_epoch++;
|
|
memset(&ssl->d1->bitmap, 0, sizeof(ssl->d1->bitmap));
|
|
}
|
|
memset(ssl->s3->read_sequence, 0, sizeof(ssl->s3->read_sequence));
|
|
|
|
SSL_AEAD_CTX_free(ssl->s3->aead_read_ctx);
|
|
ssl->s3->aead_read_ctx = aead_ctx;
|
|
}
|
|
|
|
void ssl_set_write_state(SSL *ssl, SSL_AEAD_CTX *aead_ctx) {
|
|
if (SSL_IS_DTLS(ssl)) {
|
|
ssl->d1->w_epoch++;
|
|
memcpy(ssl->d1->last_write_sequence, ssl->s3->write_sequence,
|
|
sizeof(ssl->s3->write_sequence));
|
|
}
|
|
memset(ssl->s3->write_sequence, 0, sizeof(ssl->s3->write_sequence));
|
|
|
|
SSL_AEAD_CTX_free(ssl->s3->aead_write_ctx);
|
|
ssl->s3->aead_write_ctx = aead_ctx;
|
|
}
|