csidh/csidh.c
2018-08-23 13:49:45 +02:00

221 lignes
5.5 KiB
C

#include <string.h>
#include <assert.h>
#include "csidh.h"
#include "rng.h"
/* specific to p, should perhaps be somewhere else */
const unsigned primes[num_primes] = {
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 587,
};
const u512 four_sqrt_p = {{
0x85e2579c786882cf, 0x4e3433657e18da95, 0x850ae5507965a0b3, 0xa15bc4e676475964,
}};
const public_key base = {0}; /* A = 0 */
void csidh_private(private_key *priv)
{
memset(&priv->e, 0, sizeof(priv->e));
for (size_t i = 0; i < num_primes; ) {
int8_t buf[64];
randombytes(buf, sizeof(buf));
for (size_t j = 0; j < sizeof(buf); ++j) {
if (buf[j] <= max_exponent && buf[j] >= -max_exponent) {
priv->e[i / 2] |= (buf[j] & 0xf) << i % 2 * 4;
if (++i >= num_primes)
break;
}
}
}
}
/* compute [(p+1)/l] P for all l in our list of primes. */
/* divide and conquer is much faster than doing it naively,
* but uses more memory. */
static void cofactor_multiples(proj *P, const proj *A, size_t lower, size_t upper)
{
assert(lower < upper);
if (upper - lower == 1)
return;
size_t mid = lower + (upper - lower + 1) / 2;
u512 cl = u512_1, cu = u512_1;
for (size_t i = lower; i < mid; ++i)
u512_mul3_64(&cu, &cu, primes[i]);
for (size_t i = mid; i < upper; ++i)
u512_mul3_64(&cl, &cl, primes[i]);
xMUL(&P[mid], A, &P[lower], &cu);
xMUL(&P[lower], A, &P[lower], &cl);
cofactor_multiples(P, A, lower, mid);
cofactor_multiples(P, A, mid, upper);
}
/* never accepts invalid keys. */
bool validate(public_key const *in)
{
const proj A = {in->A, fp_1};
do {
proj P[num_primes];
fp_random(&P->x);
P->z = fp_1;
/* maximal 2-power in p+1 */
xDBL(P, &A, P);
xDBL(P, &A, P);
cofactor_multiples(P, &A, 0, num_primes);
u512 order = u512_1;
for (size_t i = num_primes - 1; i < num_primes; --i) {
/* we only gain information if [(p+1)/l] P is non-zero */
if (memcmp(&P[i].z, &fp_0, sizeof(fp))) {
u512 tmp;
u512_set(&tmp, primes[i]);
xMUL(&P[i], &A, &P[i], &tmp);
if (memcmp(&P[i].z, &fp_0, sizeof(fp)))
/* P does not have order dividing p+1. */
return false;
u512_mul3_64(&order, &order, primes[i]);
if (u512_sub3(&tmp, &four_sqrt_p, &order)) /* returns borrow */
/* order > 4 sqrt(p), hence definitely supersingular */
return true;
}
}
/* P didn't have big enough order to prove supersingularity. */
} while (1);
}
/* compute x^3 + Ax^2 + x */
static void montgomery_rhs(fp *rhs, fp const *A, fp const *x)
{
fp tmp;
*rhs = *x;
fp_sq1(rhs);
fp_mul3(&tmp, A, x);
fp_add2(rhs, &tmp);
fp_add2(rhs, &fp_1);
fp_mul2(rhs, x);
}
/* totally not constant-time. */
void action(public_key *out, public_key const *in, private_key const *priv)
{
u512 k[2];
u512_set(&k[0], 4); /* maximal 2-power in p+1 */
u512_set(&k[1], 4); /* maximal 2-power in p+1 */
uint8_t e[2][num_primes];
for (size_t i = 0; i < num_primes; ++i) {
int8_t t = (int8_t) (priv->e[i / 2] << i % 2 * 4) >> 4;
if (t > 0) {
e[0][i] = t;
e[1][i] = 0;
u512_mul3_64(&k[1], &k[1], primes[i]);
}
else if (t < 0) {
e[1][i] = -t;
e[0][i] = 0;
u512_mul3_64(&k[0], &k[0], primes[i]);
}
else {
e[0][i] = 0;
e[1][i] = 0;
u512_mul3_64(&k[0], &k[0], primes[i]);
u512_mul3_64(&k[1], &k[1], primes[i]);
}
}
proj A = {in->A, fp_1};
bool done[2] = {false, false};
do {
assert(!memcmp(&A.z, &fp_1, sizeof(fp)));
proj P;
fp_random(&P.x);
P.z = fp_1;
fp rhs;
montgomery_rhs(&rhs, &A.x, &P.x);
bool sign = !fp_issquare(&rhs);
if (done[sign])
continue;
xMUL(&P, &A, &P, &k[sign]);
done[sign] = true;
for (size_t i = num_primes-1; i < num_primes; --i) { //changed loop direction
if (e[sign][i]) {
u512 cof = u512_1;
for (size_t j = i - 1; j < num_primes; --j) //changed loop direction
if (e[sign][j])
u512_mul3_64(&cof, &cof, primes[j]);
proj K;
xMUL(&K, &A, &P, &cof);
if (memcmp(&K.z, &fp_0, sizeof(fp))) {
xISOG(&A, &P, &K, primes[i]);
if (!--e[sign][i])
u512_mul3_64(&k[sign], &k[sign], primes[i]);
}
}
done[sign] &= !e[sign][i];
}
fp_inv(&A.z);
fp_mul2(&A.x, &A.z);
A.z = fp_1;
} while (!(done[0] && done[1]));
out->A = A.x;
}
/* includes public-key validation. */
bool csidh(public_key *out, public_key const *in, private_key const *priv)
{
if (!validate(in)) {
fp_random(&out->A);
return false;
}
action(out, in, priv);
return true;
}