package sike import ( "math/bits" ) // Fp implementation // Compute z = x + y (mod 2*p). func fpAddRdc(z, x, y *Fp) { var carry uint64 // z=x+y % p503 for i := 0; i < FP_WORDS; i++ { z[i], carry = bits.Add64(x[i], y[i], carry) } // z = z - pX2 carry = 0 for i := 0; i < FP_WORDS; i++ { z[i], carry = bits.Sub64(z[i], pX2[i], carry) } // if z<0 add pX2 back mask := uint64(0 - carry) carry = 0 for i := 0; i < FP_WORDS; i++ { z[i], carry = bits.Add64(z[i], pX2[i]&mask, carry) } } // Compute z = x - y (mod 2*p). func fpSubRdc(z, x, y *Fp) { var borrow uint64 // z = z - pX2 for i := 0; i < FP_WORDS; i++ { z[i], borrow = bits.Sub64(x[i], y[i], borrow) } // if z<0 add pX2 back mask := uint64(0 - borrow) borrow = 0 for i := 0; i < FP_WORDS; i++ { z[i], borrow = bits.Add64(z[i], pX2[i]&mask, borrow) } } // Reduce a field element in [0, 2*p) to one in [0,p). func fpRdcP(x *Fp) { var borrow, mask uint64 for i := 0; i < FP_WORDS; i++ { x[i], borrow = bits.Sub64(x[i], p[i], borrow) } // Sets all bits if borrow = 1 mask = 0 - borrow borrow = 0 for i := 0; i < FP_WORDS; i++ { x[i], borrow = bits.Add64(x[i], p[i]&mask, borrow) } } // Implementation doesn't actually depend on a prime field. func fpSwapCond(x, y *Fp, mask uint8) { if mask != 0 { var tmp Fp copy(tmp[:], y[:]) copy(y[:], x[:]) copy(x[:], tmp[:]) } } // Compute z = x * y. func fpMul(z *FpX2, x, y *Fp) { var carry, t, u, v uint64 var hi, lo uint64 for i := uint64(0); i < FP_WORDS; i++ { for j := uint64(0); j <= i; j++ { hi, lo = bits.Mul64(x[j], y[i-j]) v, carry = bits.Add64(lo, v, 0) u, carry = bits.Add64(hi, u, carry) t += carry } z[i] = v v = u u = t t = 0 } for i := FP_WORDS; i < (2*FP_WORDS)-1; i++ { for j := i - FP_WORDS + 1; j < FP_WORDS; j++ { hi, lo = bits.Mul64(x[j], y[i-j]) v, carry = bits.Add64(lo, v, 0) u, carry = bits.Add64(hi, u, carry) t += carry } z[i] = v v = u u = t t = 0 } z[2*FP_WORDS-1] = v } // Perform Montgomery reduction: set z = x R^{-1} (mod 2*p) // with R=2^512. Destroys the input value. func fpMontRdc(z *Fp, x *FpX2) { var carry, t, u, v uint64 var hi, lo uint64 var count int count = 3 // number of 0 digits in the least significat part of p503 + 1 for i := 0; i < FP_WORDS; i++ { for j := 0; j < i; j++ { if j < (i - count + 1) { hi, lo = bits.Mul64(z[j], p1[i-j]) v, carry = bits.Add64(lo, v, 0) u, carry = bits.Add64(hi, u, carry) t += carry } } v, carry = bits.Add64(v, x[i], 0) u, carry = bits.Add64(u, 0, carry) t += carry z[i] = v v = u u = t t = 0 } for i := FP_WORDS; i < 2*FP_WORDS-1; i++ { if count > 0 { count-- } for j := i - FP_WORDS + 1; j < FP_WORDS; j++ { if j < (FP_WORDS - count) { hi, lo = bits.Mul64(z[j], p1[i-j]) v, carry = bits.Add64(lo, v, 0) u, carry = bits.Add64(hi, u, carry) t += carry } } v, carry = bits.Add64(v, x[i], 0) u, carry = bits.Add64(u, 0, carry) t += carry z[i-FP_WORDS] = v v = u u = t t = 0 } v, carry = bits.Add64(v, x[2*FP_WORDS-1], 0) z[FP_WORDS-1] = v } // Compute z = x + y, without reducing mod p. func fp2Add(z, x, y *FpX2) { var carry uint64 for i := 0; i < 2*FP_WORDS; i++ { z[i], carry = bits.Add64(x[i], y[i], carry) } } // Compute z = x - y, without reducing mod p. func fp2Sub(z, x, y *FpX2) { var borrow, mask uint64 for i := 0; i < 2*FP_WORDS; i++ { z[i], borrow = bits.Sub64(x[i], y[i], borrow) } // Sets all bits if borrow = 1 mask = 0 - borrow borrow = 0 for i := FP_WORDS; i < 2*FP_WORDS; i++ { z[i], borrow = bits.Add64(z[i], p[i-FP_WORDS]&mask, borrow) } } // Montgomery multiplication. Input values must be already // in Montgomery domain. func fpMulRdc(dest, lhs, rhs *Fp) { a := lhs // = a*R b := rhs // = b*R var ab FpX2 fpMul(&ab, a, b) // = a*b*R*R fpMontRdc(dest, &ab) // = a*b*R mod p }