package sike // Helpers // uint128 representation type uint128 struct { H, L uint64 } func addc64(cin, a, b uint64) (ret, cout uint64) { ret = cin ret = ret + a if ret < a { cout = 1 } ret = ret + b if ret < b { cout = 1 } return } func subc64(bIn, a, b uint64) (ret, bOut uint64) { tmp := a - bIn if tmp > a { bOut = 1 } ret = tmp - b if ret > tmp { bOut = 1 } return } func mul64(a, b uint64) (res uint128) { var al, bl, ah, bh, albl, albh, ahbl, ahbh uint64 var res1, res2, res3 uint64 var carry, maskL, maskH, temp uint64 maskL = (^maskL) >> 32 maskH = ^maskL al = a & maskL ah = a >> 32 bl = b & maskL bh = b >> 32 albl = al * bl albh = al * bh ahbl = ah * bl ahbh = ah * bh res.L = albl & maskL res1 = albl >> 32 res2 = ahbl & maskL res3 = albh & maskL temp = res1 + res2 + res3 carry = temp >> 32 res.L ^= temp << 32 res1 = ahbl >> 32 res2 = albh >> 32 res3 = ahbh & maskL temp = res1 + res2 + res3 + carry res.H = temp & maskL carry = temp & maskH res.H ^= (ahbh & maskH) + carry return } // Fp implementation // Compute z = x + y (mod 2*p). func fpAddRdc(z, x, y *Fp) { var carry uint64 // z=x+y % p503 for i := 0; i < FP_WORDS; i++ { z[i], carry = addc64(carry, x[i], y[i]) } // z = z - p503x2 carry = 0 for i := 0; i < FP_WORDS; i++ { z[i], carry = subc64(carry, z[i], p503x2[i]) } // if z<0 add p503x2 back mask := uint64(0 - carry) carry = 0 for i := 0; i < FP_WORDS; i++ { z[i], carry = addc64(carry, z[i], p503x2[i]&mask) } } // Compute z = x - y (mod 2*p). func fpSubRdc(z, x, y *Fp) { var borrow uint64 // z = z - p503x2 for i := 0; i < FP_WORDS; i++ { z[i], borrow = subc64(borrow, x[i], y[i]) } // if z<0 add p503x2 back mask := uint64(0 - borrow) borrow = 0 for i := 0; i < FP_WORDS; i++ { z[i], borrow = addc64(borrow, z[i], p503x2[i]&mask) } } // Reduce a field element in [0, 2*p) to one in [0,p). func fpRdcP(x *Fp) { var borrow, mask uint64 for i := 0; i < FP_WORDS; i++ { x[i], borrow = subc64(borrow, x[i], p503[i]) } // Sets all bits if borrow = 1 mask = 0 - borrow borrow = 0 for i := 0; i < FP_WORDS; i++ { x[i], borrow = addc64(borrow, x[i], p503[i]&mask) } } // Implementation doesn't actually depend on a prime field. func fpSwapCond(x, y *Fp, mask uint8) { if mask != 0 { var tmp Fp copy(tmp[:], y[:]) copy(y[:], x[:]) copy(x[:], tmp[:]) } } // Compute z = x * y. func fpMul(z *FpX2, x, y *Fp) { var u, v, t uint64 var carry uint64 var uv uint128 for i := uint64(0); i < FP_WORDS; i++ { for j := uint64(0); j <= i; j++ { uv = mul64(x[j], y[i-j]) v, carry = addc64(0, uv.L, v) u, carry = addc64(carry, uv.H, u) t += carry } z[i] = v v = u u = t t = 0 } for i := FP_WORDS; i < (2*FP_WORDS)-1; i++ { for j := i - FP_WORDS + 1; j < FP_WORDS; j++ { uv = mul64(x[j], y[i-j]) v, carry = addc64(0, uv.L, v) u, carry = addc64(carry, uv.H, u) t += carry } z[i] = v v = u u = t t = 0 } z[2*FP_WORDS-1] = v } // Perform Montgomery reduction: set z = x R^{-1} (mod 2*p) // with R=2^512. Destroys the input value. func fpMontRdc(z *Fp, x *FpX2) { var carry, t, u, v uint64 var uv uint128 var count int count = 3 // number of 0 digits in the least significat part of p503 + 1 for i := 0; i < FP_WORDS; i++ { for j := 0; j < i; j++ { if j < (i - count + 1) { uv = mul64(z[j], p503p1[i-j]) v, carry = addc64(0, uv.L, v) u, carry = addc64(carry, uv.H, u) t += carry } } v, carry = addc64(0, v, x[i]) u, carry = addc64(carry, u, 0) t += carry z[i] = v v = u u = t t = 0 } for i := FP_WORDS; i < 2*FP_WORDS-1; i++ { if count > 0 { count-- } for j := i - FP_WORDS + 1; j < FP_WORDS; j++ { if j < (FP_WORDS - count) { uv = mul64(z[j], p503p1[i-j]) v, carry = addc64(0, uv.L, v) u, carry = addc64(carry, uv.H, u) t += carry } } v, carry = addc64(0, v, x[i]) u, carry = addc64(carry, u, 0) t += carry z[i-FP_WORDS] = v v = u u = t t = 0 } v, carry = addc64(0, v, x[2*FP_WORDS-1]) z[FP_WORDS-1] = v } // Compute z = x + y, without reducing mod p. func fp2Add(z, x, y *FpX2) { var carry uint64 for i := 0; i < 2*FP_WORDS; i++ { z[i], carry = addc64(carry, x[i], y[i]) } } // Compute z = x - y, without reducing mod p. func fp2Sub(z, x, y *FpX2) { var borrow, mask uint64 for i := 0; i < 2*FP_WORDS; i++ { z[i], borrow = subc64(borrow, x[i], y[i]) } // Sets all bits if borrow = 1 mask = 0 - borrow borrow = 0 for i := FP_WORDS; i < 2*FP_WORDS; i++ { z[i], borrow = addc64(borrow, z[i], p503[i-FP_WORDS]&mask) } } // Montgomery multiplication. Input values must be already // in Montgomery domain. func fpMulRdc(dest, lhs, rhs *Fp) { a := lhs // = a*R b := rhs // = b*R var ab FpX2 fpMul(&ab, a, b) // = a*b*R*R fpMontRdc(dest, &ab) // = a*b*R mod p } // Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x). // Uses variation of sliding-window algorithm from with window size // of 5 and least to most significant bit sliding (left-to-right) // See HAC 14.85 for general description. // // Allowed to overlap x with dest. // All values in Montgomery domains func p34(dest, x *Fp) { // Set dest = x^(2^k), for k >= 1, by repeated squarings. pow2k := func(dest, x *Fp, k uint8) { fpMulRdc(dest, x, x) for i := uint8(1); i < k; i++ { fpMulRdc(dest, dest, dest) } } // Sliding-window strategy computed with etc/scripts/sliding_window_strat_calc.py // // This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy) // multiplications. powStrategy := []uint8{1, 12, 5, 5, 2, 7, 11, 3, 8, 4, 11, 4, 7, 5, 6, 3, 7, 5, 7, 2, 12, 5, 6, 4, 6, 8, 6, 4, 7, 5, 5, 8, 5, 8, 5, 5, 8, 9, 3, 6, 2, 10, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3} mulStrategy := []uint8{0, 12, 11, 10, 0, 1, 8, 3, 7, 1, 8, 3, 6, 7, 14, 2, 14, 14, 9, 0, 13, 9, 15, 5, 12, 7, 13, 7, 15, 6, 7, 9, 0, 5, 7, 6, 8, 8, 3, 7, 0, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3} // Precompute lookup table of odd multiples of x for window // size k=5. lookup := [16]Fp{} var xx Fp fpMulRdc(&xx, x, x) lookup[0] = *x for i := 1; i < 16; i++ { fpMulRdc(&lookup[i], &lookup[i-1], &xx) } // Now lookup = {x, x^3, x^5, ... } // so that lookup[i] = x^{2*i + 1} // so that lookup[k/2] = x^k, for odd k *dest = lookup[mulStrategy[0]] for i := uint8(1); i < uint8(len(powStrategy)); i++ { pow2k(dest, dest, powStrategy[i]) fpMulRdc(dest, dest, &lookup[mulStrategy[i]]) } } func add(dest, lhs, rhs *Fp2) { fpAddRdc(&dest.A, &lhs.A, &rhs.A) fpAddRdc(&dest.B, &lhs.B, &rhs.B) } func sub(dest, lhs, rhs *Fp2) { fpSubRdc(&dest.A, &lhs.A, &rhs.A) fpSubRdc(&dest.B, &lhs.B, &rhs.B) } func mul(dest, lhs, rhs *Fp2) { // Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b). a := &lhs.A b := &lhs.B c := &rhs.A d := &rhs.B // We want to compute // // (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i // // Use Karatsuba's trick: note that // // (b - a)*(c - d) = (b*c + a*d) - a*c - b*d // // so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d. var ac, bd FpX2 fpMul(&ac, a, c) // = a*c*R*R fpMul(&bd, b, d) // = b*d*R*R var b_minus_a, c_minus_d Fp fpSubRdc(&b_minus_a, b, a) // = (b-a)*R fpSubRdc(&c_minus_d, c, d) // = (c-d)*R var ad_plus_bc FpX2 fpMul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R fp2Add(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R fp2Add(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R fpMontRdc(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p var ac_minus_bd FpX2 fp2Sub(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R fpMontRdc(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p } func inv(dest, x *Fp2) { var a2PlusB2 Fp var asq, bsq FpX2 var ac FpX2 var minusB Fp var minusBC FpX2 a := &x.A b := &x.B fpMul(&asq, a, a) // = a*a*R*R fpMul(&bsq, b, b) // = b*b*R*R fp2Add(&asq, &asq, &bsq) // = (a^2 + b^2)*R*R fpMontRdc(&a2PlusB2, &asq) // = (a^2 + b^2)*R mod p // Now a2PlusB2 = a^2 + b^2 inv := a2PlusB2 fpMulRdc(&inv, &a2PlusB2, &a2PlusB2) p34(&inv, &inv) fpMulRdc(&inv, &inv, &inv) fpMulRdc(&inv, &inv, &a2PlusB2) fpMul(&ac, a, &inv) fpMontRdc(&dest.A, &ac) fpSubRdc(&minusB, &minusB, b) fpMul(&minusBC, &minusB, &inv) fpMontRdc(&dest.B, &minusBC) } func sqr(dest, x *Fp2) { var a2, aPlusB, aMinusB Fp var a2MinB2, ab2 FpX2 a := &x.A b := &x.B // (a + bi)*(a + bi) = (a^2 - b^2) + 2abi. fpAddRdc(&a2, a, a) // = a*R + a*R = 2*a*R fpAddRdc(&aPlusB, a, b) // = a*R + b*R = (a+b)*R fpSubRdc(&aMinusB, a, b) // = a*R - b*R = (a-b)*R fpMul(&a2MinB2, &aPlusB, &aMinusB) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R fpMul(&ab2, &a2, b) // = 2*a*b*R*R fpMontRdc(&dest.A, &a2MinB2) // = (a^2 - b^2)*R mod p fpMontRdc(&dest.B, &ab2) // = 2*a*b*R mod p } // In case choice == 1, performs following swap in constant time: // xPx <-> xQx // xPz <-> xQz // Otherwise returns xPx, xPz, xQx, xQz unchanged func condSwap(xPx, xPz, xQx, xQz *Fp2, choice uint8) { fpSwapCond(&xPx.A, &xQx.A, choice) fpSwapCond(&xPx.B, &xQx.B, choice) fpSwapCond(&xPz.A, &xQz.A, choice) fpSwapCond(&xPz.B, &xQz.B, choice) }