package sike // Stores isogeny 3 curve constants type isogeny3 struct { K1 Fp2 K2 Fp2 } // Stores isogeny 4 curve constants type isogeny4 struct { isogeny3 K3 Fp2 } // Helper function for RightToLeftLadder(). Returns A+2C / 4. func calcAplus2Over4(cparams *ProjectiveCurveParameters) (ret Fp2) { var tmp Fp2 // 2C add(&tmp, &cparams.C, &cparams.C) // A+2C add(&ret, &cparams.A, &tmp) // 1/4C add(&tmp, &tmp, &tmp) inv(&tmp, &tmp) // A+2C/4C mul(&ret, &ret, &tmp) return } // Converts values in x.A and x.B to Montgomery domain // x.A = x.A * R mod p // x.B = x.B * R mod p // Performs v = v*R^2*R^(-1) mod p, for both x.A and x.B func toMontDomain(x *Fp2) { var aRR FpX2 // convert to montgomery domain fpMul(&aRR, &x.A, &pR2) // = a*R*R fpMontRdc(&x.A, &aRR) // = a*R mod p fpMul(&aRR, &x.B, &pR2) fpMontRdc(&x.B, &aRR) } // Converts values in x.A and x.B from Montgomery domain // a = x.A mod p // b = x.B mod p // // After returning from the call x is not modified. func fromMontDomain(x *Fp2, out *Fp2) { var aR FpX2 // convert from montgomery domain copy(aR[:], x.A[:]) fpMontRdc(&out.A, &aR) // = a mod p in [0, 2p) fpRdcP(&out.A) // = a mod p in [0, p) for i := range aR { aR[i] = 0 } copy(aR[:], x.B[:]) fpMontRdc(&out.B, &aR) fpRdcP(&out.B) } // Computes j-invariant for a curve y2=x3+A/Cx+x with A,C in F_(p^2). Result // is returned in 'j'. Implementation corresponds to Algorithm 9 from SIKE. func Jinvariant(cparams *ProjectiveCurveParameters, j *Fp2) { var t0, t1 Fp2 sqr(j, &cparams.A) // j = A^2 sqr(&t1, &cparams.C) // t1 = C^2 add(&t0, &t1, &t1) // t0 = t1 + t1 sub(&t0, j, &t0) // t0 = j - t0 sub(&t0, &t0, &t1) // t0 = t0 - t1 sub(j, &t0, &t1) // t0 = t0 - t1 sqr(&t1, &t1) // t1 = t1^2 mul(j, j, &t1) // j = j * t1 add(&t0, &t0, &t0) // t0 = t0 + t0 add(&t0, &t0, &t0) // t0 = t0 + t0 sqr(&t1, &t0) // t1 = t0^2 mul(&t0, &t0, &t1) // t0 = t0 * t1 add(&t0, &t0, &t0) // t0 = t0 + t0 add(&t0, &t0, &t0) // t0 = t0 + t0 inv(j, j) // j = 1/j mul(j, &t0, j) // j = t0 * j } // Given affine points x(P), x(Q) and x(Q-P) in a extension field F_{p^2}, function // recorvers projective coordinate A of a curve. This is Algorithm 10 from SIKE. func RecoverCoordinateA(curve *ProjectiveCurveParameters, xp, xq, xr *Fp2) { var t0, t1 Fp2 add(&t1, xp, xq) // t1 = Xp + Xq mul(&t0, xp, xq) // t0 = Xp * Xq mul(&curve.A, xr, &t1) // A = X(q-p) * t1 add(&curve.A, &curve.A, &t0) // A = A + t0 mul(&t0, &t0, xr) // t0 = t0 * X(q-p) sub(&curve.A, &curve.A, &Params.OneFp2) // A = A - 1 add(&t0, &t0, &t0) // t0 = t0 + t0 add(&t1, &t1, xr) // t1 = t1 + X(q-p) add(&t0, &t0, &t0) // t0 = t0 + t0 sqr(&curve.A, &curve.A) // A = A^2 inv(&t0, &t0) // t0 = 1/t0 mul(&curve.A, &curve.A, &t0) // A = A * t0 sub(&curve.A, &curve.A, &t1) // A = A - t1 } // Computes equivalence (A:C) ~ (A+2C : A-2C) func ToEquiv3(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv { var coef CurveCoefficientsEquiv var c2 Fp2 add(&c2, &cparams.C, &cparams.C) // A24p = A+2*C add(&coef.A, &cparams.A, &c2) // A24m = A-2*C sub(&coef.C, &cparams.A, &c2) return coef } // Recovers (A:C) curve parameters from projectively equivalent (A+2C:A-2C). func FromEquiv3(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) { add(&cparams.A, &coefEq.A, &coefEq.C) // cparams.A = 2*(A+2C+A-2C) = 4A add(&cparams.A, &cparams.A, &cparams.A) // cparams.C = (A+2C-A+2C) = 4C sub(&cparams.C, &coefEq.A, &coefEq.C) return } // Computes equivalence (A:C) ~ (A+2C : 4C) func ToEquiv4(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv { var coefEq CurveCoefficientsEquiv add(&coefEq.C, &cparams.C, &cparams.C) // A24p = A+2C add(&coefEq.A, &cparams.A, &coefEq.C) // C24 = 4*C add(&coefEq.C, &coefEq.C, &coefEq.C) return coefEq } // Recovers (A:C) curve parameters from projectively equivalent (A+2C:4C). func FromEquiv4(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) { // cparams.C = (4C)*1/2=2C mul(&cparams.C, &coefEq.C, &Params.HalfFp2) // cparams.A = A+2C - 2C = A sub(&cparams.A, &coefEq.A, &cparams.C) // cparams.C = 2C * 1/2 = C mul(&cparams.C, &cparams.C, &Params.HalfFp2) return } // Combined coordinate doubling and differential addition. Takes projective points // P,Q,Q-P and (A+2C)/4C curve E coefficient. Returns 2*P and P+Q calculated on E. // Function is used only by RightToLeftLadder. Corresponds to Algorithm 5 of SIKE func xDbladd(P, Q, QmP *ProjectivePoint, a24 *Fp2) (dblP, PaQ ProjectivePoint) { var t0, t1, t2 Fp2 xQmP, zQmP := &QmP.X, &QmP.Z xPaQ, zPaQ := &PaQ.X, &PaQ.Z x2P, z2P := &dblP.X, &dblP.Z xP, zP := &P.X, &P.Z xQ, zQ := &Q.X, &Q.Z add(&t0, xP, zP) // t0 = Xp+Zp sub(&t1, xP, zP) // t1 = Xp-Zp sqr(x2P, &t0) // 2P.X = t0^2 sub(&t2, xQ, zQ) // t2 = Xq-Zq add(xPaQ, xQ, zQ) // Xp+q = Xq+Zq mul(&t0, &t0, &t2) // t0 = t0 * t2 mul(z2P, &t1, &t1) // 2P.Z = t1 * t1 mul(&t1, &t1, xPaQ) // t1 = t1 * Xp+q sub(&t2, x2P, z2P) // t2 = 2P.X - 2P.Z mul(x2P, x2P, z2P) // 2P.X = 2P.X * 2P.Z mul(xPaQ, a24, &t2) // Xp+q = A24 * t2 sub(zPaQ, &t0, &t1) // Zp+q = t0 - t1 add(z2P, xPaQ, z2P) // 2P.Z = Xp+q + 2P.Z add(xPaQ, &t0, &t1) // Xp+q = t0 + t1 mul(z2P, z2P, &t2) // 2P.Z = 2P.Z * t2 sqr(zPaQ, zPaQ) // Zp+q = Zp+q ^ 2 sqr(xPaQ, xPaQ) // Xp+q = Xp+q ^ 2 mul(zPaQ, xQmP, zPaQ) // Zp+q = Xq-p * Zp+q mul(xPaQ, zQmP, xPaQ) // Xp+q = Zq-p * Xp+q return } // Given the curve parameters, xP = x(P), computes xP = x([2^k]P) // Safe to overlap xP, x2P. func Pow2k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) { var t0, t1 Fp2 x, z := &xP.X, &xP.Z for i := uint32(0); i < k; i++ { sub(&t0, x, z) // t0 = Xp - Zp add(&t1, x, z) // t1 = Xp + Zp sqr(&t0, &t0) // t0 = t0 ^ 2 sqr(&t1, &t1) // t1 = t1 ^ 2 mul(z, ¶ms.C, &t0) // Z2p = C24 * t0 mul(x, z, &t1) // X2p = Z2p * t1 sub(&t1, &t1, &t0) // t1 = t1 - t0 mul(&t0, ¶ms.A, &t1) // t0 = A24+ * t1 add(z, z, &t0) // Z2p = Z2p + t0 mul(z, z, &t1) // Zp = Z2p * t1 } } // Given the curve parameters, xP = x(P), and k >= 0, compute xP = x([3^k]P). // // Safe to overlap xP, xR. func Pow3k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) { var t0, t1, t2, t3, t4, t5, t6 Fp2 x, z := &xP.X, &xP.Z for i := uint32(0); i < k; i++ { sub(&t0, x, z) // t0 = Xp - Zp sqr(&t2, &t0) // t2 = t0^2 add(&t1, x, z) // t1 = Xp + Zp sqr(&t3, &t1) // t3 = t1^2 add(&t4, &t1, &t0) // t4 = t1 + t0 sub(&t0, &t1, &t0) // t0 = t1 - t0 sqr(&t1, &t4) // t1 = t4^2 sub(&t1, &t1, &t3) // t1 = t1 - t3 sub(&t1, &t1, &t2) // t1 = t1 - t2 mul(&t5, &t3, ¶ms.A) // t5 = t3 * A24+ mul(&t3, &t3, &t5) // t3 = t5 * t3 mul(&t6, &t2, ¶ms.C) // t6 = t2 * A24- mul(&t2, &t2, &t6) // t2 = t2 * t6 sub(&t3, &t2, &t3) // t3 = t2 - t3 sub(&t2, &t5, &t6) // t2 = t5 - t6 mul(&t1, &t2, &t1) // t1 = t2 * t1 add(&t2, &t3, &t1) // t2 = t3 + t1 sqr(&t2, &t2) // t2 = t2^2 mul(x, &t2, &t4) // X3p = t2 * t4 sub(&t1, &t3, &t1) // t1 = t3 - t1 sqr(&t1, &t1) // t1 = t1^2 mul(z, &t1, &t0) // Z3p = t1 * t0 } } // Set (y1, y2, y3) = (1/x1, 1/x2, 1/x3). // // All xi, yi must be distinct. func Fp2Batch3Inv(x1, x2, x3, y1, y2, y3 *Fp2) { var x1x2, t Fp2 mul(&x1x2, x1, x2) // x1*x2 mul(&t, &x1x2, x3) // 1/(x1*x2*x3) inv(&t, &t) mul(y1, &t, x2) // 1/x1 mul(y1, y1, x3) mul(y2, &t, x1) // 1/x2 mul(y2, y2, x3) mul(y3, &t, &x1x2) // 1/x3 } // ScalarMul3Pt is a right-to-left point multiplication that given the // x-coordinate of P, Q and P-Q calculates the x-coordinate of R=Q+[scalar]P. // nbits must be smaller or equal to len(scalar). func ScalarMul3Pt(cparams *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint, nbits uint, scalar []uint8) ProjectivePoint { var R0, R2, R1 ProjectivePoint aPlus2Over4 := calcAplus2Over4(cparams) R1 = *P R2 = *PmQ R0 = *Q // Iterate over the bits of the scalar, bottom to top prevBit := uint8(0) for i := uint(0); i < nbits; i++ { bit := (scalar[i>>3] >> (i & 7) & 1) swap := prevBit ^ bit prevBit = bit condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, swap) R0, R2 = xDbladd(&R0, &R2, &R1, &aPlus2Over4) } condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, prevBit) return R1 } // Given a three-torsion point p = x(PB) on the curve E_(A:C), construct the // three-isogeny phi : E_(A:C) -> E_(A:C)/ = E_(A':C'). // // Input: (XP_3: ZP_3), where P_3 has exact order 3 on E_A/C // Output: * Curve coordinates (A' + 2C', A' - 2C') corresponding to E_A'/C' = A_E/C/ // * isogeny phi with constants in F_p^2 func (phi *isogeny3) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv { var t0, t1, t2, t3, t4 Fp2 var coefEq CurveCoefficientsEquiv var K1, K2 = &phi.K1, &phi.K2 sub(K1, &p.X, &p.Z) // K1 = XP3 - ZP3 sqr(&t0, K1) // t0 = K1^2 add(K2, &p.X, &p.Z) // K2 = XP3 + ZP3 sqr(&t1, K2) // t1 = K2^2 add(&t2, &t0, &t1) // t2 = t0 + t1 add(&t3, K1, K2) // t3 = K1 + K2 sqr(&t3, &t3) // t3 = t3^2 sub(&t3, &t3, &t2) // t3 = t3 - t2 add(&t2, &t1, &t3) // t2 = t1 + t3 add(&t3, &t3, &t0) // t3 = t3 + t0 add(&t4, &t3, &t0) // t4 = t3 + t0 add(&t4, &t4, &t4) // t4 = t4 + t4 add(&t4, &t1, &t4) // t4 = t1 + t4 mul(&coefEq.C, &t2, &t4) // A24m = t2 * t4 add(&t4, &t1, &t2) // t4 = t1 + t2 add(&t4, &t4, &t4) // t4 = t4 + t4 add(&t4, &t0, &t4) // t4 = t0 + t4 mul(&t4, &t3, &t4) // t4 = t3 * t4 sub(&t0, &t4, &coefEq.C) // t0 = t4 - A24m add(&coefEq.A, &coefEq.C, &t0) // A24p = A24m + t0 return coefEq } // Given a 3-isogeny phi and a point pB = x(PB), compute x(QB), the x-coordinate // of the image QB = phi(PB) of PB under phi : E_(A:C) -> E_(A':C'). // // The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve // parameters are returned by the GenerateCurve function used to construct phi. func (phi *isogeny3) EvaluatePoint(p *ProjectivePoint) ProjectivePoint { var t0, t1, t2 Fp2 var q ProjectivePoint var K1, K2 = &phi.K1, &phi.K2 var px, pz = &p.X, &p.Z add(&t0, px, pz) // t0 = XQ + ZQ sub(&t1, px, pz) // t1 = XQ - ZQ mul(&t0, K1, &t0) // t2 = K1 * t0 mul(&t1, K2, &t1) // t1 = K2 * t1 add(&t2, &t0, &t1) // t2 = t0 + t1 sub(&t0, &t1, &t0) // t0 = t1 - t0 sqr(&t2, &t2) // t2 = t2 ^ 2 sqr(&t0, &t0) // t0 = t0 ^ 2 mul(&q.X, px, &t2) // XQ'= XQ * t2 mul(&q.Z, pz, &t0) // ZQ'= ZQ * t0 return q } // Given a four-torsion point p = x(PB) on the curve E_(A:C), construct the // four-isogeny phi : E_(A:C) -> E_(A:C)/ = E_(A':C'). // // Input: (XP_4: ZP_4), where P_4 has exact order 4 on E_A/C // Output: * Curve coordinates (A' + 2C', 4C') corresponding to E_A'/C' = A_E/C/ // * isogeny phi with constants in F_p^2 func (phi *isogeny4) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv { var coefEq CurveCoefficientsEquiv var xp4, zp4 = &p.X, &p.Z var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3 sub(K2, xp4, zp4) add(K3, xp4, zp4) sqr(K1, zp4) add(K1, K1, K1) sqr(&coefEq.C, K1) add(K1, K1, K1) sqr(&coefEq.A, xp4) add(&coefEq.A, &coefEq.A, &coefEq.A) sqr(&coefEq.A, &coefEq.A) return coefEq } // Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate // of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C'). // // Input: isogeny returned by GenerateCurve and point q=(Qx,Qz) from E0_A/C // Output: Corresponding point q from E1_A'/C', where E1 is 4-isogenous to E0 func (phi *isogeny4) EvaluatePoint(p *ProjectivePoint) ProjectivePoint { var t0, t1 Fp2 var q = *p var xq, zq = &q.X, &q.Z var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3 add(&t0, xq, zq) sub(&t1, xq, zq) mul(xq, &t0, K2) mul(zq, &t1, K3) mul(&t0, &t0, &t1) mul(&t0, &t0, K1) add(&t1, xq, zq) sub(zq, xq, zq) sqr(&t1, &t1) sqr(zq, zq) add(xq, &t0, &t1) sub(&t0, zq, &t0) mul(xq, xq, &t1) mul(zq, zq, &t0) return q }