package sidh import ( . "github.com/henrydcase/nobs/dh/sidh/internal/isogeny" ) // ----------------------------------------------------------------------------- // Functions for traversing isogeny trees acoording to strategy. Key type 'A' is // // Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed // for public key generation. func traverseTreePublicKeyA(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sidx int var op = CurveOperations{Params: pub.params} cparam := op.CalcCurveParamsEquiv4(curve) phi := Newisogeny4(op.Params.Op) strat := pub.params.A.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sidx] sidx++ op.Pow2k(xR, &cparam, 2*k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } *phiP = phi.EvaluatePoint(phiP) *phiQ = phi.EvaluatePoint(phiQ) *phiR = phi.EvaluatePoint(phiR) // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Traverses isogeny tree in order to compute xR needed // for public key generation. func traverseTreeSharedKeyA(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sidx int var op = CurveOperations{Params: pub.params} cparam := op.CalcCurveParamsEquiv4(curve) phi := Newisogeny4(op.Params.Op) strat := pub.params.A.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sidx] sidx++ op.Pow2k(xR, &cparam, 2*k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed // for public key generation. func traverseTreePublicKeyB(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sidx int var op = CurveOperations{Params: pub.params} cparam := op.CalcCurveParamsEquiv3(curve) phi := Newisogeny3(op.Params.Op) strat := pub.params.B.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sidx] sidx++ op.Pow3k(xR, &cparam, k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } *phiP = phi.EvaluatePoint(phiP) *phiQ = phi.EvaluatePoint(phiQ) *phiR = phi.EvaluatePoint(phiR) // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed // for public key generation. func traverseTreeSharedKeyB(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sidx int var op = CurveOperations{Params: pub.params} cparam := op.CalcCurveParamsEquiv3(curve) phi := Newisogeny3(op.Params.Op) strat := pub.params.B.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sidx] sidx++ op.Pow3k(xR, &cparam, k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Generate a public key in the 2-torsion group func publicKeyGenA(prv *PrivateKey) (pub *PublicKey) { var xPA, xQA, xRA ProjectivePoint var xPB, xQB, xRB, xR ProjectivePoint var invZP, invZQ, invZR Fp2Element var tmp ProjectiveCurveParameters pub = NewPublicKey(prv.params.Id, KeyVariant_SIDH_A) var op = CurveOperations{Params: pub.params} var phi = Newisogeny4(op.Params.Op) // Load points for A xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2} xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2} xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2} // Load points for B xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2} xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2} xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2} // Find isogeny kernel tmp.C = pub.params.OneFp2 xR = op.ScalarMul3Pt(&tmp, &xPA, &xQA, &xRA, prv.params.A.SecretBitLen, prv.Scalar) // Reset params object and travers isogeny tree tmp.C = pub.params.OneFp2 tmp.A.Zeroize() traverseTreePublicKeyA(&tmp, &xR, &xPB, &xQB, &xRB, pub) // Secret isogeny phi.GenerateCurve(&xR) xPA = phi.EvaluatePoint(&xPB) xQA = phi.EvaluatePoint(&xQB) xRA = phi.EvaluatePoint(&xRB) op.Fp2Batch3Inv(&xPA.Z, &xQA.Z, &xRA.Z, &invZP, &invZQ, &invZR) op.Params.Op.Mul(&pub.affine_xP, &xPA.X, &invZP) op.Params.Op.Mul(&pub.affine_xQ, &xQA.X, &invZQ) op.Params.Op.Mul(&pub.affine_xQmP, &xRA.X, &invZR) return } // Generate a public key in the 3-torsion group func publicKeyGenB(prv *PrivateKey) (pub *PublicKey) { var xPB, xQB, xRB, xR ProjectivePoint var xPA, xQA, xRA ProjectivePoint var invZP, invZQ, invZR Fp2Element var tmp ProjectiveCurveParameters pub = NewPublicKey(prv.params.Id, prv.keyVariant) var op = CurveOperations{Params: pub.params} var phi = Newisogeny3(op.Params.Op) // Load points for B xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2} xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2} xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2} // Load points for A xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2} xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2} xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2} tmp.C = pub.params.OneFp2 xR = op.ScalarMul3Pt(&tmp, &xPB, &xQB, &xRB, prv.params.B.SecretBitLen, prv.Scalar) tmp.C = pub.params.OneFp2 tmp.A.Zeroize() traverseTreePublicKeyB(&tmp, &xR, &xPA, &xQA, &xRA, pub) phi.GenerateCurve(&xR) xPB = phi.EvaluatePoint(&xPA) xQB = phi.EvaluatePoint(&xQA) xRB = phi.EvaluatePoint(&xRA) op.Fp2Batch3Inv(&xPB.Z, &xQB.Z, &xRB.Z, &invZP, &invZQ, &invZR) op.Params.Op.Mul(&pub.affine_xP, &xPB.X, &invZP) op.Params.Op.Mul(&pub.affine_xQ, &xQB.X, &invZQ) op.Params.Op.Mul(&pub.affine_xQmP, &xRB.X, &invZR) return } // ----------------------------------------------------------------------------- // Key agreement functions // // Establishing shared keys in in 2-torsion group func deriveSecretA(prv *PrivateKey, pub *PublicKey) []byte { var sharedSecret = make([]byte, pub.params.SharedSecretSize) var cparam ProjectiveCurveParameters var xP, xQ, xQmP ProjectivePoint var xR ProjectivePoint var op = CurveOperations{Params: prv.params} var phi = Newisogeny4(op.Params.Op) // Recover curve coefficients cparam.C = pub.params.OneFp2 op.RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP) // Find kernel of the morphism xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2} xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2} xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2} xR = op.ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.A.SecretBitLen, prv.Scalar) // Traverse isogeny tree traverseTreeSharedKeyA(&cparam, &xR, pub) // Calculate j-invariant on isogeneus curve c := phi.GenerateCurve(&xR) op.RecoverCurveCoefficients4(&cparam, &c) op.Jinvariant(&cparam, sharedSecret) return sharedSecret } // Establishing shared keys in in 3-torsion group func deriveSecretB(prv *PrivateKey, pub *PublicKey) []byte { var sharedSecret = make([]byte, pub.params.SharedSecretSize) var xP, xQ, xQmP ProjectivePoint var xR ProjectivePoint var cparam ProjectiveCurveParameters var op = CurveOperations{Params: prv.params} var phi = Newisogeny3(op.Params.Op) // Recover curve coefficients cparam.C = pub.params.OneFp2 op.RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP) // Find kernel of the morphism xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2} xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2} xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2} xR = op.ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.B.SecretBitLen, prv.Scalar) // Traverse isogeny tree traverseTreeSharedKeyB(&cparam, &xR, pub) // Calculate j-invariant on isogeneus curve c := phi.GenerateCurve(&xR) op.RecoverCurveCoefficients3(&cparam, &c) op.Jinvariant(&cparam, sharedSecret) return sharedSecret }