package sidh import ( "errors" . "github.com/henrydcase/nobs/dh/sidh/internal" "io" ) // I keep it bool in order to be able to apply logical NOT type KeyVariant uint type PrimeFieldId uint // Id's correspond to bitlength of the prime field characteristic // Currently FP_751 is the only one supported by this implementation const ( FP_503 PrimeFieldId = iota FP_751 FP_964 maxPrimeFieldId ) const ( // First 2 bits identify SIDH variant third bit indicates // wether key is a SIKE variant (set) or SIDH (not set) // 001 - SIDH: corresponds to 2-torsion group KeyVariant_SIDH_A KeyVariant = 1 << 0 // 010 - SIDH: corresponds to 3-torsion group KeyVariant_SIDH_B = 1 << 1 // 110 - SIKE KeyVariant_SIKE = 1<<2 | KeyVariant_SIDH_B ) // Base type for public and private key. Used mainly to carry domain // parameters. type key struct { // Domain parameters of the algorithm to be used with a key params *SidhParams // Flag indicates wether corresponds to 2-, 3-torsion group or SIKE keyVariant KeyVariant } // Defines operations on public key type PublicKey struct { key affine_xP ExtensionFieldElement affine_xQ ExtensionFieldElement affine_xQmP ExtensionFieldElement } // Defines operations on private key type PrivateKey struct { key // Secret key Scalar []byte // Used only by KEM S []byte } // Accessor to the domain parameters func (key *key) Params() *SidhParams { return key.params } // Accessor to key variant func (key *key) Variant() KeyVariant { return key.keyVariant } // NewPrivateKey initializes private key. // Usage of this function guarantees that the object is correctly initialized. func NewPrivateKey(id PrimeFieldId, v KeyVariant) *PrivateKey { prv := &PrivateKey{key: key{params: Params(id), keyVariant: v}} prv.Scalar = make([]byte, prv.params.SecretKeySize) if v == KeyVariant_SIKE { prv.S = make([]byte, prv.params.MsgLen) } return prv } // NewPublicKey initializes public key. // Usage of this function guarantees that the object is correctly initialized. func NewPublicKey(id PrimeFieldId, v KeyVariant) *PublicKey { return &PublicKey{key: key{params: Params(id), keyVariant: v}} } // Import clears content of the public key currently stored in the structure // and imports key stored in the byte string. Returns error in case byte string // size is wrong. Doesn't perform any validation. func (pub *PublicKey) Import(input []byte) error { if len(input) != pub.Size() { return errors.New("sidh: input to short") } pub.affine_xP.FromBytes(input[0:pub.params.SharedSecretSize]) pub.affine_xQ.FromBytes(input[pub.params.SharedSecretSize : 2*pub.params.SharedSecretSize]) pub.affine_xQmP.FromBytes(input[2*pub.params.SharedSecretSize : 3*pub.params.SharedSecretSize]) return nil } // Exports currently stored key. In case structure hasn't been filled with key data // returned byte string is filled with zeros. func (pub *PublicKey) Export() []byte { output := make([]byte, pub.params.PublicKeySize) pub.affine_xP.ToBytes(output[0:pub.params.SharedSecretSize]) pub.affine_xQ.ToBytes(output[pub.params.SharedSecretSize : 2*pub.params.SharedSecretSize]) pub.affine_xQmP.ToBytes(output[2*pub.params.SharedSecretSize : 3*pub.params.SharedSecretSize]) return output } // Size returns size of the public key in bytes func (pub *PublicKey) Size() int { return pub.params.PublicKeySize } // Exports currently stored key. In case structure hasn't been filled with key data // returned byte string is filled with zeros. func (prv *PrivateKey) Export() []byte { ret := make([]byte, len(prv.Scalar)+len(prv.S)) copy(ret, prv.S) copy(ret[len(prv.S):], prv.Scalar) return ret } // Size returns size of the private key in bytes func (prv *PrivateKey) Size() int { tmp := prv.params.SecretKeySize if prv.Variant() == KeyVariant_SIKE { tmp += int(prv.params.MsgLen) } return tmp } // Import clears content of the private key currently stored in the structure // and imports key from octet string. In case of SIKE, the random value 'S' // must be prepended to the value of actual private key (see SIKE spec for details). // Function doesn't import public key value to PrivateKey object. func (prv *PrivateKey) Import(input []byte) error { if len(input) != prv.Size() { return errors.New("sidh: input to short") } if len(prv.Scalar) != prv.params.SecretKeySize { return errors.New("sidh: object wrongly initialized") } copy(prv.S, input[:len(prv.S)]) copy(prv.Scalar, input[len(prv.S):]) return nil } // Generates random private key for SIDH or SIKE. Returns error // in case user provided RNG or memory initialization fails. func (prv *PrivateKey) Generate(rand io.Reader) error { var err error if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A { err = prv.generatePrivateKeyA(rand) } else { err = prv.generatePrivateKeyB(rand) } if prv.keyVariant == KeyVariant_SIKE && err == nil { _, err = io.ReadFull(rand, prv.S) } return err } // Generates public key corresponding to prv. KeyVariant of generated public key // is same as PrivateKey. Fails only if prv was wrongly initialized. func GeneratePublicKey(prv *PrivateKey) (*PublicKey, error) { if prv == nil { return nil, errors.New("sidh: invalid arguments") } if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A { return publicKeyGenA(prv), nil } else { return publicKeyGenB(prv), nil } } // Computes a shared secret. Function requires that pub has different KeyVariant than // prv. // // Function returns shared secret that can be used as a symmetric key. It's important // to notice that each keypair must not be used more than once to calculate // shared secret. // // Function may return error. This happens only in case provided input is invalid. func DeriveSecret(prv *PrivateKey, pub *PublicKey) ([]byte, error) { if (pub == nil) || (prv == nil) { return nil, errors.New("sidh: invalid arguments") } if (pub.keyVariant == prv.keyVariant) || (pub.params.Id != prv.params.Id) { return nil, errors.New("sidh: public and private are incompatbile") } if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A { return deriveSecretA(prv, pub), nil } else { return deriveSecretB(prv, pub), nil } }