// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package shake import "hash" // spongeDirection indicates the direction bytes are flowing through the sponge. type spongeDirection int const ( // spongeAbsorbing indicates that the sponge is absorbing input. spongeAbsorbing spongeDirection = iota // spongeSqueezing indicates that the sponge is being squeezed. spongeSqueezing ) const ( // maxRate is the maximum size of the internal buffer. SHAKE-256 // currently needs the largest buffer. maxRate = 168 ) type state struct { // Generic sponge components. a [25]uint64 // main state of the hash buf []byte // points into storage rate int // the number of bytes of state to use // dsbyte contains the "domain separation" bits and the first bit of // the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the // SHA-3 and SHAKE functions by appending bitstrings to the message. // Using a little-endian bit-ordering convention, these are "01" for SHA-3 // and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the // padding rule from section 5.1 is applied to pad the message to a multiple // of the rate, which involves adding a "1" bit, zero or more "0" bits, and // a final "1" bit. We merge the first "1" bit from the padding into dsbyte, // giving 00000110b (0x06) and 00011111b (0x1f). // [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf // "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and // Extendable-Output Functions (May 2014)" dsbyte byte storage [maxRate]byte // Specific to SHA-3 and SHAKE. outputLen int // the default output size in bytes state spongeDirection // whether the sponge is absorbing or squeezing } // BlockSize returns the rate of sponge underlying this hash function. func (d *state) BlockSize() int { return d.rate } // Size returns the output size of the hash function in bytes. func (d *state) Size() int { return d.outputLen } // Reset clears the internal state by zeroing the sponge state and // the byte buffer, and setting Sponge.state to absorbing. func (d *state) Reset() { // Zero the permutation's state. for i := range d.a { d.a[i] = 0 } d.state = spongeAbsorbing d.buf = d.storage[:0] } func (d *state) clone() *state { ret := *d if ret.state == spongeAbsorbing { ret.buf = ret.storage[:len(ret.buf)] } else { ret.buf = ret.storage[d.rate-cap(d.buf) : d.rate] } return &ret } // permute applies the KeccakF-1600 permutation. It handles // any input-output buffering. func (d *state) permute() { switch d.state { case spongeAbsorbing: // If we're absorbing, we need to xor the input into the state // before applying the permutation. xorInUnaligned(d, d.buf) d.buf = d.storage[:0] keccakF1600(&d.a) case spongeSqueezing: // If we're squeezing, we need to apply the permutatin before // copying more output. keccakF1600(&d.a) d.buf = d.storage[:d.rate] copyOutUnaligned(d, d.buf) } } // pads appends the domain separation bits in dsbyte, applies // the multi-bitrate 10..1 padding rule, and permutes the state. func (d *state) padAndPermute(dsbyte byte) { if d.buf == nil { d.buf = d.storage[:0] } // Pad with this instance's domain-separator bits. We know that there's // at least one byte of space in d.buf because, if it were full, // permute would have been called to empty it. dsbyte also contains the // first one bit for the padding. See the comment in the state struct. d.buf = append(d.buf, dsbyte) zerosStart := len(d.buf) d.buf = d.storage[:d.rate] for i := zerosStart; i < d.rate; i++ { d.buf[i] = 0 } // This adds the final one bit for the padding. Because of the way that // bits are numbered from the LSB upwards, the final bit is the MSB of // the last byte. d.buf[d.rate-1] ^= 0x80 // Apply the permutation d.permute() d.state = spongeSqueezing d.buf = d.storage[:d.rate] copyOutUnaligned(d, d.buf) } // Write absorbs more data into the hash's state. It produces an error // if more data is written to the ShakeHash after writing func (d *state) Write(p []byte) (written int, err error) { if d.state != spongeAbsorbing { panic("sha3: write to sponge after read") } if d.buf == nil { d.buf = d.storage[:0] } written = len(p) for len(p) > 0 { if len(d.buf) == 0 && len(p) >= d.rate { // The fast path; absorb a full "rate" bytes of input and apply the permutation. xorInUnaligned(d, p[:d.rate]) p = p[d.rate:] keccakF1600(&d.a) } else { // The slow path; buffer the input until we can fill the sponge, and then xor it in. todo := d.rate - len(d.buf) if todo > len(p) { todo = len(p) } d.buf = append(d.buf, p[:todo]...) p = p[todo:] // If the sponge is full, apply the permutation. if len(d.buf) == d.rate { d.permute() } } } return } // Read squeezes an arbitrary number of bytes from the sponge. func (d *state) Read(out []byte) (n int, err error) { // If we're still absorbing, pad and apply the permutation. if d.state == spongeAbsorbing { d.padAndPermute(d.dsbyte) } n = len(out) // Now, do the squeezing. for len(out) > 0 { n := copy(out, d.buf) d.buf = d.buf[n:] out = out[n:] // Apply the permutation if we've squeezed the sponge dry. if len(d.buf) == 0 { d.permute() } } return } // Sum applies padding to the hash state and then squeezes out the desired // number of output bytes. func (d *state) Sum(in []byte) []byte { // Make a copy of the original hash so that caller can keep writing // and summing. dup := d.clone() hash := make([]byte, dup.outputLen) dup.Read(hash) return append(in, hash...) } // Only use this function if you require compatibility with an existing cryptosystem // that uses non-standard padding. All other users should use New256 instead. func NewLegacyKeccak256() hash.Hash { return &state{rate: 136, outputLen: 32, dsbyte: 0x01} }