// Code generated by go generate; DO NOT EDIT. // This file was generated by robots. package p434 import ( "bytes" "testing" . "github.com/henrydcase/nobs/dh/sidh/internal/common" ) func vartimeEqProjFp2(lhs, rhs *ProjectivePoint) bool { var t0, t1 Fp2 mul(&t0, &lhs.X, &rhs.Z) mul(&t1, &lhs.Z, &rhs.X) return vartimeEqFp2(&t0, &t1) } func toAffine(point *ProjectivePoint) *Fp2 { var affineX Fp2 inv(&affineX, &point.Z) mul(&affineX, &affineX, &point.X) return &affineX } func Test_jInvariant(t *testing.T) { var curve = ProjectiveCurveParameters{A: curveA, C: curveC} var jbufRes = make([]byte, params.SharedSecretSize) var jbufExp = make([]byte, params.SharedSecretSize) var jInv Fp2 Jinvariant(&curve, &jInv) FromMontgomery(&jInv, &jInv) Fp2ToBytes(jbufRes, &jInv, params.Bytelen) jInv = expectedJ FromMontgomery(&jInv, &jInv) Fp2ToBytes(jbufExp, &jInv, params.Bytelen) if !bytes.Equal(jbufRes[:], jbufExp[:]) { t.Error("Computed incorrect j-invariant: found\n", jbufRes, "\nexpected\n", jbufExp) } } func TestProjectivePointVartimeEq(t *testing.T) { var xP ProjectivePoint xP = ProjectivePoint{X: affineXP, Z: params.OneFp2} xQ := xP // Scale xQ, which results in the same projective point mul(&xQ.X, &xQ.X, &curveA) mul(&xQ.Z, &xQ.Z, &curveA) if !vartimeEqProjFp2(&xP, &xQ) { t.Error("Expected the scaled point to be equal to the original") } } func TestPointMulVersusSage(t *testing.T) { var curve = ProjectiveCurveParameters{A: curveA, C: curveC} var cparams = CalcCurveParamsEquiv4(&curve) var xP ProjectivePoint // x 2 xP = ProjectivePoint{X: affineXP, Z: params.OneFp2} Pow2k(&xP, &cparams, 1) afxQ := toAffine(&xP) if !vartimeEqFp2(afxQ, &affineXP2) { t.Error("\nExpected\n", affineXP2, "\nfound\n", afxQ) } // x 4 xP = ProjectivePoint{X: affineXP, Z: params.OneFp2} Pow2k(&xP, &cparams, 2) afxQ = toAffine(&xP) if !vartimeEqFp2(afxQ, &affineXP4) { t.Error("\nExpected\n", affineXP4, "\nfound\n", afxQ) } } func TestPointMul9VersusSage(t *testing.T) { var curve = ProjectiveCurveParameters{A: curveA, C: curveC} var cparams = CalcCurveParamsEquiv3(&curve) var xP ProjectivePoint xP = ProjectivePoint{X: affineXP, Z: params.OneFp2} Pow3k(&xP, &cparams, 2) afxQ := toAffine(&xP) if !vartimeEqFp2(afxQ, &affineXP9) { t.Error("\nExpected\n", affineXP9, "\nfound\n", afxQ) } } func BenchmarkThreePointLadder(b *testing.B) { var curve = ProjectiveCurveParameters{A: curveA, C: curveC} for n := 0; n < b.N; n++ { ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(scalar3Pt)*8), scalar3Pt[:]) } }