package internal //------------------------------------------------------------------------------ // Extension Field //------------------------------------------------------------------------------ // Represents an element of the extension field F_{p^2}. type ExtensionFieldElement struct { // This field element is in Montgomery form, so that the value `A` is // represented by `aR mod p`. A Fp751Element // This field element is in Montgomery form, so that the value `B` is // represented by `bR mod p`. B Fp751Element } var zeroExtensionField = ExtensionFieldElement{ A: Fp751Element{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, B: Fp751Element{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, } var oneExtensionField = ExtensionFieldElement{ A: Fp751Element{0x249ad, 0x0, 0x0, 0x0, 0x0, 0x8310000000000000, 0x5527b1e4375c6c66, 0x697797bf3f4f24d0, 0xc89db7b2ac5c4e2e, 0x4ca4b439d2076956, 0x10f7926c7512c7e9, 0x2d5b24bce5e2}, B: Fp751Element{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, } // 2*p751 var p751x2 = Fp751Element{ 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xDD5FFFFFFFFFFFFF, 0xC7D92D0A93F0F151, 0xB52B363427EF98ED, 0x109D30CFADD7D0ED, 0x0AC56A08B964AE90, 0x1C25213F2F75B8CD, 0x0000DFCBAA83EE38} // p751 var p751 = Fp751Element{ 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xeeafffffffffffff, 0xe3ec968549f878a8, 0xda959b1a13f7cc76, 0x084e9867d6ebe876, 0x8562b5045cb25748, 0x0e12909f97badc66, 0x00006fe5d541f71c} // p751 + 1 var p751p1 = Fp751Element{ 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0xeeb0000000000000, 0xe3ec968549f878a8, 0xda959b1a13f7cc76, 0x084e9867d6ebe876, 0x8562b5045cb25748, 0x0e12909f97badc66, 0x00006fe5d541f71c} // Set dest = 0. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Zero() *ExtensionFieldElement { *dest = zeroExtensionField return dest } // Set dest = 1. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) One() *ExtensionFieldElement { *dest = oneExtensionField return dest } // Set dest = lhs * rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Mul(lhs, rhs *ExtensionFieldElement) *ExtensionFieldElement { // Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b). a := &lhs.A b := &lhs.B c := &rhs.A d := &rhs.B // We want to compute // // (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i // // Use Karatsuba's trick: note that // // (b - a)*(c - d) = (b*c + a*d) - a*c - b*d // // so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d. var ac, bd fp751X2 fp751Mul(&ac, a, c) // = a*c*R*R fp751Mul(&bd, b, d) // = b*d*R*R var b_minus_a, c_minus_d Fp751Element fp751SubReduced(&b_minus_a, b, a) // = (b-a)*R fp751SubReduced(&c_minus_d, c, d) // = (c-d)*R var ad_plus_bc fp751X2 fp751Mul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R fp751X2AddLazy(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R fp751X2AddLazy(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R fp751MontgomeryReduce(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p var ac_minus_bd fp751X2 fp751X2SubLazy(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R fp751MontgomeryReduce(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p return dest } // Set dest = -x // // Allowed to overlap dest with x. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Neg(x *ExtensionFieldElement) *ExtensionFieldElement { dest.Sub(&zeroExtensionField, x) return dest } // Set dest = 1/x // // Allowed to overlap dest with x. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Inv(x *ExtensionFieldElement) *ExtensionFieldElement { a := &x.A b := &x.B // We want to compute // // 1 1 (a - bi) (a - bi) // -------- = -------- -------- = ----------- // (a + bi) (a + bi) (a - bi) (a^2 + b^2) // // Letting c = 1/(a^2 + b^2), this is // // 1/(a+bi) = a*c - b*ci. var asq_plus_bsq PrimeFieldElement var asq, bsq fp751X2 fp751Mul(&asq, a, a) // = a*a*R*R fp751Mul(&bsq, b, b) // = b*b*R*R fp751X2AddLazy(&asq, &asq, &bsq) // = (a^2 + b^2)*R*R fp751MontgomeryReduce(&asq_plus_bsq.A, &asq) // = (a^2 + b^2)*R mod p // Now asq_plus_bsq = a^2 + b^2 var asq_plus_bsq_inv PrimeFieldElement asq_plus_bsq_inv.Inv(&asq_plus_bsq) c := &asq_plus_bsq_inv.A var ac fp751X2 fp751Mul(&ac, a, c) fp751MontgomeryReduce(&dest.A, &ac) var minus_b Fp751Element fp751SubReduced(&minus_b, &minus_b, b) var minus_bc fp751X2 fp751Mul(&minus_bc, &minus_b, c) fp751MontgomeryReduce(&dest.B, &minus_bc) return dest } // Set (y1, y2, y3) = (1/x1, 1/x2, 1/x3). // // All xi, yi must be distinct. func ExtensionFieldBatch3Inv(x1, x2, x3, y1, y2, y3 *ExtensionFieldElement) { var x1x2, t ExtensionFieldElement x1x2.Mul(x1, x2) // x1*x2 t.Mul(&x1x2, x3).Inv(&t) // 1/(x1*x2*x3) y1.Mul(&t, x2).Mul(y1, x3) // 1/x1 y2.Mul(&t, x1).Mul(y2, x3) // 1/x2 y3.Mul(&t, &x1x2) // 1/x3 } // Set dest = x * x // // Allowed to overlap dest with x. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Square(x *ExtensionFieldElement) *ExtensionFieldElement { a := &x.A b := &x.B // We want to compute // // (a + bi)*(a + bi) = (a^2 - b^2) + 2abi. var a2, a_plus_b, a_minus_b Fp751Element fp751AddReduced(&a2, a, a) // = a*R + a*R = 2*a*R fp751AddReduced(&a_plus_b, a, b) // = a*R + b*R = (a+b)*R fp751SubReduced(&a_minus_b, a, b) // = a*R - b*R = (a-b)*R var asq_minus_bsq, ab2 fp751X2 fp751Mul(&asq_minus_bsq, &a_plus_b, &a_minus_b) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R fp751Mul(&ab2, &a2, b) // = 2*a*b*R*R fp751MontgomeryReduce(&dest.A, &asq_minus_bsq) // = (a^2 - b^2)*R mod p fp751MontgomeryReduce(&dest.B, &ab2) // = 2*a*b*R mod p return dest } // Set dest = lhs + rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Add(lhs, rhs *ExtensionFieldElement) *ExtensionFieldElement { fp751AddReduced(&dest.A, &lhs.A, &rhs.A) fp751AddReduced(&dest.B, &lhs.B, &rhs.B) return dest } // Set dest = lhs - rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *ExtensionFieldElement) Sub(lhs, rhs *ExtensionFieldElement) *ExtensionFieldElement { fp751SubReduced(&dest.A, &lhs.A, &rhs.A) fp751SubReduced(&dest.B, &lhs.B, &rhs.B) return dest } // If choice = 1u8, set (x,y) = (y,x). If choice = 0u8, set (x,y) = (x,y). // // Returns dest to allow chaining operations. func ExtensionFieldConditionalSwap(x, y *ExtensionFieldElement, choice uint8) { fp751ConditionalSwap(&x.A, &y.A, choice) fp751ConditionalSwap(&x.B, &y.B, choice) } // Returns true if lhs = rhs. Takes variable time. func (lhs *ExtensionFieldElement) VartimeEq(rhs *ExtensionFieldElement) bool { return lhs.A.vartimeEq(rhs.A) && lhs.B.vartimeEq(rhs.B) } // Convert the input to wire format. // // The output byte slice must be at least 188 bytes long. func (x *ExtensionFieldElement) ToBytes(output []byte) { if len(output) < 188 { panic("output byte slice too short, need 188 bytes") } x.A.toBytesFromMontgomeryForm(output[0:94]) x.B.toBytesFromMontgomeryForm(output[94:188]) } // Read 188 bytes into the given ExtensionFieldElement. // // It is an error to call this function if the input byte slice is less than 188 bytes long. func (x *ExtensionFieldElement) FromBytes(input []byte) { if len(input) < 188 { panic("input byte slice too short, need 188 bytes") } x.A.montgomeryFormFromBytes(input[:94]) x.B.montgomeryFormFromBytes(input[94:188]) } //------------------------------------------------------------------------------ // Prime Field //------------------------------------------------------------------------------ // Represents an element of the prime field F_p. type PrimeFieldElement struct { // This field element is in Montgomery form, so that the value `A` is // represented by `aR mod p`. A Fp751Element } var zeroPrimeField = PrimeFieldElement{ A: Fp751Element{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, } var onePrimeField = PrimeFieldElement{ A: Fp751Element{0x249ad, 0x0, 0x0, 0x0, 0x0, 0x8310000000000000, 0x5527b1e4375c6c66, 0x697797bf3f4f24d0, 0xc89db7b2ac5c4e2e, 0x4ca4b439d2076956, 0x10f7926c7512c7e9, 0x2d5b24bce5e2}, } // Set dest = 0. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Zero() *PrimeFieldElement { *dest = zeroPrimeField return dest } // Set dest = 1. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) One() *PrimeFieldElement { *dest = onePrimeField return dest } // Set dest to x. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) SetUint64(x uint64) *PrimeFieldElement { var xRR fp751X2 dest.A = Fp751Element{} // = 0 dest.A[0] = x // = x fp751Mul(&xRR, &dest.A, &montgomeryRsq) // = x*R*R fp751MontgomeryReduce(&dest.A, &xRR) // = x*R mod p return dest } // Set dest = lhs * rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Mul(lhs, rhs *PrimeFieldElement) *PrimeFieldElement { a := &lhs.A // = a*R b := &rhs.A // = b*R var ab fp751X2 fp751Mul(&ab, a, b) // = a*b*R*R fp751MontgomeryReduce(&dest.A, &ab) // = a*b*R mod p return dest } // Set dest = x^(2^k), for k >= 1, by repeated squarings. // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Pow2k(x *PrimeFieldElement, k uint8) *PrimeFieldElement { dest.Square(x) for i := uint8(1); i < k; i++ { dest.Square(dest) } return dest } // Set dest = x^2 // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Square(x *PrimeFieldElement) *PrimeFieldElement { a := &x.A // = a*R b := &x.A // = b*R var ab fp751X2 fp751Mul(&ab, a, b) // = a*b*R*R fp751MontgomeryReduce(&dest.A, &ab) // = a*b*R mod p return dest } // Set dest = -x // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Neg(x *PrimeFieldElement) *PrimeFieldElement { dest.Sub(&zeroPrimeField, x) return dest } // Set dest = lhs + rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Add(lhs, rhs *PrimeFieldElement) *PrimeFieldElement { fp751AddReduced(&dest.A, &lhs.A, &rhs.A) return dest } // Set dest = lhs - rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Sub(lhs, rhs *PrimeFieldElement) *PrimeFieldElement { fp751SubReduced(&dest.A, &lhs.A, &rhs.A) return dest } // Returns true if lhs = rhs. Takes variable time. func (lhs *PrimeFieldElement) VartimeEq(rhs *PrimeFieldElement) bool { return lhs.A.vartimeEq(rhs.A) } // If choice = 1u8, set (x,y) = (y,x). If choice = 0u8, set (x,y) = (x,y). // // Returns dest to allow chaining operations. func PrimeFieldConditionalSwap(x, y *PrimeFieldElement, choice uint8) { fp751ConditionalSwap(&x.A, &y.A, choice) } // Set dest = sqrt(x), if x is a square. If x is nonsquare dest is undefined. // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Sqrt(x *PrimeFieldElement) *PrimeFieldElement { tmp_x := *x // Copy x in case dest == x // Since x is assumed to be square, x = y^2 dest.P34(x) // dest = (y^2)^((p-3)/4) = y^((p-3)/2) dest.Mul(dest, &tmp_x) // dest = y^2 * y^((p-3)/2) = y^((p+1)/2) // Now dest^2 = y^(p+1) = y^2 = x, so dest = sqrt(x) return dest } // Set dest = 1/x. // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) Inv(x *PrimeFieldElement) *PrimeFieldElement { tmp_x := *x // Copy x in case dest == x dest.Square(x) // dest = x^2 dest.P34(dest) // dest = (x^2)^((p-3)/4) = x^((p-3)/2) dest.Square(dest) // dest = x^(p-3) dest.Mul(dest, &tmp_x) // dest = x^(p-2) return dest } // Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x). // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *PrimeFieldElement) P34(x *PrimeFieldElement) *PrimeFieldElement { // Sliding-window strategy computed with Sage, awk, sed, and tr. // // This performs sum(powStrategy) = 744 squarings and len(mulStrategy) // = 137 multiplications, in addition to 1 squaring and 15 // multiplications to build a lookup table. // // In total this is 745 squarings, 152 multiplications. Since squaring // is not implemented for the prime field, this is 897 multiplications // in total. powStrategy := [137]uint8{5, 7, 6, 2, 10, 4, 6, 9, 8, 5, 9, 4, 7, 5, 5, 4, 8, 3, 9, 5, 5, 4, 10, 4, 6, 6, 6, 5, 8, 9, 3, 4, 9, 4, 5, 6, 6, 2, 9, 4, 5, 5, 5, 7, 7, 9, 4, 6, 4, 8, 5, 8, 6, 6, 2, 9, 7, 4, 8, 8, 8, 4, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2} mulStrategy := [137]uint8{31, 23, 21, 1, 31, 7, 7, 7, 9, 9, 19, 15, 23, 23, 11, 7, 25, 5, 21, 17, 11, 5, 17, 7, 11, 9, 23, 9, 1, 19, 5, 3, 25, 15, 11, 29, 31, 1, 29, 11, 13, 9, 11, 27, 13, 19, 15, 31, 3, 29, 23, 31, 25, 11, 1, 21, 19, 15, 15, 21, 29, 13, 23, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 3} initialMul := uint8(27) // Build a lookup table of odd multiples of x. lookup := [16]PrimeFieldElement{} xx := &PrimeFieldElement{} xx.Square(x) // Set xx = x^2 lookup[0] = *x for i := 1; i < 16; i++ { lookup[i].Mul(&lookup[i-1], xx) } // Now lookup = {x, x^3, x^5, ... } // so that lookup[i] = x^{2*i + 1} // so that lookup[k/2] = x^k, for odd k *dest = lookup[initialMul/2] for i := uint8(0); i < 137; i++ { dest.Pow2k(dest, powStrategy[i]) dest.Mul(dest, &lookup[mulStrategy[i]/2]) } return dest } //------------------------------------------------------------------------------ // Internals //------------------------------------------------------------------------------ const fp751NumWords = 12 // (2^768)^2 mod p // This can't be a constant because Go doesn't allow array constants, so try // not to modify it. var montgomeryRsq = Fp751Element{2535603850726686808, 15780896088201250090, 6788776303855402382, 17585428585582356230, 5274503137951975249, 2266259624764636289, 11695651972693921304, 13072885652150159301, 4908312795585420432, 6229583484603254826, 488927695601805643, 72213483953973} // Internal representation of an element of the base field F_p. // // This type is distinct from PrimeFieldElement in that no particular meaning // is assigned to the representation -- it could represent an element in // Montgomery form, or not. Tracking the meaning of the field element is left // to higher types. type Fp751Element [fp751NumWords]uint64 // Represents an intermediate product of two elements of the base field F_p. type fp751X2 [2 * fp751NumWords]uint64 func (x Fp751Element) vartimeEq(y Fp751Element) bool { fp751StrongReduce(&x) fp751StrongReduce(&y) eq := true for i := 0; i < fp751NumWords; i++ { eq = (x[i] == y[i]) && eq } return eq } // Read an Fp751Element from little-endian bytes and convert to Montgomery form. // // The input byte slice must be at least 94 bytes long. func (x *Fp751Element) montgomeryFormFromBytes(input []byte) { if len(input) < 94 { panic("input byte slice too short") } var a Fp751Element for i := 0; i < 94; i++ { // set i = j*8 + k j := i / 8 k := uint64(i % 8) a[j] |= uint64(input[i]) << (8 * k) } var aRR fp751X2 fp751Mul(&aRR, &a, &montgomeryRsq) // = a*R*R fp751MontgomeryReduce(x, &aRR) // = a*R mod p } // Given an Fp751Element in Montgomery form, convert to little-endian bytes. // // The output byte slice must be at least 94 bytes long. func (x *Fp751Element) toBytesFromMontgomeryForm(output []byte) { if len(output) < 94 { panic("output byte slice too short") } var a Fp751Element var aR fp751X2 copy(aR[:], x[:]) // = a*R fp751MontgomeryReduce(&a, &aR) // = a mod p in [0, 2p) fp751StrongReduce(&a) // = a mod p in [0, p) // 8*12 = 96, but we drop the last two bytes since p is 751 < 752=94*8 bits. for i := 0; i < 94; i++ { // set i = j*8 + k j := i / 8 k := uint64(i % 8) // Need parens because Go's operator precedence would interpret // a[j] >> 8*k as (a[j] >> 8) * k output[i] = byte(a[j] >> (8 * k)) } }