package sm3 func rotl32(count uint32, val uint32) uint32 { return (val << count) | (val >> (32 - count)) } // compression func p0(X uint32) uint32 { return X ^ rotl32(9, X) ^ rotl32(17, X) } // expansion func p1(X uint32) uint32 { return X ^ rotl32(15, X) ^ rotl32(23, X) } func ff1(X uint32, Y uint32, Z uint32) uint32 { return (X & Y) | ((X | Y) & Z) } func gg1(X uint32, Y uint32, Z uint32) uint32 { return (X & Y) ^ ((^X) & Z) // Can be also (Z ^ (X & (Y ^ Z))) } func r1( A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32, G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) { A12 := rotl32(12, A) SS1 := rotl32(7, A12+E+TJ) TT1 := (A ^ *B ^ C) + *D + (SS1 ^ A12) + Wj TT2 := (E ^ *F ^ G) + *H + SS1 + Wi *B = rotl32(9, *B) *D = TT1 *F = rotl32(19, *F) *H = p0(TT2) } func r2( A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32, G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) { A12 := rotl32(12, A) SS1 := rotl32(7, A12+E+TJ) TT1 := ff1(A, *B, C) + *D + (SS1 ^ A12) + Wj TT2 := gg1(E, *F, G) + *H + SS1 + Wi *B = rotl32(9, *B) *D = TT1 *F = rotl32(19, *F) *H = p0(TT2) } func sm3e(W0 uint32, W7 uint32, W13 uint32, W3 uint32, W10 uint32) uint32 { return p1(W0^W7^rotl32(15, W13)) ^ rotl32(7, W3) ^ W10 } func loadBe32(x []byte) uint32 { return uint32(x[3]) | (uint32(x[2]) << 8) | (uint32(x[1]) << 16) | (uint32(x[0]) << 24) } func store64Be(val []byte, x uint64) { val[0] = byte(x >> 56) val[1] = byte(x >> 48) val[2] = byte(x >> 40) val[3] = byte(x >> 32) val[4] = byte(x >> 24) val[5] = byte(x >> 16) val[6] = byte(x >> 8) val[7] = byte(x >> 0) } func store32Be(val []byte, x uint32) { val[0] = byte(x >> 24) val[1] = byte(x >> 16) val[2] = byte(x >> 8) val[3] = byte(x >> 0) } func (d *digest) compress(input []byte, blocks int) { A := d.h[0] B := d.h[1] C := d.h[2] D := d.h[3] E := d.h[4] F := d.h[5] G := d.h[6] H := d.h[7] for i := 0; i < blocks; i++ { next64Block := input[i*64:] W00 := loadBe32(next64Block[0:]) W01 := loadBe32(next64Block[4:]) W02 := loadBe32(next64Block[8:]) W03 := loadBe32(next64Block[12:]) W04 := loadBe32(next64Block[16:]) W05 := loadBe32(next64Block[20:]) W06 := loadBe32(next64Block[24:]) W07 := loadBe32(next64Block[28:]) W08 := loadBe32(next64Block[32:]) W09 := loadBe32(next64Block[36:]) W10 := loadBe32(next64Block[40:]) W11 := loadBe32(next64Block[44:]) W12 := loadBe32(next64Block[48:]) W13 := loadBe32(next64Block[52:]) W14 := loadBe32(next64Block[56:]) W15 := loadBe32(next64Block[60:]) r1(A, &B, C, &D, E, &F, G, &H, 0x79CC4519, W00, W00^W04) W00 = sm3e(W00, W07, W13, W03, W10) r1(D, &A, B, &C, H, &E, F, &G, 0xF3988A32, W01, W01^W05) W01 = sm3e(W01, W08, W14, W04, W11) r1(C, &D, A, &B, G, &H, E, &F, 0xE7311465, W02, W02^W06) W02 = sm3e(W02, W09, W15, W05, W12) r1(B, &C, D, &A, F, &G, H, &E, 0xCE6228CB, W03, W03^W07) W03 = sm3e(W03, W10, W00, W06, W13) r1(A, &B, C, &D, E, &F, G, &H, 0x9CC45197, W04, W04^W08) W04 = sm3e(W04, W11, W01, W07, W14) r1(D, &A, B, &C, H, &E, F, &G, 0x3988A32F, W05, W05^W09) W05 = sm3e(W05, W12, W02, W08, W15) r1(C, &D, A, &B, G, &H, E, &F, 0x7311465E, W06, W06^W10) W06 = sm3e(W06, W13, W03, W09, W00) r1(B, &C, D, &A, F, &G, H, &E, 0xE6228CBC, W07, W07^W11) W07 = sm3e(W07, W14, W04, W10, W01) r1(A, &B, C, &D, E, &F, G, &H, 0xCC451979, W08, W08^W12) W08 = sm3e(W08, W15, W05, W11, W02) r1(D, &A, B, &C, H, &E, F, &G, 0x988A32F3, W09, W09^W13) W09 = sm3e(W09, W00, W06, W12, W03) r1(C, &D, A, &B, G, &H, E, &F, 0x311465E7, W10, W10^W14) W10 = sm3e(W10, W01, W07, W13, W04) r1(B, &C, D, &A, F, &G, H, &E, 0x6228CBCE, W11, W11^W15) W11 = sm3e(W11, W02, W08, W14, W05) r1(A, &B, C, &D, E, &F, G, &H, 0xC451979C, W12, W12^W00) W12 = sm3e(W12, W03, W09, W15, W06) r1(D, &A, B, &C, H, &E, F, &G, 0x88A32F39, W13, W13^W01) W13 = sm3e(W13, W04, W10, W00, W07) r1(C, &D, A, &B, G, &H, E, &F, 0x11465E73, W14, W14^W02) W14 = sm3e(W14, W05, W11, W01, W08) r1(B, &C, D, &A, F, &G, H, &E, 0x228CBCE6, W15, W15^W03) W15 = sm3e(W15, W06, W12, W02, W09) r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04) W00 = sm3e(W00, W07, W13, W03, W10) r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05) W01 = sm3e(W01, W08, W14, W04, W11) r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06) W02 = sm3e(W02, W09, W15, W05, W12) r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07) W03 = sm3e(W03, W10, W00, W06, W13) r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08) W04 = sm3e(W04, W11, W01, W07, W14) r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09) W05 = sm3e(W05, W12, W02, W08, W15) r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10) W06 = sm3e(W06, W13, W03, W09, W00) r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11) W07 = sm3e(W07, W14, W04, W10, W01) r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12) W08 = sm3e(W08, W15, W05, W11, W02) r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13) W09 = sm3e(W09, W00, W06, W12, W03) r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14) W10 = sm3e(W10, W01, W07, W13, W04) r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15) W11 = sm3e(W11, W02, W08, W14, W05) r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00) W12 = sm3e(W12, W03, W09, W15, W06) r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01) W13 = sm3e(W13, W04, W10, W00, W07) r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02) W14 = sm3e(W14, W05, W11, W01, W08) r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03) W15 = sm3e(W15, W06, W12, W02, W09) r2(A, &B, C, &D, E, &F, G, &H, 0x7A879D8A, W00, W00^W04) W00 = sm3e(W00, W07, W13, W03, W10) r2(D, &A, B, &C, H, &E, F, &G, 0xF50F3B14, W01, W01^W05) W01 = sm3e(W01, W08, W14, W04, W11) r2(C, &D, A, &B, G, &H, E, &F, 0xEA1E7629, W02, W02^W06) W02 = sm3e(W02, W09, W15, W05, W12) r2(B, &C, D, &A, F, &G, H, &E, 0xD43CEC53, W03, W03^W07) W03 = sm3e(W03, W10, W00, W06, W13) r2(A, &B, C, &D, E, &F, G, &H, 0xA879D8A7, W04, W04^W08) W04 = sm3e(W04, W11, W01, W07, W14) r2(D, &A, B, &C, H, &E, F, &G, 0x50F3B14F, W05, W05^W09) W05 = sm3e(W05, W12, W02, W08, W15) r2(C, &D, A, &B, G, &H, E, &F, 0xA1E7629E, W06, W06^W10) W06 = sm3e(W06, W13, W03, W09, W00) r2(B, &C, D, &A, F, &G, H, &E, 0x43CEC53D, W07, W07^W11) W07 = sm3e(W07, W14, W04, W10, W01) r2(A, &B, C, &D, E, &F, G, &H, 0x879D8A7A, W08, W08^W12) W08 = sm3e(W08, W15, W05, W11, W02) r2(D, &A, B, &C, H, &E, F, &G, 0x0F3B14F5, W09, W09^W13) W09 = sm3e(W09, W00, W06, W12, W03) r2(C, &D, A, &B, G, &H, E, &F, 0x1E7629EA, W10, W10^W14) W10 = sm3e(W10, W01, W07, W13, W04) r2(B, &C, D, &A, F, &G, H, &E, 0x3CEC53D4, W11, W11^W15) W11 = sm3e(W11, W02, W08, W14, W05) r2(A, &B, C, &D, E, &F, G, &H, 0x79D8A7A8, W12, W12^W00) W12 = sm3e(W12, W03, W09, W15, W06) r2(D, &A, B, &C, H, &E, F, &G, 0xF3B14F50, W13, W13^W01) W13 = sm3e(W13, W04, W10, W00, W07) r2(C, &D, A, &B, G, &H, E, &F, 0xE7629EA1, W14, W14^W02) W14 = sm3e(W14, W05, W11, W01, W08) r2(B, &C, D, &A, F, &G, H, &E, 0xCEC53D43, W15, W15^W03) W15 = sm3e(W15, W06, W12, W02, W09) r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04) W00 = sm3e(W00, W07, W13, W03, W10) r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05) W01 = sm3e(W01, W08, W14, W04, W11) r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06) W02 = sm3e(W02, W09, W15, W05, W12) r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07) W03 = sm3e(W03, W10, W00, W06, W13) r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08) r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09) r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10) r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11) r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12) r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13) r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14) r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15) r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00) r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01) r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02) r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03) d.h[0] ^= A d.h[1] ^= B d.h[2] ^= C d.h[3] ^= D d.h[4] ^= E d.h[5] ^= F d.h[6] ^= G d.h[7] ^= H A = d.h[0] B = d.h[1] C = d.h[2] D = d.h[3] E = d.h[4] F = d.h[5] G = d.h[6] H = d.h[7] } }