package p503 import ( . "github.com/henrydcase/nobs/dh/sidh/internal/isogeny" ) type fp503Ops struct{} func FieldOperations() FieldOps { return &fp503Ops{} } func (fp503Ops) Add(dest, lhs, rhs *Fp2Element) { fp503AddReduced(&dest.A, &lhs.A, &rhs.A) fp503AddReduced(&dest.B, &lhs.B, &rhs.B) } func (fp503Ops) Sub(dest, lhs, rhs *Fp2Element) { fp503SubReduced(&dest.A, &lhs.A, &rhs.A) fp503SubReduced(&dest.B, &lhs.B, &rhs.B) } func (fp503Ops) Mul(dest, lhs, rhs *Fp2Element) { // Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b). a := &lhs.A b := &lhs.B c := &rhs.A d := &rhs.B // We want to compute // // (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i // // Use Karatsuba's trick: note that // // (b - a)*(c - d) = (b*c + a*d) - a*c - b*d // // so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d. var ac, bd FpElementX2 fp503Mul(&ac, a, c) // = a*c*R*R fp503Mul(&bd, b, d) // = b*d*R*R var b_minus_a, c_minus_d FpElement fp503SubReduced(&b_minus_a, b, a) // = (b-a)*R fp503SubReduced(&c_minus_d, c, d) // = (c-d)*R var ad_plus_bc FpElementX2 fp503Mul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R fp503X2AddLazy(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R fp503X2AddLazy(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R fp503MontgomeryReduce(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p var ac_minus_bd FpElementX2 fp503X2SubLazy(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R fp503MontgomeryReduce(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p } // Set dest = 1/x // // Allowed to overlap dest with x. // // Returns dest to allow chaining operations. func (fp503Ops) Inv(dest, x *Fp2Element) { a := &x.A b := &x.B // We want to compute // // 1 1 (a - bi) (a - bi) // -------- = -------- -------- = ----------- // (a + bi) (a + bi) (a - bi) (a^2 + b^2) // // Letting c = 1/(a^2 + b^2), this is // // 1/(a+bi) = a*c - b*ci. var asq_plus_bsq primeFieldElement var asq, bsq FpElementX2 fp503Mul(&asq, a, a) // = a*a*R*R fp503Mul(&bsq, b, b) // = b*b*R*R fp503X2AddLazy(&asq, &asq, &bsq) // = (a^2 + b^2)*R*R fp503MontgomeryReduce(&asq_plus_bsq.A, &asq) // = (a^2 + b^2)*R mod p // Now asq_plus_bsq = a^2 + b^2 inv := asq_plus_bsq inv.Mul(&asq_plus_bsq, &asq_plus_bsq) inv.P34(&inv) inv.Mul(&inv, &inv) inv.Mul(&inv, &asq_plus_bsq) var ac FpElementX2 fp503Mul(&ac, a, &inv.A) fp503MontgomeryReduce(&dest.A, &ac) var minus_b FpElement fp503SubReduced(&minus_b, &minus_b, b) var minus_bc FpElementX2 fp503Mul(&minus_bc, &minus_b, &inv.A) fp503MontgomeryReduce(&dest.B, &minus_bc) } func (fp503Ops) Square(dest, x *Fp2Element) { a := &x.A b := &x.B // We want to compute // // (a + bi)*(a + bi) = (a^2 - b^2) + 2abi. var a2, a_plus_b, a_minus_b FpElement fp503AddReduced(&a2, a, a) // = a*R + a*R = 2*a*R fp503AddReduced(&a_plus_b, a, b) // = a*R + b*R = (a+b)*R fp503SubReduced(&a_minus_b, a, b) // = a*R - b*R = (a-b)*R var asq_minus_bsq, ab2 FpElementX2 fp503Mul(&asq_minus_bsq, &a_plus_b, &a_minus_b) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R fp503Mul(&ab2, &a2, b) // = 2*a*b*R*R fp503MontgomeryReduce(&dest.A, &asq_minus_bsq) // = (a^2 - b^2)*R mod p fp503MontgomeryReduce(&dest.B, &ab2) // = 2*a*b*R mod p } // In case choice == 1, performs following swap in constant time: // xPx <-> xQx // xPz <-> xQz // Otherwise returns xPx, xPz, xQx, xQz unchanged func (fp503Ops) CondSwap(xPx, xPz, xQx, xQz *Fp2Element, choice uint8) { fp503ConditionalSwap(&xPx.A, &xQx.A, choice) fp503ConditionalSwap(&xPx.B, &xQx.B, choice) fp503ConditionalSwap(&xPz.A, &xQz.A, choice) fp503ConditionalSwap(&xPz.B, &xQz.B, choice) } // Converts values in x.A and x.B to Montgomery domain // x.A = x.A * R mod p // x.B = x.B * R mod p func (fp503Ops) ToMontgomery(x *Fp2Element) { var aRR FpElementX2 // convert to montgomery domain fp503Mul(&aRR, &x.A, &p503R2) // = a*R*R fp503MontgomeryReduce(&x.A, &aRR) // = a*R mod p fp503Mul(&aRR, &x.B, &p503R2) fp503MontgomeryReduce(&x.B, &aRR) } // Converts values in x.A and x.B from Montgomery domain // a = x.A mod p // b = x.B mod p // // After returning from the call x is not modified. func (fp503Ops) FromMontgomery(x *Fp2Element, out *Fp2Element) { var aR FpElementX2 // convert from montgomery domain copy(aR[:], x.A[:]) fp503MontgomeryReduce(&out.A, &aR) // = a mod p in [0, 2p) fp503StrongReduce(&out.A) // = a mod p in [0, p) copy(aR[:], x.B[:]) fp503MontgomeryReduce(&out.B, &aR) fp503StrongReduce(&out.B) } //------------------------------------------------------------------------------ // Prime Field //------------------------------------------------------------------------------ // Represents an element of the prime field F_p. type primeFieldElement struct { // This field element is in Montgomery form, so that the value `A` is // represented by `aR mod p`. A FpElement } // Set dest = lhs * rhs. // // Allowed to overlap lhs or rhs with dest. // // Returns dest to allow chaining operations. func (dest *primeFieldElement) Mul(lhs, rhs *primeFieldElement) *primeFieldElement { a := &lhs.A // = a*R b := &rhs.A // = b*R var ab FpElementX2 fp503Mul(&ab, a, b) // = a*b*R*R fp503MontgomeryReduce(&dest.A, &ab) // = a*b*R mod p return dest } // Set dest = x^(2^k), for k >= 1, by repeated squarings. // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *primeFieldElement) Pow2k(x *primeFieldElement, k uint8) *primeFieldElement { dest.Mul(x, x) for i := uint8(1); i < k; i++ { dest.Mul(dest, dest) } return dest } // Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x). // Uses variation of sliding-window algorithm from with window size // of 5 and least to most significant bit sliding (left-to-right) // See HAC 14.85 for general description. // // Allowed to overlap x with dest. // // Returns dest to allow chaining operations. func (dest *primeFieldElement) P34(x *primeFieldElement) *primeFieldElement { // Sliding-window strategy computed with etc/scripts/sliding_window_strat_calc.py // // This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy) // multiplications. powStrategy := []uint8{1, 12, 5, 5, 2, 7, 11, 3, 8, 4, 11, 4, 7, 5, 6, 3, 7, 5, 7, 2, 12, 5, 6, 4, 6, 8, 6, 4, 7, 5, 5, 8, 5, 8, 5, 5, 8, 9, 3, 6, 2, 10, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3} mulStrategy := []uint8{0, 12, 11, 10, 0, 1, 8, 3, 7, 1, 8, 3, 6, 7, 14, 2, 14, 14, 9, 0, 13, 9, 15, 5, 12, 7, 13, 7, 15, 6, 7, 9, 0, 5, 7, 6, 8, 8, 3, 7, 0, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3} // Precompute lookup table of odd multiples of x for window // size k=5. lookup := [16]primeFieldElement{} xx := &primeFieldElement{} xx.Mul(x, x) lookup[0] = *x for i := 1; i < 16; i++ { lookup[i].Mul(&lookup[i-1], xx) } // Now lookup = {x, x^3, x^5, ... } // so that lookup[i] = x^{2*i + 1} // so that lookup[k/2] = x^k, for odd k *dest = lookup[mulStrategy[0]] for i := uint8(1); i < uint8(len(powStrategy)); i++ { dest.Pow2k(dest, powStrategy[i]) dest.Mul(dest, &lookup[mulStrategy[i]]) } return dest }