package internal import ( "math/big" "math/rand" "reflect" "testing" "testing/quick" ) var quickCheckScaleFactor = uint8(3) var quickCheckConfig = &quick.Config{MaxCount: (1 << (12 + quickCheckScaleFactor))} var cln16prime, _ = new(big.Int).SetString("10354717741769305252977768237866805321427389645549071170116189679054678940682478846502882896561066713624553211618840202385203911976522554393044160468771151816976706840078913334358399730952774926980235086850991501872665651576831", 10) // Convert an Fp751Element to a big.Int for testing. Because this is only // for testing, no big.Int to Fp751Element conversion is provided. func radix64ToBigInt(x []uint64) *big.Int { radix := new(big.Int) // 2^64 radix.UnmarshalText(([]byte)("18446744073709551616")) base := new(big.Int).SetUint64(1) val := new(big.Int).SetUint64(0) tmp := new(big.Int) for _, xi := range x { tmp.SetUint64(xi) tmp.Mul(tmp, base) val.Add(val, tmp) base.Mul(base, radix) } return val } func (x *PrimeFieldElement) toBigInt() *big.Int { // Convert from Montgomery form return x.A.toBigIntFromMontgomeryForm() } func (x *Fp751Element) toBigIntFromMontgomeryForm() *big.Int { // Convert from Montgomery form a := Fp751Element{} aR := fp751X2{} copy(aR[:], x[:]) // = a*R fp751MontgomeryReduce(&a, &aR) // = a mod p in [0,2p) fp751StrongReduce(&a) // = a mod p in [0,p) return radix64ToBigInt(a[:]) } func TestPrimeFieldElementToBigInt(t *testing.T) { // Chosen so that p < xR < 2p x := PrimeFieldElement{A: Fp751Element{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 140737488355328, }} // Computed using Sage: // sage: p = 2^372 * 3^239 - 1 // sage: R = 2^768 // sage: from_radix_64 = lambda xs: sum((xi * (2**64)**i for i,xi in enumerate(xs))) // sage: xR = from_radix_64([1]*11 + [2^47]) // sage: assert(p < xR) // sage: assert(xR < 2*p) // sage: (xR / R) % p xBig, _ := new(big.Int).SetString("4469946751055876387821312289373600189787971305258234719850789711074696941114031433609871105823930699680637820852699269802003300352597419024286385747737509380032982821081644521634652750355306547718505685107272222083450567982240", 10) if xBig.Cmp(x.toBigInt()) != 0 { t.Error("Expected", xBig, "found", x.toBigInt()) } } func generateFp751(rand *rand.Rand) Fp751Element { // Generation strategy: low limbs taken from [0,2^64); high limb // taken from smaller range // // Size hint is ignored since all elements are fixed size. // // Field elements taken in range [0,2p). Emulate this by capping // the high limb by the top digit of 2*p-1: // // sage: (2*p-1).digits(2^64)[-1] // 246065832128056 // // This still allows generating values >= 2p, but hopefully that // excess is OK (and if it's not, we'll find out, because it's for // testing...) // highLimb := rand.Uint64() % 246065832128056 return Fp751Element{ rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64(), highLimb, } } func (x PrimeFieldElement) Generate(rand *rand.Rand, size int) reflect.Value { return reflect.ValueOf(PrimeFieldElement{A: generateFp751(rand)}) } func (x ExtensionFieldElement) Generate(rand *rand.Rand, size int) reflect.Value { return reflect.ValueOf(ExtensionFieldElement{A: generateFp751(rand), B: generateFp751(rand)}) } //------------------------------------------------------------------------------ // Extension Field //------------------------------------------------------------------------------ func TestOneExtensionFieldToBytes(t *testing.T) { var x ExtensionFieldElement var xBytes [188]byte x.One() x.ToBytes(xBytes[:]) if xBytes[0] != 1 { t.Error("Expected 1, got", xBytes[0]) } for i := 1; i < 188; i++ { if xBytes[i] != 0 { t.Error("Expected 0, got", xBytes[0]) } } } func TestExtensionFieldElementToBytesRoundTrip(t *testing.T) { roundTrips := func(x ExtensionFieldElement) bool { var xBytes [188]byte var xPrime ExtensionFieldElement x.ToBytes(xBytes[:]) xPrime.FromBytes(xBytes[:]) return x.VartimeEq(&xPrime) } if err := quick.Check(roundTrips, quickCheckConfig); err != nil { t.Error(err) } } func TestExtensionFieldElementMulDistributesOverAdd(t *testing.T) { mulDistributesOverAdd := func(x, y, z ExtensionFieldElement) bool { // Compute t1 = (x+y)*z t1 := new(ExtensionFieldElement) t1.Add(&x, &y) t1.Mul(t1, &z) // Compute t2 = x*z + y*z t2 := new(ExtensionFieldElement) t3 := new(ExtensionFieldElement) t2.Mul(&x, &z) t3.Mul(&y, &z) t2.Add(t2, t3) return t1.VartimeEq(t2) } if err := quick.Check(mulDistributesOverAdd, quickCheckConfig); err != nil { t.Error(err) } } func TestExtensionFieldElementMulIsAssociative(t *testing.T) { isAssociative := func(x, y, z ExtensionFieldElement) bool { // Compute t1 = (x*y)*z t1 := new(ExtensionFieldElement) t1.Mul(&x, &y) t1.Mul(t1, &z) // Compute t2 = (y*z)*x t2 := new(ExtensionFieldElement) t2.Mul(&y, &z) t2.Mul(t2, &x) return t1.VartimeEq(t2) } if err := quick.Check(isAssociative, quickCheckConfig); err != nil { t.Error(err) } } func TestExtensionFieldElementSquareMatchesMul(t *testing.T) { sqrMatchesMul := func(x ExtensionFieldElement) bool { // Compute t1 = (x*x) t1 := new(ExtensionFieldElement) t1.Mul(&x, &x) // Compute t2 = x^2 t2 := new(ExtensionFieldElement) t2.Square(&x) return t1.VartimeEq(t2) } if err := quick.Check(sqrMatchesMul, quickCheckConfig); err != nil { t.Error(err) } } func TestExtensionFieldElementInv(t *testing.T) { inverseIsCorrect := func(x ExtensionFieldElement) bool { z := new(ExtensionFieldElement) z.Inv(&x) // Now z = (1/x), so (z * x) * x == x z.Mul(z, &x) z.Mul(z, &x) return z.VartimeEq(&x) } // This is more expensive; run fewer tests var quickCheckConfig = &quick.Config{MaxCount: (1 << (8 + quickCheckScaleFactor))} if err := quick.Check(inverseIsCorrect, quickCheckConfig); err != nil { t.Error(err) } } func TestExtensionFieldElementBatch3Inv(t *testing.T) { batchInverseIsCorrect := func(x1, x2, x3 ExtensionFieldElement) bool { var x1Inv, x2Inv, x3Inv ExtensionFieldElement x1Inv.Inv(&x1) x2Inv.Inv(&x2) x3Inv.Inv(&x3) var y1, y2, y3 ExtensionFieldElement ExtensionFieldBatch3Inv(&x1, &x2, &x3, &y1, &y2, &y3) return (y1.VartimeEq(&x1Inv) && y2.VartimeEq(&x2Inv) && y3.VartimeEq(&x3Inv)) } // This is more expensive; run fewer tests var quickCheckConfig = &quick.Config{MaxCount: (1 << (5 + quickCheckScaleFactor))} if err := quick.Check(batchInverseIsCorrect, quickCheckConfig); err != nil { t.Error(err) } } //------------------------------------------------------------------------------ // Prime Field //------------------------------------------------------------------------------ func TestPrimeFieldElementSetUint64VersusBigInt(t *testing.T) { setUint64RoundTrips := func(x uint64) bool { z := new(PrimeFieldElement).SetUint64(x).toBigInt().Uint64() return x == z } if err := quick.Check(setUint64RoundTrips, quickCheckConfig); err != nil { t.Error(err) } } func TestPrimeFieldElementAddVersusBigInt(t *testing.T) { addMatchesBigInt := func(x, y PrimeFieldElement) bool { z := new(PrimeFieldElement) z.Add(&x, &y) check := new(big.Int) check.Add(x.toBigInt(), y.toBigInt()) check.Mod(check, cln16prime) return check.Cmp(z.toBigInt()) == 0 } if err := quick.Check(addMatchesBigInt, quickCheckConfig); err != nil { t.Error(err) } } func TestPrimeFieldElementSubVersusBigInt(t *testing.T) { subMatchesBigInt := func(x, y PrimeFieldElement) bool { z := new(PrimeFieldElement) z.Sub(&x, &y) check := new(big.Int) check.Sub(x.toBigInt(), y.toBigInt()) check.Mod(check, cln16prime) return check.Cmp(z.toBigInt()) == 0 } if err := quick.Check(subMatchesBigInt, quickCheckConfig); err != nil { t.Error(err) } } func TestPrimeFieldElementInv(t *testing.T) { inverseIsCorrect := func(x PrimeFieldElement) bool { z := new(PrimeFieldElement) z.Inv(&x) // Now z = (1/x), so (z * x) * x == x z.Mul(z, &x).Mul(z, &x) return z.VartimeEq(&x) } // This is more expensive; run fewer tests var quickCheckConfig = &quick.Config{MaxCount: (1 << (8 + quickCheckScaleFactor))} if err := quick.Check(inverseIsCorrect, quickCheckConfig); err != nil { t.Error(err) } } func TestPrimeFieldElementSqrt(t *testing.T) { inverseIsCorrect := func(x PrimeFieldElement) bool { // Construct y = x^2 so we're sure y is square. y := new(PrimeFieldElement) y.Square(&x) z := new(PrimeFieldElement) z.Sqrt(y) // Now z = sqrt(y), so z^2 == y z.Square(z) return z.VartimeEq(y) } // This is more expensive; run fewer tests var quickCheckConfig = &quick.Config{MaxCount: (1 << (8 + quickCheckScaleFactor))} if err := quick.Check(inverseIsCorrect, quickCheckConfig); err != nil { t.Error(err) } } func TestPrimeFieldElementMulVersusBigInt(t *testing.T) { mulMatchesBigInt := func(x, y PrimeFieldElement) bool { z := new(PrimeFieldElement) z.Mul(&x, &y) check := new(big.Int) check.Mul(x.toBigInt(), y.toBigInt()) check.Mod(check, cln16prime) return check.Cmp(z.toBigInt()) == 0 } if err := quick.Check(mulMatchesBigInt, quickCheckConfig); err != nil { t.Error(err) } } func TestPrimeFieldElementP34VersusBigInt(t *testing.T) { var p34, _ = new(big.Int).SetString("2588679435442326313244442059466701330356847411387267792529047419763669735170619711625720724140266678406138302904710050596300977994130638598261040117192787954244176710019728333589599932738193731745058771712747875468166412894207", 10) p34MatchesBigInt := func(x PrimeFieldElement) bool { z := new(PrimeFieldElement) z.P34(&x) check := x.toBigInt() check.Exp(check, p34, cln16prime) return check.Cmp(z.toBigInt()) == 0 } // This is more expensive; run fewer tests var quickCheckConfig = &quick.Config{MaxCount: (1 << (8 + quickCheckScaleFactor))} if err := quick.Check(p34MatchesBigInt, quickCheckConfig); err != nil { t.Error(err) } } func TestFp751ElementConditionalSwap(t *testing.T) { var one = Fp751Element{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} var two = Fp751Element{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} var x = one var y = two fp751ConditionalSwap(&x, &y, 0) if !(x == one && y == two) { t.Error("Found", x, "expected", one) } fp751ConditionalSwap(&x, &y, 1) if !(x == two && y == one) { t.Error("Found", x, "expected", two) } } // Package-level storage for this field element is intended to deter // compiler optimizations. var benchmarkFp751Element Fp751Element var benchmarkFp751X2 fp751X2 var bench_x = Fp751Element{17026702066521327207, 5108203422050077993, 10225396685796065916, 11153620995215874678, 6531160855165088358, 15302925148404145445, 1248821577836769963, 9789766903037985294, 7493111552032041328, 10838999828319306046, 18103257655515297935, 27403304611634} var bench_y = Fp751Element{4227467157325093378, 10699492810770426363, 13500940151395637365, 12966403950118934952, 16517692605450415877, 13647111148905630666, 14223628886152717087, 7167843152346903316, 15855377759596736571, 4300673881383687338, 6635288001920617779, 30486099554235} var bench_z = fp751X2{1595347748594595712, 10854920567160033970, 16877102267020034574, 12435724995376660096, 3757940912203224231, 8251999420280413600, 3648859773438820227, 17622716832674727914, 11029567000887241528, 11216190007549447055, 17606662790980286987, 4720707159513626555, 12887743598335030915, 14954645239176589309, 14178817688915225254, 1191346797768989683, 12629157932334713723, 6348851952904485603, 16444232588597434895, 7809979927681678066, 14642637672942531613, 3092657597757640067, 10160361564485285723, 240071237} func BenchmarkExtensionFieldElementMul(b *testing.B) { z := &ExtensionFieldElement{A: bench_x, B: bench_y} w := new(ExtensionFieldElement) for n := 0; n < b.N; n++ { w.Mul(z, z) } } func BenchmarkExtensionFieldElementInv(b *testing.B) { z := &ExtensionFieldElement{A: bench_x, B: bench_y} w := new(ExtensionFieldElement) for n := 0; n < b.N; n++ { w.Inv(z) } } func BenchmarkExtensionFieldElementSquare(b *testing.B) { z := &ExtensionFieldElement{A: bench_x, B: bench_y} w := new(ExtensionFieldElement) for n := 0; n < b.N; n++ { w.Square(z) } } func BenchmarkExtensionFieldElementAdd(b *testing.B) { z := &ExtensionFieldElement{A: bench_x, B: bench_y} w := new(ExtensionFieldElement) for n := 0; n < b.N; n++ { w.Add(z, z) } } func BenchmarkExtensionFieldElementSub(b *testing.B) { z := &ExtensionFieldElement{A: bench_x, B: bench_y} w := new(ExtensionFieldElement) for n := 0; n < b.N; n++ { w.Sub(z, z) } } func BenchmarkPrimeFieldElementMul(b *testing.B) { z := &PrimeFieldElement{A: bench_x} w := new(PrimeFieldElement) for n := 0; n < b.N; n++ { w.Mul(z, z) } } func BenchmarkPrimeFieldElementInv(b *testing.B) { z := &PrimeFieldElement{A: bench_x} w := new(PrimeFieldElement) for n := 0; n < b.N; n++ { w.Inv(z) } } func BenchmarkPrimeFieldElementSqrt(b *testing.B) { z := &PrimeFieldElement{A: bench_x} w := new(PrimeFieldElement) for n := 0; n < b.N; n++ { w.Sqrt(z) } } func BenchmarkPrimeFieldElementSquare(b *testing.B) { z := &PrimeFieldElement{A: bench_x} w := new(PrimeFieldElement) for n := 0; n < b.N; n++ { w.Square(z) } } func BenchmarkPrimeFieldElementAdd(b *testing.B) { z := &PrimeFieldElement{A: bench_x} w := new(PrimeFieldElement) for n := 0; n < b.N; n++ { w.Add(z, z) } } func BenchmarkPrimeFieldElementSub(b *testing.B) { z := &PrimeFieldElement{A: bench_x} w := new(PrimeFieldElement) for n := 0; n < b.N; n++ { w.Sub(z, z) } } // --- field operation functions func BenchmarkFp751Multiply(b *testing.B) { for n := 0; n < b.N; n++ { fp751Mul(&benchmarkFp751X2, &bench_x, &bench_y) } } func BenchmarkFp751MontgomeryReduce(b *testing.B) { z := bench_z // This benchmark actually computes garbage, because // fp751MontgomeryReduce mangles its input, but since it's // constant-time that shouldn't matter for the benchmarks. for n := 0; n < b.N; n++ { fp751MontgomeryReduce(&benchmarkFp751Element, &z) } } func BenchmarkFp751AddReduced(b *testing.B) { for n := 0; n < b.N; n++ { fp751AddReduced(&benchmarkFp751Element, &bench_x, &bench_y) } } func BenchmarkFp751SubReduced(b *testing.B) { for n := 0; n < b.N; n++ { fp751SubReduced(&benchmarkFp751Element, &bench_x, &bench_y) } } func BenchmarkFp751ConditionalSwap(b *testing.B) { x, y := bench_x, bench_y for n := 0; n < b.N; n++ { fp751ConditionalSwap(&x, &y, 1) fp751ConditionalSwap(&x, &y, 0) } } func BenchmarkFp751StrongReduce(b *testing.B) { x := bench_x for n := 0; n < b.N; n++ { fp751StrongReduce(&x) } } func BenchmarkFp751AddLazy(b *testing.B) { var z Fp751Element x, y := bench_x, bench_y for n := 0; n < b.N; n++ { fp751AddLazy(&z, &x, &y) } } func BenchmarkFp751X2AddLazy(b *testing.B) { x, y, z := bench_z, bench_z, bench_z for n := 0; n < b.N; n++ { fp751X2AddLazy(&x, &y, &z) } } func BenchmarkFp751X2SubLazy(b *testing.B) { x, y, z := bench_z, bench_z, bench_z for n := 0; n < b.N; n++ { fp751X2SubLazy(&x, &y, &z) } }