package csidh import ( "io" ) // 511-bit number representing prime field element GF(p) type fp [numWords]uint64 // Represents projective point on elliptic curve E over GF(p) type point struct { x fp z fp } // Curve coefficients type coeff struct { a fp c fp } type fpRngGen struct { // working buffer needed to avoid memory allocation wbuf [64]byte } // Defines operations on public key type PublicKey struct { fpRngGen // Montgomery coefficient A from GF(p) of the elliptic curve // y^2 = x^3 + Ax^2 + x. a fp } // Defines operations on private key type PrivateKey struct { fpRngGen // private key is a set of integers randomly // each sampled from a range [-5, 5]. e [PrivateKeySize]int8 } // randFp generates random element from Fp. func (s *fpRngGen) randFp(v *fp, rng io.Reader) { mask := uint64(1<<(pbits%limbBitSize)) - 1 for { *v = fp{} _, err := io.ReadFull(rng, s.wbuf[:]) if err != nil { panic("Can't read random number") } for i := 0; i < len(s.wbuf); i++ { j := i / limbByteSize k := uint(i % 8) v[j] |= uint64(s.wbuf[i]) << (8 * k) } v[len(v)-1] &= mask if isLess(v, &p) { return } } } // cofactorMul helper implements batch cofactor multiplication as described // in the ia.cr/2018/383 (algo. 3). Returns tuple of two booleans, first indicates // if function has finished successfully. In case first return value is true, // second return value indicates if curve represented by coffactor 'a' is // supersingular. // Implemenation uses divide-and-conquer strategy and recursion in order to // speed up calculation of Q_i = [(p+1)/l_i] * P. // Implementation is not constant time, but it operates on public data only. func cofactorMul(p *point, a *coeff, halfL, halfR int, order *fp) (bool, bool) { var Q point var r1, d1, r2, d2 bool if (halfR - halfL) == 1 { // base case if !p.z.isZero() { var tmp = fp{primes[halfL]} xMul(p, p, a, &tmp) if !p.z.isZero() { // order does not divide p+1 -> ordinary curve return true, false } mul512(order, order, primes[halfL]) if isLess(&fourSqrtP, order) { // order > 4*sqrt(p) -> supersingular curve return true, true } } return false, false } // perform another recursive step mid := halfL + ((halfR - halfL + 1) / 2) var mulL, mulR = fp{1}, fp{1} // compute u = primes_1 * ... * primes_m for i := halfL; i < mid; i++ { mul512(&mulR, &mulR, primes[i]) } // compute v = primes_m+1 * ... * primes_n for i := mid; i < halfR; i++ { mul512(&mulL, &mulL, primes[i]) } // calculate Q_i xMul(&Q, p, a, &mulR) xMul(p, p, a, &mulL) d1, r1 = cofactorMul(&Q, a, mid, halfR, order) d2, r2 = cofactorMul(p, a, halfL, mid, order) return d1 || d2, r1 || r2 } // groupAction evaluates group action of prv.e on a Montgomery // curve represented by coefficient pub.A. // This is implementation of algorithm 2 from ia.cr/2018/383. func groupAction(pub *PublicKey, prv *PrivateKey, rng io.Reader) { var k [2]fp var e [2][primeCount]uint8 var done = [2]bool{false, false} var A = coeff{a: pub.a, c: one} k[0][0] = 4 k[1][0] = 4 for i, v := range primes { t := (prv.e[uint(i)>>1] << ((uint(i) % 2) * 4)) >> 4 if t > 0 { e[0][i] = uint8(t) e[1][i] = 0 mul512(&k[1], &k[1], v) } else if t < 0 { e[1][i] = uint8(-t) e[0][i] = 0 mul512(&k[0], &k[0], v) } else { e[0][i] = 0 e[1][i] = 0 mul512(&k[0], &k[0], v) mul512(&k[1], &k[1], v) } } for { var P point var rhs fp prv.randFp(&P.x, rng) P.z = one montEval(&rhs, &A.a, &P.x) sign := rhs.isNonQuadRes() if done[sign] { continue } xMul(&P, &P, &A, &k[sign]) done[sign] = true for i, v := range primes { if e[sign][i] != 0 { var cof = fp{1} var K point for j := i + 1; j < len(primes); j++ { if e[sign][j] != 0 { mul512(&cof, &cof, primes[j]) } } xMul(&K, &P, &A, &cof) if !K.z.isZero() { xIso(&P, &A, &K, v) e[sign][i] = e[sign][i] - 1 if e[sign][i] == 0 { mul512(&k[sign], &k[sign], primes[i]) } } } done[sign] = done[sign] && (e[sign][i] == 0) } modExpRdc512(&A.c, &A.c, &pMin1) mulRdc(&A.a, &A.a, &A.c) A.c = one if done[0] && done[1] { break } } pub.a = A.a } // PrivateKey operations func (c *PrivateKey) Import(key []byte) bool { if len(key) < len(c.e) { return false } for i, v := range key { c.e[i] = int8(v) } return true } func (c PrivateKey) Export(out []byte) bool { if len(out) < len(c.e) { return false } for i, v := range c.e { out[i] = byte(v) } return true } func GeneratePrivateKey(key *PrivateKey, rng io.Reader) error { for i := range key.e { key.e[i] = 0 } for i := 0; i < len(primes); { _, err := io.ReadFull(rng, key.wbuf[:]) if err != nil { return err } for j := range key.wbuf { if int8(key.wbuf[j]) <= expMax && int8(key.wbuf[j]) >= -expMax { key.e[i>>1] |= int8((key.wbuf[j] & 0xF) << uint((i%2)*4)) i = i + 1 if i == len(primes) { break } } } } return nil } // Public key operations // Assumes key is in Montgomery domain. func (c *PublicKey) Import(key []byte) bool { if len(key) != numWords*limbByteSize { return false } for i := 0; i < len(key); i++ { j := i / limbByteSize k := uint64(i % 8) c.a[j] |= uint64(key[i]) << (8 * k) } return true } // Assumes key is exported as encoded in Montgomery domain. func (c *PublicKey) Export(out []byte) bool { if len(out) != numWords*limbByteSize { return false } for i := 0; i < len(out); i++ { j := i / limbByteSize k := uint64(i % 8) out[i] = byte(c.a[j] >> (8 * k)) } return true } func GeneratePublicKey(pub *PublicKey, prv *PrivateKey, rng io.Reader) { for i := range pub.a { pub.a[i] = 0 } groupAction(pub, prv, rng) } // Validate returns true if 'pub' is a valid cSIDH public key, // otherwise false. // More precisely, the function verifies that curve // y^2 = x^3 + pub.a * x^2 + x // is supersingular. func Validate(pub *PublicKey, rng io.Reader) bool { // Check if in range if !isLess(&pub.a, &p) { return false } // Check if pub represents a smooth Montgomery curve. if pub.a.equal(&two) || pub.a.equal(&twoNeg) { return false } // Check if pub represents a supersingular curve. for { var P point var A = point{pub.a, one} // Randomly chosen P must have big enough order to check // supersingularity. Probability of random P having big // enough order is very high, as proven by W.Castryck et // al. (ia.cr/2018/383, ch 5) pub.randFp(&P.x, rng) P.z = one xDbl(&P, &P, &A) xDbl(&P, &P, &A) done, res := cofactorMul(&P, &coeff{A.x, A.z}, 0, len(primes), &fp{1}) if done { return res } } } // DeriveSecret computes a cSIDH shared secret. If successful, returns true // and fills 'out' with shared secret. Function returns false in case 'pub' is invalid. // More precisely, shared secret is a Montgomery coefficient A of a secret // curve y^2 = x^3 + Ax^2 + x, computed by applying action of a prv.e // on a curve represented by pub.a. func DeriveSecret(out *[64]byte, pub *PublicKey, prv *PrivateKey, rng io.Reader) bool { if !Validate(pub, rng) { return false } groupAction(pub, prv, rng) pub.Export(out[:]) return true }