mirror of
https://github.com/henrydcase/nobs.git
synced 2024-11-29 10:21:23 +00:00
333 lines
7.2 KiB
Go
333 lines
7.2 KiB
Go
package csidh
|
|
|
|
import (
|
|
"io"
|
|
)
|
|
|
|
// 511-bit number representing prime field element GF(p)
|
|
type fp [numWords]uint64
|
|
|
|
// Represents projective point on elliptic curve E over GF(p)
|
|
type point struct {
|
|
x fp
|
|
z fp
|
|
}
|
|
|
|
// Curve coefficients
|
|
type coeff struct {
|
|
a fp
|
|
c fp
|
|
}
|
|
|
|
type fpRngGen struct {
|
|
// working buffer needed to avoid memory allocation
|
|
wbuf [64]byte
|
|
}
|
|
|
|
// Defines operations on public key
|
|
type PublicKey struct {
|
|
fpRngGen
|
|
// Montgomery coefficient A from GF(p) of the elliptic curve
|
|
// y^2 = x^3 + Ax^2 + x.
|
|
a fp
|
|
}
|
|
|
|
// Defines operations on private key
|
|
type PrivateKey struct {
|
|
fpRngGen
|
|
// private key is a set of integers randomly
|
|
// each sampled from a range [-5, 5].
|
|
e [PrivateKeySize]int8
|
|
}
|
|
|
|
// randFp generates random element from Fp.
|
|
func (s *fpRngGen) randFp(v *fp, rng io.Reader) {
|
|
mask := uint64(1<<(pbits%limbBitSize)) - 1
|
|
for {
|
|
*v = fp{}
|
|
_, err := io.ReadFull(rng, s.wbuf[:])
|
|
if err != nil {
|
|
panic("Can't read random number")
|
|
}
|
|
|
|
for i := 0; i < len(s.wbuf); i++ {
|
|
j := i / limbByteSize
|
|
k := uint(i % 8)
|
|
v[j] |= uint64(s.wbuf[i]) << (8 * k)
|
|
}
|
|
|
|
v[len(v)-1] &= mask
|
|
if isLess(v, &p) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// cofactorMul helper implements batch cofactor multiplication as described
|
|
// in the ia.cr/2018/383 (algo. 3). Returns tuple of two booleans, first indicates
|
|
// if function has finished successfully. In case first return value is true,
|
|
// second return value indicates if curve represented by coffactor 'a' is
|
|
// supersingular.
|
|
// Implemenation uses divide-and-conquer strategy and recursion in order to
|
|
// speed up calculation of Q_i = [(p+1)/l_i] * P.
|
|
// Implementation is not constant time, but it operates on public data only.
|
|
func cofactorMul(p *point, a *coeff, halfL, halfR int, order *fp) (bool, bool) {
|
|
var Q point
|
|
var r1, d1, r2, d2 bool
|
|
if (halfR - halfL) == 1 {
|
|
// base case
|
|
if !p.z.isZero() {
|
|
var tmp = fp{primes[halfL]}
|
|
xMul(p, p, a, &tmp)
|
|
|
|
if !p.z.isZero() {
|
|
// order does not divide p+1 -> ordinary curve
|
|
return true, false
|
|
}
|
|
|
|
mul512(order, order, primes[halfL])
|
|
if isLess(&fourSqrtP, order) {
|
|
// order > 4*sqrt(p) -> supersingular curve
|
|
return true, true
|
|
}
|
|
}
|
|
return false, false
|
|
}
|
|
|
|
// perform another recursive step
|
|
mid := halfL + ((halfR - halfL + 1) / 2)
|
|
var mulL, mulR = fp{1}, fp{1}
|
|
// compute u = primes_1 * ... * primes_m
|
|
for i := halfL; i < mid; i++ {
|
|
mul512(&mulR, &mulR, primes[i])
|
|
}
|
|
// compute v = primes_m+1 * ... * primes_n
|
|
for i := mid; i < halfR; i++ {
|
|
mul512(&mulL, &mulL, primes[i])
|
|
}
|
|
|
|
// calculate Q_i
|
|
xMul(&Q, p, a, &mulR)
|
|
xMul(p, p, a, &mulL)
|
|
|
|
d1, r1 = cofactorMul(&Q, a, mid, halfR, order)
|
|
d2, r2 = cofactorMul(p, a, halfL, mid, order)
|
|
return d1 || d2, r1 || r2
|
|
}
|
|
|
|
// groupAction evaluates group action of prv.e on a Montgomery
|
|
// curve represented by coefficient pub.A.
|
|
// This is implementation of algorithm 2 from ia.cr/2018/383.
|
|
func groupAction(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
|
|
var k [2]fp
|
|
var e [2][primeCount]uint8
|
|
var done = [2]bool{false, false}
|
|
var A = coeff{a: pub.a, c: one}
|
|
|
|
k[0][0] = 4
|
|
k[1][0] = 4
|
|
|
|
for i, v := range primes {
|
|
t := (prv.e[uint(i)>>1] << ((uint(i) % 2) * 4)) >> 4
|
|
if t > 0 {
|
|
e[0][i] = uint8(t)
|
|
e[1][i] = 0
|
|
mul512(&k[1], &k[1], v)
|
|
} else if t < 0 {
|
|
e[1][i] = uint8(-t)
|
|
e[0][i] = 0
|
|
mul512(&k[0], &k[0], v)
|
|
} else {
|
|
e[0][i] = 0
|
|
e[1][i] = 0
|
|
mul512(&k[0], &k[0], v)
|
|
mul512(&k[1], &k[1], v)
|
|
}
|
|
}
|
|
|
|
for {
|
|
var P point
|
|
var rhs fp
|
|
prv.randFp(&P.x, rng)
|
|
P.z = one
|
|
montEval(&rhs, &A.a, &P.x)
|
|
sign := rhs.isNonQuadRes()
|
|
|
|
if done[sign] {
|
|
continue
|
|
}
|
|
|
|
xMul(&P, &P, &A, &k[sign])
|
|
done[sign] = true
|
|
|
|
for i, v := range primes {
|
|
if e[sign][i] != 0 {
|
|
var cof = fp{1}
|
|
var K point
|
|
|
|
for j := i + 1; j < len(primes); j++ {
|
|
if e[sign][j] != 0 {
|
|
mul512(&cof, &cof, primes[j])
|
|
}
|
|
}
|
|
|
|
xMul(&K, &P, &A, &cof)
|
|
if !K.z.isZero() {
|
|
xIso(&P, &A, &K, v)
|
|
e[sign][i] = e[sign][i] - 1
|
|
if e[sign][i] == 0 {
|
|
mul512(&k[sign], &k[sign], primes[i])
|
|
}
|
|
}
|
|
}
|
|
done[sign] = done[sign] && (e[sign][i] == 0)
|
|
}
|
|
|
|
modExpRdc512(&A.c, &A.c, &pMin1)
|
|
mulRdc(&A.a, &A.a, &A.c)
|
|
A.c = one
|
|
|
|
if done[0] && done[1] {
|
|
break
|
|
}
|
|
}
|
|
pub.a = A.a
|
|
}
|
|
|
|
// PrivateKey operations
|
|
|
|
func (c *PrivateKey) Import(key []byte) bool {
|
|
if len(key) < len(c.e) {
|
|
return false
|
|
}
|
|
for i, v := range key {
|
|
c.e[i] = int8(v)
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (c PrivateKey) Export(out []byte) bool {
|
|
if len(out) < len(c.e) {
|
|
return false
|
|
}
|
|
for i, v := range c.e {
|
|
out[i] = byte(v)
|
|
}
|
|
return true
|
|
}
|
|
|
|
func GeneratePrivateKey(key *PrivateKey, rng io.Reader) error {
|
|
for i := range key.e {
|
|
key.e[i] = 0
|
|
}
|
|
|
|
for i := 0; i < len(primes); {
|
|
_, err := io.ReadFull(rng, key.wbuf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for j := range key.wbuf {
|
|
if int8(key.wbuf[j]) <= expMax && int8(key.wbuf[j]) >= -expMax {
|
|
key.e[i>>1] |= int8((key.wbuf[j] & 0xF) << uint((i%2)*4))
|
|
i = i + 1
|
|
if i == len(primes) {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Public key operations
|
|
|
|
// Assumes key is in Montgomery domain.
|
|
func (c *PublicKey) Import(key []byte) bool {
|
|
if len(key) != numWords*limbByteSize {
|
|
return false
|
|
}
|
|
for i := 0; i < len(key); i++ {
|
|
j := i / limbByteSize
|
|
k := uint64(i % 8)
|
|
c.a[j] |= uint64(key[i]) << (8 * k)
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Assumes key is exported as encoded in Montgomery domain.
|
|
func (c *PublicKey) Export(out []byte) bool {
|
|
if len(out) != numWords*limbByteSize {
|
|
return false
|
|
}
|
|
for i := 0; i < len(out); i++ {
|
|
j := i / limbByteSize
|
|
k := uint64(i % 8)
|
|
out[i] = byte(c.a[j] >> (8 * k))
|
|
}
|
|
return true
|
|
}
|
|
|
|
func GeneratePublicKey(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
|
|
for i := range pub.a {
|
|
pub.a[i] = 0
|
|
}
|
|
groupAction(pub, prv, rng)
|
|
}
|
|
|
|
// Validate returns true if 'pub' is a valid cSIDH public key,
|
|
// otherwise false.
|
|
// More precisely, the function verifies that curve
|
|
// y^2 = x^3 + pub.a * x^2 + x
|
|
// is supersingular.
|
|
func Validate(pub *PublicKey, rng io.Reader) bool {
|
|
// Check if in range
|
|
if !isLess(&pub.a, &p) {
|
|
return false
|
|
}
|
|
|
|
// Check if pub represents a smooth Montgomery curve.
|
|
if pub.a.equal(&two) || pub.a.equal(&twoNeg) {
|
|
return false
|
|
}
|
|
|
|
// Check if pub represents a supersingular curve.
|
|
for {
|
|
var P point
|
|
var A = point{pub.a, one}
|
|
|
|
// Randomly chosen P must have big enough order to check
|
|
// supersingularity. Probability of random P having big
|
|
// enough order is very high, as proven by W.Castryck et
|
|
// al. (ia.cr/2018/383, ch 5)
|
|
pub.randFp(&P.x, rng)
|
|
P.z = one
|
|
|
|
xDbl(&P, &P, &A)
|
|
xDbl(&P, &P, &A)
|
|
|
|
done, res := cofactorMul(&P, &coeff{A.x, A.z}, 0, len(primes), &fp{1})
|
|
if done {
|
|
return res
|
|
}
|
|
}
|
|
}
|
|
|
|
// DeriveSecret computes a cSIDH shared secret. If successful, returns true
|
|
// and fills 'out' with shared secret. Function returns false in case 'pub' is invalid.
|
|
// More precisely, shared secret is a Montgomery coefficient A of a secret
|
|
// curve y^2 = x^3 + Ax^2 + x, computed by applying action of a prv.e
|
|
// on a curve represented by pub.a.
|
|
func DeriveSecret(out *[64]byte, pub *PublicKey, prv *PrivateKey, rng io.Reader) bool {
|
|
var pk PublicKey
|
|
|
|
if !Validate(pub, rng) {
|
|
return false
|
|
}
|
|
// Resulting shared secret is stored in the pk
|
|
copy(pk.a[:], pub.a[:])
|
|
groupAction(&pk, prv, rng)
|
|
pk.Export(out[:])
|
|
return true
|
|
}
|