1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-23 07:38:56 +00:00
nobs/dh/sidh/p751/arith_test.go

323 lines
8.1 KiB
Go

package p751
import (
. "github.com/henrydcase/nobs/dh/sidh/internal/isogeny"
"math/big"
"testing"
"testing/quick"
)
func TestPrimeFieldElementToBigInt(t *testing.T) {
// Chosen so that p < xR < 2p
x := primeFieldElement{A: FpElement{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 140737488355328,
}}
// Computed using Sage:
// sage: p = 2^372 * 3^239 - 1
// sage: R = 2^768
// sage: from_radix_64 = lambda xs: sum((xi * (2**64)**i for i,xi in enumerate(xs)))
// sage: xR = from_radix_64([1]*11 + [2^47])
// sage: assert(p < xR)
// sage: assert(xR < 2*p)
// sage: (xR / R) % p
xBig, _ := new(big.Int).SetString("4469946751055876387821312289373600189787971305258234719850789711074696941114031433609871105823930699680637820852699269802003300352597419024286385747737509380032982821081644521634652750355306547718505685107272222083450567982240", 10)
if xBig.Cmp(toBigInt(&x.A)) != 0 {
t.Error("Expected", xBig, "found", toBigInt(&x.A))
}
}
//------------------------------------------------------------------------------
// Extended Field
//------------------------------------------------------------------------------
func TestOneFp2ToBytes(t *testing.T) {
var x = P751_OneFp2
var xBytes [188]byte
kCurveOps.Fp2ToBytes(xBytes[:], &x)
if xBytes[0] != 1 {
t.Error("Expected 1, got", xBytes[0])
}
for i := 1; i < 188; i++ {
if xBytes[i] != 0 {
t.Error("Expected 0, got", xBytes[0])
}
}
}
func TestFp2ElementToBytesRoundTrip(t *testing.T) {
roundTrips := func(x GeneratedTestParams) bool {
var xBytes [188]byte
var xPrime Fp2Element
kCurveOps.Fp2ToBytes(xBytes[:], &x.ExtElem)
kCurveOps.Fp2FromBytes(&xPrime, xBytes[:])
return VartimeEqFp2(&xPrime, &x.ExtElem)
}
if err := quick.Check(roundTrips, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2ElementMulDistributesOverAdd(t *testing.T) {
mulDistributesOverAdd := func(x, y, z GeneratedTestParams) bool {
// Compute t1 = (x+y)*z
t1 := new(Fp2Element)
kFieldOps.Add(t1, &x.ExtElem, &y.ExtElem)
kFieldOps.Mul(t1, t1, &z.ExtElem)
// Compute t2 = x*z + y*z
t2 := new(Fp2Element)
t3 := new(Fp2Element)
kFieldOps.Mul(t2, &x.ExtElem, &z.ExtElem)
kFieldOps.Mul(t3, &y.ExtElem, &z.ExtElem)
kFieldOps.Add(t2, t2, t3)
return VartimeEqFp2(t1, t2)
}
if err := quick.Check(mulDistributesOverAdd, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2ElementMulIsAssociative(t *testing.T) {
isAssociative := func(x, y, z GeneratedTestParams) bool {
// Compute t1 = (x*y)*z
t1 := new(Fp2Element)
kFieldOps.Mul(t1, &x.ExtElem, &y.ExtElem)
kFieldOps.Mul(t1, t1, &z.ExtElem)
// Compute t2 = (y*z)*x
t2 := new(Fp2Element)
kFieldOps.Mul(t2, &y.ExtElem, &z.ExtElem)
kFieldOps.Mul(t2, t2, &x.ExtElem)
return VartimeEqFp2(t1, t2)
}
if err := quick.Check(isAssociative, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2ElementSquareMatchesMul(t *testing.T) {
sqrMatchesMul := func(x GeneratedTestParams) bool {
// Compute t1 = (x*x)
t1 := new(Fp2Element)
kFieldOps.Mul(t1, &x.ExtElem, &x.ExtElem)
// Compute t2 = x^2
t2 := new(Fp2Element)
kFieldOps.Square(t2, &x.ExtElem)
return VartimeEqFp2(t1, t2)
}
if err := quick.Check(sqrMatchesMul, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2ElementInv(t *testing.T) {
inverseIsCorrect := func(x GeneratedTestParams) bool {
z := new(Fp2Element)
kFieldOps.Inv(z, &x.ExtElem)
// Now z = (1/x), so (z * x) * x == x
kFieldOps.Mul(z, z, &x.ExtElem)
kFieldOps.Mul(z, z, &x.ExtElem)
return VartimeEqFp2(z, &x.ExtElem)
}
// This is more expensive; run fewer tests
var quickCheckConfig = &quick.Config{MaxCount: (1 << (8 + quickCheckScaleFactor))}
if err := quick.Check(inverseIsCorrect, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2ElementBatch3Inv(t *testing.T) {
batchInverseIsCorrect := func(x1, x2, x3 GeneratedTestParams) bool {
var x1Inv, x2Inv, x3Inv Fp2Element
kFieldOps.Inv(&x1Inv, &x1.ExtElem)
kFieldOps.Inv(&x2Inv, &x2.ExtElem)
kFieldOps.Inv(&x3Inv, &x3.ExtElem)
var y1, y2, y3 Fp2Element
kCurveOps.Fp2Batch3Inv(&x1.ExtElem, &x2.ExtElem, &x3.ExtElem, &y1, &y2, &y3)
return (VartimeEqFp2(&x1Inv, &y1) && VartimeEqFp2(&x2Inv, &y2) && VartimeEqFp2(&x3Inv, &y3))
}
// This is more expensive; run fewer tests
var quickCheckConfig = &quick.Config{MaxCount: (1 << (5 + quickCheckScaleFactor))}
if err := quick.Check(batchInverseIsCorrect, quickCheckConfig); err != nil {
t.Error(err)
}
}
//------------------------------------------------------------------------------
// Prime Field
//------------------------------------------------------------------------------
func TestPrimeFieldElementMulVersusBigInt(t *testing.T) {
mulMatchesBigInt := func(x, y primeFieldElement) bool {
z := new(primeFieldElement)
z.Mul(&x, &y)
check := new(big.Int)
check.Mul(toBigInt(&x.A), toBigInt(&y.A))
check.Mod(check, cln16prime)
return check.Cmp(toBigInt(&z.A)) == 0
}
if err := quick.Check(mulMatchesBigInt, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestPrimeFieldElementP34VersusBigInt(t *testing.T) {
var p34, _ = new(big.Int).SetString("2588679435442326313244442059466701330356847411387267792529047419763669735170619711625720724140266678406138302904710050596300977994130638598261040117192787954244176710019728333589599932738193731745058771712747875468166412894207", 10)
p34MatchesBigInt := func(x primeFieldElement) bool {
z := new(primeFieldElement)
z.P34(&x)
check := toBigInt(&x.A)
check.Exp(check, p34, cln16prime)
return check.Cmp(toBigInt(&z.A)) == 0
}
// This is more expensive; run fewer tests
var quickCheckConfig = &quick.Config{MaxCount: (1 << (8 + quickCheckScaleFactor))}
if err := quick.Check(p34MatchesBigInt, quickCheckConfig); err != nil {
t.Error(err)
}
}
func BenchmarkFp2ElementMul(b *testing.B) {
z := &Fp2Element{A: bench_x, B: bench_y}
w := new(Fp2Element)
for n := 0; n < b.N; n++ {
kFieldOps.Mul(w, z, z)
}
}
func BenchmarkFp2ElementInv(b *testing.B) {
z := &Fp2Element{A: bench_x, B: bench_y}
w := new(Fp2Element)
for n := 0; n < b.N; n++ {
kFieldOps.Inv(w, z)
}
}
func BenchmarkFp2ElementSquare(b *testing.B) {
z := &Fp2Element{A: bench_x, B: bench_y}
w := new(Fp2Element)
for n := 0; n < b.N; n++ {
kFieldOps.Square(w, z)
}
}
func BenchmarkFp2ElementAdd(b *testing.B) {
z := &Fp2Element{A: bench_x, B: bench_y}
w := new(Fp2Element)
for n := 0; n < b.N; n++ {
kFieldOps.Add(w, z, z)
}
}
func BenchmarkFp2ElementSub(b *testing.B) {
z := &Fp2Element{A: bench_x, B: bench_y}
w := new(Fp2Element)
for n := 0; n < b.N; n++ {
kFieldOps.Sub(w, z, z)
}
}
func BenchmarkPrimeFieldElementMul(b *testing.B) {
z := &primeFieldElement{A: bench_x}
w := new(primeFieldElement)
for n := 0; n < b.N; n++ {
w.Mul(z, z)
}
}
// --- field operation functions
func BenchmarkFp751Multiply(b *testing.B) {
for n := 0; n < b.N; n++ {
fp751Mul(&benchmarkFpElementX2, &bench_x, &bench_y)
}
}
func BenchmarkFp751MontgomeryReduce(b *testing.B) {
z := bench_z
// This benchmark actually computes garbage, because
// fp751MontgomeryReduce mangles its input, but since it's
// constant-time that shouldn't matter for the benchmarks.
for n := 0; n < b.N; n++ {
fp751MontgomeryReduce(&benchmarkFpElement, &z)
}
}
func BenchmarkFp751AddReduced(b *testing.B) {
for n := 0; n < b.N; n++ {
fp751AddReduced(&benchmarkFpElement, &bench_x, &bench_y)
}
}
func BenchmarkFp751SubReduced(b *testing.B) {
for n := 0; n < b.N; n++ {
fp751SubReduced(&benchmarkFpElement, &bench_x, &bench_y)
}
}
func BenchmarkFp751ConditionalSwap(b *testing.B) {
x, y := bench_x, bench_y
for n := 0; n < b.N; n++ {
fp751ConditionalSwap(&x, &y, 1)
fp751ConditionalSwap(&x, &y, 0)
}
}
func BenchmarkFp751StrongReduce(b *testing.B) {
x := bench_x
for n := 0; n < b.N; n++ {
fp751StrongReduce(&x)
}
}
func BenchmarkFp751AddLazy(b *testing.B) {
var z FpElement
x, y := bench_x, bench_y
for n := 0; n < b.N; n++ {
fp751AddLazy(&z, &x, &y)
}
}
func BenchmarkFp751X2AddLazy(b *testing.B) {
x, y, z := bench_z, bench_z, bench_z
for n := 0; n < b.N; n++ {
fp751X2AddLazy(&x, &y, &z)
}
}
func BenchmarkFp751X2SubLazy(b *testing.B) {
x, y, z := bench_z, bench_z, bench_z
for n := 0; n < b.N; n++ {
fp751X2SubLazy(&x, &y, &z)
}
}