diff --git a/crypto_sign/rainbowIIIc-classic/META.yml b/crypto_sign/rainbowIIIc-classic/META.yml
new file mode 100644
index 00000000..969d65ca
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-IIIc-classic
+type: signature
+claimed-nist-level: 3
+length-public-key: 710640
+length-secret-key: 511448
+length-signature: 156
+nistkat-sha256: 199cf313d96a4fbb481c50e568ac0222ec955b3e20551d0fadbb6c5e97bd1ada
+testvectors-sha256: e738081bcc34228184645dd79237daabc89b7ed22172637b6c10f51dd1e417d9
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowIIIc-classic/clean/LICENSE b/crypto_sign/rainbowIIIc-classic/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowIIIc-classic/clean/Makefile b/crypto_sign/rainbowIIIc-classic/clean/Makefile
new file mode 100644
index 00000000..3da2aefd
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowIIIc-classic_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowIIIc-classic/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowIIIc-classic/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..0ad2236e
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowIIIc-classic_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowIIIc-classic/clean/api.h b/crypto_sign/rainbowIIIc-classic/clean/api.h
new file mode 100644
index 00000000..9dc88a7d
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_API_H
+#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_SECRETKEYBYTES 511448
+#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_PUBLICKEYBYTES 710640
+#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_BYTES 156
+#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,68,36,36) - classic"
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowIIIc-classic/clean/blas.h b/crypto_sign/rainbowIIIc-classic/clean/blas.h
new file mode 100644
index 00000000..e0cb28c2
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/blas.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_add_u32
+
+
+#define gf256v_mul_scalar PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar_u32
+#define gf256v_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/blas_comm.c b/crypto_sign/rainbowIIIc-classic/clean/blas_comm.c
new file mode 100644
index 00000000..9f4ecb99
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/blas_comm.c
@@ -0,0 +1,153 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i) {
+ return a[i];
+}
+
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte) {
+ uint8_t r = 0;
+ while ( _num_byte-- ) {
+ r |= a[0];
+ a++;
+ }
+ return (0 == r);
+}
+
+/// polynomial multplication
+/// School boook
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num) {
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(c, _num * 2 - 1);
+ for (unsigned i = 0; i < _num; i++) {
+ gf256v_madd(c + i, a, b[i], _num);
+ }
+}
+
+static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ gf256v_madd(c, matA, b[i], n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = len_vec;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf256mat_gauss_elim_ref( uint8_t *mat, unsigned h, unsigned w ) {
+ unsigned r8 = 1;
+
+ for (unsigned i = 0; i < h; i++) {
+ uint8_t *ai = mat + w * i;
+ unsigned skip_len_align4 = i & ((unsigned)~0x3);
+
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + w * j;
+ gf256v_predicated_add( ai + skip_len_align4, !PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4 );
+ }
+ r8 &= PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(ai[i]);
+ uint8_t pivot = ai[i];
+ pivot = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_inv( pivot );
+ gf256v_mul_scalar( ai + skip_len_align4, pivot, w - skip_len_align4 );
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + w * j;
+ gf256v_madd( aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4 );
+ }
+ }
+
+ return r8;
+}
+
+static
+unsigned gf256mat_solve_linear_eq_ref( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ uint8_t mat[ 64 * 64 ];
+ for (unsigned i = 0; i < n; i++) {
+ memcpy( mat + i * (n + 1), inp_mat + i * n, n );
+ mat[i * (n + 1) + n] = c_terms[i];
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim( mat, n, n + 1 );
+ for (unsigned i = 0; i < n; i++) {
+ sol[i] = mat[i * (n + 1) + n];
+ }
+ return r8;
+}
+
+
+
+static inline
+void gf256mat_submat( uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h ) {
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < w2; j++) {
+ mat2[i * w2 + j] = mat[i * w + st + j];
+ }
+ }
+}
+
+
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_inv( uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer ) {
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * H;
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero( ai, 2 * H );
+ gf256v_add( ai, a + i * H, H );
+ ai[H + i] = 1;
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim( aa, H, 2 * H );
+ gf256mat_submat( inv_a, H, H, aa, 2 * H, H );
+ return r8;
+}
+
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf256mat_prod_impl gf256mat_prod_ref
+#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref
+#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf256mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim( uint8_t *mat, unsigned h, unsigned w ) {
+ return gf256mat_gauss_elim_impl( mat, h, w );
+}
+
+
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf256mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/blas_comm.h b/crypto_sign/rainbowIIIc-classic/clean/blas_comm.h
new file mode 100644
index 00000000..28ca3646
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/blas_comm.h
@@ -0,0 +1,96 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i);
+
+
+
+/// @brief check if a vector is 0.
+///
+/// @param[in] a - the vector a.
+/// @param[in] _num_byte - number of bytes for the vector a.
+/// @return 1(true) if a is 0. 0(false) else.
+///
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte);
+
+
+/// @brief polynomial multiplication: c = a*b
+///
+/// @param[out] c - the output polynomial c
+/// @param[in] a - the vector a.
+/// @param[in] b - the vector b.
+/// @param[in] _num - number of elements for the polynomials a and b.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num);
+
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(256)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(256)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(256)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/blas_u32.c b/crypto_sign/rainbowIIIc-classic/clean/blas_u32.c
new file mode 100644
index 00000000..5f197cfc
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/blas_u32.c
@@ -0,0 +1,90 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(a_u32[i], b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(t.u32, b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(t.u32, gf256_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/blas_u32.h b/crypto_sign/rainbowIIIc-classic/clean/blas_u32.h
new file mode 100644
index 00000000..18d95d09
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/blas_u32.h
@@ -0,0 +1,19 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte);
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/gf.c b/crypto_sign/rainbowIIIc-classic/clean/gf.c
new file mode 100644
index 00000000..3b034f5d
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/gf.c
@@ -0,0 +1,142 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(uint8_t a) {
+ unsigned a8 = a;
+ unsigned r = ((unsigned) 0) - a8;
+ r >>= 8;
+ return r & 1;
+}
+
+static inline uint8_t gf4_mul_3(uint8_t a) {
+ uint8_t msk = (uint8_t) ((a - 2) >> 1);
+ return (uint8_t) ((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1)));
+}
+static inline uint8_t gf16_mul_8(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = a >> 2;
+ return (uint8_t) ((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1));
+}
+
+// gf256 := gf16[X]/X^2+X+xy
+static inline uint8_t gf256_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ uint8_t b0 = b & 15;
+ uint8_t b1 = (b >> 4);
+ uint8_t a0b0 = gf16_mul(a0, b0);
+ uint8_t a1b1 = gf16_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x8 = gf16_mul_8(a1b1);
+ return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8);
+}
+
+static inline uint8_t gf256_squ(uint8_t a) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ a1 = gf16_squ(a1);
+ uint8_t a1squ_x8 = gf16_mul_8(a1);
+ return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0));
+}
+
+uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_inv(uint8_t a) {
+ // 128+64+32+16+8+4+2 = 254
+ uint8_t a2 = gf256_squ(a);
+ uint8_t a4 = gf256_squ(a2);
+ uint8_t a8 = gf256_squ(a4);
+ uint8_t a4_2 = gf256_mul(a4, a2);
+ uint8_t a8_4_2 = gf256_mul(a4_2, a8);
+ uint8_t a64_ = gf256_squ(a8_4_2);
+ a64_ = gf256_squ(a64_);
+ a64_ = gf256_squ(a64_);
+ uint8_t a64_2 = gf256_mul(a64_, a8_4_2);
+ uint8_t a128_ = gf256_squ(a64_2);
+ return gf256_mul(a2, a128_);
+}
+
+static inline uint32_t gf4v_mul_3_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit0 ^ (bit1 >> 1);
+}
+static inline uint32_t gf16v_mul_8_u32(uint32_t a) {
+ uint32_t a1 = a & 0xcccccccc;
+ uint32_t a0 = (a << 2) & 0xcccccccc;
+ return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2);
+}
+uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(a, b);
+ uint32_t axb1 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(a, b >> 4);
+ uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0;
+ uint32_t a1b1 = axb1 & 0xf0f0f0f0;
+ uint32_t a1b1_4 = a1b1 >> 4;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4);
+}
diff --git a/crypto_sign/rainbowIIIc-classic/clean/gf.h b/crypto_sign/rainbowIIIc-classic/clean/gf.h
new file mode 100644
index 00000000..14530418
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/gf.h
@@ -0,0 +1,19 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowIIIc-classic/clean/parallel_matrix_op.c b/crypto_sign/rainbowIIIc-classic/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..79310cb2
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/parallel_matrix_op.c
@@ -0,0 +1,186 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf256v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf256v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf256v_madd( y, tmp, _x[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf256v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf256v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/parallel_matrix_op.h b/crypto_sign/rainbowIIIc-classic/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..638ab9ed
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow.c b/crypto_sign/rainbowIIIc-classic/clean/rainbow.c
new file mode 100644
index 00000000..392630ce
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow.c
@@ -0,0 +1,170 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow.h b/crypto_sign/rainbowIIIc-classic/clean/rainbow.h
new file mode 100644
index 00000000..0925514a
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow_blas.h b/crypto_sign/rainbowIIIc-classic/clean/rainbow_blas.h
new file mode 100644
index 00000000..601ee5e7
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf256
+#define batch_trimatTr_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf256
+#define batch_2trimat_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf256
+#define batch_matTr_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf256
+#define batch_bmatTr_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf256
+#define batch_mat_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf256
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf256
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf256
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow_config.h b/crypto_sign/rainbowIIIc-classic/clean/rainbow_config.h
new file mode 100644
index 00000000..44cba4f3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow_config.h
@@ -0,0 +1,50 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _GFSIZE 256
+#define _V1 68
+#define _O1 36
+#define _O2 36
+#define _HASH_LEN 48
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF256
+#define _V1_BYTE (_V1)
+#define _V2_BYTE (_V2)
+#define _O1_BYTE (_O1)
+#define _O2_BYTE (_O2)
+#define _PUB_N_BYTE (_PUB_N)
+#define _PUB_M_BYTE (_PUB_M)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair.c b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair.c
new file mode 100644
index 00000000..de8e9de3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair.c
@@ -0,0 +1,139 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+static
+void _generate_secretkey( sk_t *sk, const unsigned char *sk_seed ) {
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // set up prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set( &prng0, sk_seed, LEN_SKSEED );
+
+ // generating secret key with prng.
+ generate_S_T( sk->s1, &prng0 );
+ generate_B1_B2( sk->l1_F1, &prng0 );
+
+ // clean prng
+ memset( &prng0, 0, sizeof(prng_t) );
+}
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_generate_keypair( pk_t *rpk, sk_t *sk, const unsigned char *sk_seed ) {
+ _generate_secretkey( sk, sk_seed );
+
+ // set up a temporary structure ext_cpk_t for calculating public key.
+ ext_cpk_t pk;
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_calculate_Q_from_F( &pk, sk, sk ); // compute the public key in ext_cpk_t format.
+ calculate_t4( sk->t4, sk->t1, sk->t3 );
+
+ obsfucate_l1_polys( pk.l1_Q1, pk.l2_Q1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q2, pk.l2_Q2, _V1 * _O1, sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q3, pk.l2_Q3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q5, pk.l2_Q5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q6, pk.l2_Q6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q9, pk.l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+ // so far, the pk contains the full pk but in ext_cpk_t format.
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_extcpk_to_pk( rpk, &pk ); // convert the public key from ext_cpk_t to pk_t.
+}
+
+
+
+
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair.h b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair.h
new file mode 100644
index 00000000..9a6c6c81
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair.h
@@ -0,0 +1,72 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+
+
+///
+/// @brief Generate key pairs for classic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_generate_keypair( pk_t *pk, sk_t *sk, const unsigned char *sk_seed );
+
+
+
+
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..b837b994
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair_computation.c
@@ -0,0 +1,197 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+static
+void calculate_Q_from_F_ref( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ /*
+ Layer 1
+ Computing :
+ Q_pk.l1_F1s[i] = F_sk.l1_F1s[i]
+
+ Q_pk.l1_F2s[i] = (F1* T1 + F2) + F1tr * t1
+ Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ */
+ const unsigned char *t2 = Ts->t4;
+
+ memcpy( Qs->l1_Q1, Fs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ memcpy( Qs->l1_Q2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Qs->l1_Q2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // l1_Q5 : _O1_BYTE * _O1 * _O1
+ // l1_Q9 : _O1_BYTE * _O2 * _O2
+ // l2_Q5 : _O2_BYTE * _V1 * _O1
+ // l2_Q9 : _O2_BYTE * _V1 * _O2
+
+
+ unsigned char tempQ[_O1_BYTE * _O1 * _O1 + 32];
+
+ memset( tempQ, 0, _O1_BYTE * _O1 * _O1 ); // l1_Q5
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q2, _O1, _O1_BYTE ); // t1_tr*(F1*T1 + F2)
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ batch_trimatTr_madd( Qs->l1_Q2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // Q2
+ /*
+ Computing:
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ, 0, _O1_BYTE * _O2 * _O2 ); // l1_Q9
+ batch_matTr_madd( tempQ, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+
+ /*
+ layer 2
+ Computing:
+ Q1 = F1
+ Q2 = F1_F1T*T1 + F2
+ Q5 = UT( T1tr( F1*T1 + F2 ) + F5 )
+ */
+ memcpy( Qs->l2_Q1, Fs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ memcpy( Qs->l2_Q2, Fs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Qs->l2_Q2, Fs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F1*T1 + F2
+
+ memcpy( Qs->l2_Q5, Fs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) );
+ memset( tempQ, 0, _O2_BYTE * _O1 * _O1 ); // l2_Q5
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l2_Q2, _O1, _O2_BYTE ); // t1_tr*(F1*T1 + F2)
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize( Qs->l2_Q5, tempQ, _O1, _O2_BYTE ); // UT( ... ) // Q5
+
+ batch_trimatTr_madd( Qs->l2_Q2, Fs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q2
+
+ /*
+ Computing:
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+
+ Q3 = F1_F1T*T2 + F2*T3 + F3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ Q6 = T1tr*( F1_F1T*T2 + F2*T3 + F3 ) + F2Tr*T2 + F5_F5T*T3 + F6
+ */
+ memcpy( Qs->l2_Q3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 );
+ batch_trimat_madd( Qs->l2_Q3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( Qs->l2_Q3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ, 0, _O2_BYTE * _O2 * _O2 ); // l2_Q9
+ batch_matTr_madd( tempQ, t2, _V1, _V1_BYTE, _O2, Qs->l2_Q3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( Qs->l2_Q6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+
+ batch_trimat_madd( Qs->l2_Q6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+ batch_matTr_madd( tempQ, Ts->t3, _O1, _O1_BYTE, _O2, Qs->l2_Q6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ, _O2, _O2_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l2_Q3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1_F1T_T2 + F2_T3 + F3 // Q3
+
+ batch_bmatTr_madd( Qs->l2_Q6, Fs->l2_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6 + F2tr*T2
+ batch_trimatTr_madd( Qs->l2_Q6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F2tr*T2 + F5_F5T*T3 + F6
+ batch_matTr_madd( Qs->l2_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l2_Q3, _O2, _O2_BYTE ); // Q6
+}
+// TODO: these defines are not really required for a clean implementation - just implement directly
+#define calculate_Q_from_F_impl calculate_Q_from_F_ref
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_impl( Qs, Fs, Ts );
+}
+
+
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..1a532c8a
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/rainbow_keypair_computation.h
@@ -0,0 +1,60 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/sign.c b/crypto_sign/rainbowIIIc-classic/clean/sign.c
new file mode 100644
index 00000000..72586750
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/sign.c
@@ -0,0 +1,92 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_generate_keypair( (pk_t *) pk, (sk_t *) sk, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign( sm + mlen, (const sk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify( digest, sm + mlen[0], (const pk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign( sig, (const sk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify( digest, sig, (const pk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowIIIc-classic/clean/utils_hash.c b/crypto_sign/rainbowIIIc-classic/clean/utils_hash.c
new file mode 100644
index 00000000..6323e528
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha384(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/utils_hash.h b/crypto_sign/rainbowIIIc-classic/clean/utils_hash.h
new file mode 100644
index 00000000..6eafcdaa
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowIIIc-classic/clean/utils_prng.c b/crypto_sign/rainbowIIIc-classic/clean/utils_prng.c
new file mode 100644
index 00000000..7346beb0
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowIIIc-classic/clean/utils_prng.h b/crypto_sign/rainbowIIIc-classic/clean/utils_prng.h
new file mode 100644
index 00000000..6d07e69a
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-classic/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/META.yml b/crypto_sign/rainbowIIIc-cyclic-compressed/META.yml
new file mode 100644
index 00000000..17e9e934
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-IIIc-cyclic-compressed
+type: signature
+claimed-nist-level: 3
+length-public-key: 206744
+length-secret-key: 64
+length-signature: 156
+nistkat-sha256: 1ad6d22a9e98c3e05a6aceb5b892dd75908924733aadfe074b6556e1dbd881c0
+testvectors-sha256: 40df2d3b2eb52aada14469c95e6890c486eaf22dcfca9604bbf528a0b7b75070
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/LICENSE b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/Makefile b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/Makefile
new file mode 100644
index 00000000..602a3d19
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowIIIc-cyclic-compressed_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..0b89148a
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowIIIc-cyclic-compressed_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/api.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/api.h
new file mode 100644
index 00000000..a4a171a9
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_API_H
+#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_SECRETKEYBYTES 64
+#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_PUBLICKEYBYTES 206744
+#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_BYTES 156
+#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,68,36,36) - cyclic compressed"
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas.h
new file mode 100644
index 00000000..159342dc
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_add_u32
+
+
+#define gf256v_mul_scalar PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32
+#define gf256v_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_comm.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_comm.c
new file mode 100644
index 00000000..0d7de845
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_comm.c
@@ -0,0 +1,153 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i) {
+ return a[i];
+}
+
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte) {
+ uint8_t r = 0;
+ while ( _num_byte-- ) {
+ r |= a[0];
+ a++;
+ }
+ return (0 == r);
+}
+
+/// polynomial multplication
+/// School boook
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num) {
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, _num * 2 - 1);
+ for (unsigned i = 0; i < _num; i++) {
+ gf256v_madd(c + i, a, b[i], _num);
+ }
+}
+
+static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ gf256v_madd(c, matA, b[i], n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = len_vec;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf256mat_gauss_elim_ref( uint8_t *mat, unsigned h, unsigned w ) {
+ unsigned r8 = 1;
+
+ for (unsigned i = 0; i < h; i++) {
+ uint8_t *ai = mat + w * i;
+ unsigned skip_len_align4 = i & ((unsigned)~0x3);
+
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + w * j;
+ gf256v_predicated_add( ai + skip_len_align4, !PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4 );
+ }
+ r8 &= PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(ai[i]);
+ uint8_t pivot = ai[i];
+ pivot = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_inv( pivot );
+ gf256v_mul_scalar( ai + skip_len_align4, pivot, w - skip_len_align4 );
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + w * j;
+ gf256v_madd( aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4 );
+ }
+ }
+
+ return r8;
+}
+
+static
+unsigned gf256mat_solve_linear_eq_ref( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ uint8_t mat[ 64 * 64 ];
+ for (unsigned i = 0; i < n; i++) {
+ memcpy( mat + i * (n + 1), inp_mat + i * n, n );
+ mat[i * (n + 1) + n] = c_terms[i];
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim( mat, n, n + 1 );
+ for (unsigned i = 0; i < n; i++) {
+ sol[i] = mat[i * (n + 1) + n];
+ }
+ return r8;
+}
+
+
+
+static inline
+void gf256mat_submat( uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h ) {
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < w2; j++) {
+ mat2[i * w2 + j] = mat[i * w + st + j];
+ }
+ }
+}
+
+
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_inv( uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer ) {
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * H;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( ai, 2 * H );
+ gf256v_add( ai, a + i * H, H );
+ ai[H + i] = 1;
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim( aa, H, 2 * H );
+ gf256mat_submat( inv_a, H, H, aa, 2 * H, H );
+ return r8;
+}
+
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf256mat_prod_impl gf256mat_prod_ref
+#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref
+#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf256mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim( uint8_t *mat, unsigned h, unsigned w ) {
+ return gf256mat_gauss_elim_impl( mat, h, w );
+}
+
+
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf256mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_comm.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_comm.h
new file mode 100644
index 00000000..49a8ba1b
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_comm.h
@@ -0,0 +1,96 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i);
+
+
+
+/// @brief check if a vector is 0.
+///
+/// @param[in] a - the vector a.
+/// @param[in] _num_byte - number of bytes for the vector a.
+/// @return 1(true) if a is 0. 0(false) else.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte);
+
+
+/// @brief polynomial multiplication: c = a*b
+///
+/// @param[out] c - the output polynomial c
+/// @param[in] a - the vector a.
+/// @param[in] b - the vector b.
+/// @param[in] _num - number of elements for the polynomials a and b.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num);
+
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(256)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(256)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(256)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_u32.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_u32.c
new file mode 100644
index 00000000..1c445727
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_u32.c
@@ -0,0 +1,90 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(a_u32[i], b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(t.u32, b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(t.u32, gf256_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_u32.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_u32.h
new file mode 100644
index 00000000..5edfe447
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/blas_u32.h
@@ -0,0 +1,19 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte);
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/gf.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/gf.c
new file mode 100644
index 00000000..91fb0a75
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/gf.c
@@ -0,0 +1,142 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(uint8_t a) {
+ unsigned a8 = a;
+ unsigned r = ((unsigned) 0) - a8;
+ r >>= 8;
+ return r & 1;
+}
+
+static inline uint8_t gf4_mul_3(uint8_t a) {
+ uint8_t msk = (uint8_t) ((a - 2) >> 1);
+ return (uint8_t) ((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1)));
+}
+static inline uint8_t gf16_mul_8(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = a >> 2;
+ return (uint8_t) ((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1));
+}
+
+// gf256 := gf16[X]/X^2+X+xy
+static inline uint8_t gf256_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ uint8_t b0 = b & 15;
+ uint8_t b1 = (b >> 4);
+ uint8_t a0b0 = gf16_mul(a0, b0);
+ uint8_t a1b1 = gf16_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x8 = gf16_mul_8(a1b1);
+ return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8);
+}
+
+static inline uint8_t gf256_squ(uint8_t a) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ a1 = gf16_squ(a1);
+ uint8_t a1squ_x8 = gf16_mul_8(a1);
+ return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0));
+}
+
+uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_inv(uint8_t a) {
+ // 128+64+32+16+8+4+2 = 254
+ uint8_t a2 = gf256_squ(a);
+ uint8_t a4 = gf256_squ(a2);
+ uint8_t a8 = gf256_squ(a4);
+ uint8_t a4_2 = gf256_mul(a4, a2);
+ uint8_t a8_4_2 = gf256_mul(a4_2, a8);
+ uint8_t a64_ = gf256_squ(a8_4_2);
+ a64_ = gf256_squ(a64_);
+ a64_ = gf256_squ(a64_);
+ uint8_t a64_2 = gf256_mul(a64_, a8_4_2);
+ uint8_t a128_ = gf256_squ(a64_2);
+ return gf256_mul(a2, a128_);
+}
+
+static inline uint32_t gf4v_mul_3_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit0 ^ (bit1 >> 1);
+}
+static inline uint32_t gf16v_mul_8_u32(uint32_t a) {
+ uint32_t a1 = a & 0xcccccccc;
+ uint32_t a0 = (a << 2) & 0xcccccccc;
+ return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2);
+}
+uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a, b);
+ uint32_t axb1 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a, b >> 4);
+ uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0;
+ uint32_t a1b1 = axb1 & 0xf0f0f0f0;
+ uint32_t a1b1_4 = a1b1 >> 4;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4);
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/gf.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/gf.h
new file mode 100644
index 00000000..55b49591
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/gf.h
@@ -0,0 +1,19 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/parallel_matrix_op.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..92935540
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/parallel_matrix_op.c
@@ -0,0 +1,186 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf256v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf256v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf256v_madd( y, tmp, _x[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf256v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf256v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/parallel_matrix_op.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..ced939e2
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow.c
new file mode 100644
index 00000000..d5e39f31
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow.c
@@ -0,0 +1,181 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+/////////////// cyclic version ///////////////////////////
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( uint8_t *signature, const csk_t *csk, const uint8_t *digest ) {
+ unsigned char sk[sizeof(sk_t) + 32];
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic((sk_t *)sk, csk->pk_seed, csk->sk_seed ); // generating classic secret key.
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign( signature, (sk_t *) sk, digest );
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk ) {
+ unsigned char pk[sizeof(pk_t) +32];
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_cpk_to_pk( (pk_t *)pk, _pk ); // generating classic public key.
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify( digest, signature, (pk_t *)pk );
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow.h
new file mode 100644
index 00000000..4cfbc3f7
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow.h
@@ -0,0 +1,51 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+///
+/// @brief Signing function for compressed secret key of the cyclic rainbow.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the compressed secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( uint8_t *signature, const csk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function for cyclic public keys.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key of cyclic rainbow.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *pk );
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_blas.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_blas.h
new file mode 100644
index 00000000..fd172eca
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256
+#define batch_trimatTr_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256
+#define batch_2trimat_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256
+#define batch_matTr_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256
+#define batch_bmatTr_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256
+#define batch_mat_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_config.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_config.h
new file mode 100644
index 00000000..44cba4f3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_config.h
@@ -0,0 +1,50 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _GFSIZE 256
+#define _V1 68
+#define _O1 36
+#define _O2 36
+#define _HASH_LEN 48
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF256
+#define _V1_BYTE (_V1)
+#define _V2_BYTE (_V2)
+#define _O1_BYTE (_O1)
+#define _O2_BYTE (_O2)
+#define _PUB_N_BYTE (_PUB_N)
+#define _PUB_M_BYTE (_PUB_M)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair.c
new file mode 100644
index 00000000..f6ac5b29
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair.c
@@ -0,0 +1,201 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+
+
+///////////////////// Cyclic //////////////////////////////////
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( pk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng;
+ prng_t *prng0 = &prng;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set( prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, prng0 ); // S,T: only a part of sk
+
+ unsigned char t2[sizeof(sk->t4)];
+ memcpy( t2, sk->t4, _V1_BYTE * _O2 ); // temporarily store t2
+ calculate_t4( sk->t4, sk->t1, sk->t3 ); // t2 <- t4
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t *prng1 = &prng;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set( prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, prng1 ); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+ // so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6.
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk, Qs, sk ); // calcuate the rest parts of secret key from Qs and S,T
+
+
+ unsigned char t4[sizeof(sk->t4)];
+ memcpy( t4, sk->t4, _V1_BYTE * _O2 ); // temporarily store t4
+ memcpy( sk->t4, t2, _V1_BYTE * _O2 ); // restore t2
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( pk, sk, sk ); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9
+ memcpy( sk->t4, t4, _V1_BYTE * _O2 ); // restore t4
+
+ obsfucate_l1_polys( pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+
+ // clean
+ memset( &prng, 0, sizeof(prng_t) );
+}
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( cpk_t *pk, csk_t *rsk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( rsk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( rsk->sk_seed, sk_seed, LEN_SKSEED );
+ sk_t sk;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( pk, &sk, pk_seed, sk_seed );
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic( sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng0;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set( &prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, &prng0 );
+ calculate_t4( sk->t4, sk->t1, sk->t3 );
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t prng1;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set( &prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, &prng1 );
+
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+
+ // calcuate the parts of sk according to pk.
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk, Qs, sk );
+
+ // clean prng for sk
+ memset( &prng0, 0, sizeof(prng_t) );
+}
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_cpk_to_pk( pk_t *rpk, const cpk_t *cpk ) {
+ // procedure: cpk_t --> extcpk_t --> pk_t
+
+ // convert from cpk_t to extcpk_t
+ ext_cpk_t pk;
+
+ // setup prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set( &prng0, cpk->pk_seed, LEN_SKSEED );
+
+ // generating parts of key with prng
+ generate_l1_F12( pk.l1_Q1, &prng0 );
+ // copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9
+ memcpy( pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * ( _V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2) ) );
+
+ // generating parts of key with prng
+ generate_l2_F12356( pk.l2_Q1, &prng0 );
+ // copying parts of key from input: l2_Q9
+ memcpy( pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // convert from extcpk_t to pk_t
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_extcpk_to_pk( rpk, &pk );
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair.h
new file mode 100644
index 00000000..151bbf84
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair.h
@@ -0,0 +1,126 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+/// @brief public key for cyclic rainbow
+///
+/// public key for cyclic rainbow
+///
+typedef
+struct rainbow_publickey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6
+
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1
+
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2
+} cpk_t;
+
+
+
+/// @brief compressed secret key for cyclic rainbow
+///
+/// compressed secret key for cyclic rainbow
+///
+typedef
+struct rainbow_secretkey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key.
+ unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key.
+} csk_t;
+
+
+
+///
+/// @brief Generate key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of public key.
+/// @param[in] sk_seed - seed for generating secret key.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+///
+/// @brief Generate compressed key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the compressed secret key.
+/// @param[in] pk_seed - seed for generating parts of the public key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( cpk_t *pk, csk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+///
+/// @brief Generate secret key for cyclic rainbow.
+///
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of the pbulic key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic( sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+////////////////////////////////////
+
+///
+/// @brief converting formats of public keys : from cyclic version to classic key
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the cyclic public key.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_cpk_to_pk( pk_t *pk, const cpk_t *cpk );
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..6aa3f0c5
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair_computation.c
@@ -0,0 +1,233 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+
+
+
+static
+void calculate_F_from_Q_ref( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ // Layer 1
+ // F_sk.l1_F1s[i] = Q_pk.l1_F1s[i]
+ memcpy( Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ // F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i]
+ memcpy( Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_2trimat_madd( Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE );
+
+ /*
+ Layer 2
+ computations:
+
+ F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+ Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1
+ F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+
+ Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ #Q1_Q1T_T4 = Q1_Q1T * t4
+ Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ + Q_pk.l2_F2s[i].transpose() * t4
+ + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+
+ */
+ memcpy( Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+
+ // F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ // F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+ memcpy( Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q1_T1+ Q2
+
+ unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32];
+ memset( tempQ, 0, _O1 * _O1 * _O2_BYTE );
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE ); // t1_tr*(Q1_T1+Q2)
+ memcpy( Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // F5
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Fs->l2_F5, tempQ, _O1, _O2_BYTE ); // UT( ... )
+
+ batch_trimatTr_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F2 = Q1_T1 + Q2 + Q1^tr*t1
+
+ // Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ // Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ // F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ memcpy( Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE );
+ batch_2trimat_madd( Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE ); // Q1_Q1T_T4
+ batch_mat_madd( Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // Q2_T3
+
+ // F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ // + Q_pk.l2_F2s[i].transpose() * t4
+ // + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+ memcpy( Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE );
+ batch_matTr_madd( Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE ); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ batch_2trimat_madd( Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3
+ batch_bmatTr_madd( Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE );
+
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+static
+void calculate_Q_from_F_cyclic_ref( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+// Layer 1: Computing Q5, Q3, Q6, Q9
+
+// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ const unsigned char *t2 = Ts->t4;
+ sk_t tempQ;
+ memcpy( tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+ memset( tempQ.l2_F1, 0, sizeof(tempQ.l2_F1));
+ memset( tempQ.l2_F2, 0, sizeof(tempQ.l2_F2));
+ batch_matTr_madd( tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE ); // T1tr*(F1*T1 + F2)
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ /*
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2 ); // should be F3. assuming: _O1 >= _O2
+ batch_matTr_madd( tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+ /*
+ Layer 2
+ Computing Q9:
+
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ */
+ sk_t tempQ2;
+ memcpy( tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 ); /// F3 actually.
+ batch_trimat_madd( tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2 );
+ batch_matTr_madd( tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+ batch_trimat_madd( tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+
+ batch_matTr_madd( tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE ); // Q9
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+
+
+// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_
+#define calculate_F_from_Q_impl calculate_F_from_Q_ref
+#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ calculate_F_from_Q_impl( Fs, Qs, Ts );
+}
+
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_cyclic_impl( Qs, Fs, Ts );
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..6419fb12
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/rainbow_keypair_computation.h
@@ -0,0 +1,79 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+
+///
+/// @brief Computing parts of the sk from parts of pk and sk
+///
+/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts );
+
+///
+/// @brief Computing parts of the pk from the secret key
+///
+/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9
+/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/sign.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/sign.c
new file mode 100644
index 00000000..f85515b8
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/sign.c
@@ -0,0 +1,94 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ unsigned char pk_seed[LEN_PKSEED] = {0};
+ randombytes( pk_seed, LEN_PKSEED );
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( (cpk_t *) pk, (csk_t *) sk, pk_seed, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( sm + mlen, (const csk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( digest, sm + mlen[0], (const cpk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( sig, (const csk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( digest, sig, (const cpk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_hash.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_hash.c
new file mode 100644
index 00000000..db5e7f3d
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha384(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_hash.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_hash.h
new file mode 100644
index 00000000..de041aed
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_prng.c b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_prng.c
new file mode 100644
index 00000000..1effeee4
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_prng.h b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_prng.h
new file mode 100644
index 00000000..c07c8e07
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic-compressed/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/META.yml b/crypto_sign/rainbowIIIc-cyclic/META.yml
new file mode 100644
index 00000000..da707392
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-IIIc-cyclic
+type: signature
+claimed-nist-level: 3
+length-public-key: 206744
+length-secret-key: 511448
+length-signature: 156
+nistkat-sha256: 607fa94312778210c443431974087ce99357494ab16c8ad5a8418784b811223d
+testvectors-sha256: 51559c38aefe636abd36094741be3b5f65de9e09cf9a5d37866b2e8d0eb58d22
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/LICENSE b/crypto_sign/rainbowIIIc-cyclic/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/Makefile b/crypto_sign/rainbowIIIc-cyclic/clean/Makefile
new file mode 100644
index 00000000..d6161c21
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowIIIc-cyclic_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowIIIc-cyclic/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..c2fc2f6f
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowIIIc-cyclic_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/api.h b/crypto_sign/rainbowIIIc-cyclic/clean/api.h
new file mode 100644
index 00000000..cf8628c2
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_API_H
+#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_SECRETKEYBYTES 511448
+#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_PUBLICKEYBYTES 206744
+#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_BYTES 156
+#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,68,36,36) - cyclic"
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/blas.h b/crypto_sign/rainbowIIIc-cyclic/clean/blas.h
new file mode 100644
index 00000000..72ba2813
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/blas.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_add_u32
+
+
+#define gf256v_mul_scalar PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar_u32
+#define gf256v_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/blas_comm.c b/crypto_sign/rainbowIIIc-cyclic/clean/blas_comm.c
new file mode 100644
index 00000000..b62b6875
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/blas_comm.c
@@ -0,0 +1,153 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i) {
+ return a[i];
+}
+
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte) {
+ uint8_t r = 0;
+ while ( _num_byte-- ) {
+ r |= a[0];
+ a++;
+ }
+ return (0 == r);
+}
+
+/// polynomial multplication
+/// School boook
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num) {
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(c, _num * 2 - 1);
+ for (unsigned i = 0; i < _num; i++) {
+ gf256v_madd(c + i, a, b[i], _num);
+ }
+}
+
+static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ gf256v_madd(c, matA, b[i], n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = len_vec;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf256mat_gauss_elim_ref( uint8_t *mat, unsigned h, unsigned w ) {
+ unsigned r8 = 1;
+
+ for (unsigned i = 0; i < h; i++) {
+ uint8_t *ai = mat + w * i;
+ unsigned skip_len_align4 = i & ((unsigned)~0x3);
+
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + w * j;
+ gf256v_predicated_add( ai + skip_len_align4, !PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4 );
+ }
+ r8 &= PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(ai[i]);
+ uint8_t pivot = ai[i];
+ pivot = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_inv( pivot );
+ gf256v_mul_scalar( ai + skip_len_align4, pivot, w - skip_len_align4 );
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + w * j;
+ gf256v_madd( aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4 );
+ }
+ }
+
+ return r8;
+}
+
+static
+unsigned gf256mat_solve_linear_eq_ref( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ uint8_t mat[ 64 * 64 ];
+ for (unsigned i = 0; i < n; i++) {
+ memcpy( mat + i * (n + 1), inp_mat + i * n, n );
+ mat[i * (n + 1) + n] = c_terms[i];
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim( mat, n, n + 1 );
+ for (unsigned i = 0; i < n; i++) {
+ sol[i] = mat[i * (n + 1) + n];
+ }
+ return r8;
+}
+
+
+
+static inline
+void gf256mat_submat( uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h ) {
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < w2; j++) {
+ mat2[i * w2 + j] = mat[i * w + st + j];
+ }
+ }
+}
+
+
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_inv( uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer ) {
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * H;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero( ai, 2 * H );
+ gf256v_add( ai, a + i * H, H );
+ ai[H + i] = 1;
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim( aa, H, 2 * H );
+ gf256mat_submat( inv_a, H, H, aa, 2 * H, H );
+ return r8;
+}
+
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf256mat_prod_impl gf256mat_prod_ref
+#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref
+#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf256mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim( uint8_t *mat, unsigned h, unsigned w ) {
+ return gf256mat_gauss_elim_impl( mat, h, w );
+}
+
+
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf256mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/blas_comm.h b/crypto_sign/rainbowIIIc-cyclic/clean/blas_comm.h
new file mode 100644
index 00000000..aa5c7db4
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/blas_comm.h
@@ -0,0 +1,96 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i);
+
+
+
+/// @brief check if a vector is 0.
+///
+/// @param[in] a - the vector a.
+/// @param[in] _num_byte - number of bytes for the vector a.
+/// @return 1(true) if a is 0. 0(false) else.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte);
+
+
+/// @brief polynomial multiplication: c = a*b
+///
+/// @param[out] c - the output polynomial c
+/// @param[in] a - the vector a.
+/// @param[in] b - the vector b.
+/// @param[in] _num - number of elements for the polynomials a and b.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num);
+
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(256)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(256)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(256)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/blas_u32.c b/crypto_sign/rainbowIIIc-cyclic/clean/blas_u32.c
new file mode 100644
index 00000000..62d21c88
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/blas_u32.c
@@ -0,0 +1,90 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(a_u32[i], b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(t.u32, b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(t.u32, gf256_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/blas_u32.h b/crypto_sign/rainbowIIIc-cyclic/clean/blas_u32.h
new file mode 100644
index 00000000..7493f85e
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/blas_u32.h
@@ -0,0 +1,19 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte);
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/gf.c b/crypto_sign/rainbowIIIc-cyclic/clean/gf.c
new file mode 100644
index 00000000..c3c3a595
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/gf.c
@@ -0,0 +1,142 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(uint8_t a) {
+ unsigned a8 = a;
+ unsigned r = ((unsigned) 0) - a8;
+ r >>= 8;
+ return r & 1;
+}
+
+static inline uint8_t gf4_mul_3(uint8_t a) {
+ uint8_t msk = (uint8_t) ((a - 2) >> 1);
+ return (uint8_t) ((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1)));
+}
+static inline uint8_t gf16_mul_8(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = a >> 2;
+ return (uint8_t) ((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1));
+}
+
+// gf256 := gf16[X]/X^2+X+xy
+static inline uint8_t gf256_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ uint8_t b0 = b & 15;
+ uint8_t b1 = (b >> 4);
+ uint8_t a0b0 = gf16_mul(a0, b0);
+ uint8_t a1b1 = gf16_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x8 = gf16_mul_8(a1b1);
+ return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8);
+}
+
+static inline uint8_t gf256_squ(uint8_t a) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ a1 = gf16_squ(a1);
+ uint8_t a1squ_x8 = gf16_mul_8(a1);
+ return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0));
+}
+
+uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_inv(uint8_t a) {
+ // 128+64+32+16+8+4+2 = 254
+ uint8_t a2 = gf256_squ(a);
+ uint8_t a4 = gf256_squ(a2);
+ uint8_t a8 = gf256_squ(a4);
+ uint8_t a4_2 = gf256_mul(a4, a2);
+ uint8_t a8_4_2 = gf256_mul(a4_2, a8);
+ uint8_t a64_ = gf256_squ(a8_4_2);
+ a64_ = gf256_squ(a64_);
+ a64_ = gf256_squ(a64_);
+ uint8_t a64_2 = gf256_mul(a64_, a8_4_2);
+ uint8_t a128_ = gf256_squ(a64_2);
+ return gf256_mul(a2, a128_);
+}
+
+static inline uint32_t gf4v_mul_3_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit0 ^ (bit1 >> 1);
+}
+static inline uint32_t gf16v_mul_8_u32(uint32_t a) {
+ uint32_t a1 = a & 0xcccccccc;
+ uint32_t a0 = (a << 2) & 0xcccccccc;
+ return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2);
+}
+uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(a, b);
+ uint32_t axb1 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(a, b >> 4);
+ uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0;
+ uint32_t a1b1 = axb1 & 0xf0f0f0f0;
+ uint32_t a1b1_4 = a1b1 >> 4;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4);
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/gf.h b/crypto_sign/rainbowIIIc-cyclic/clean/gf.h
new file mode 100644
index 00000000..a57b6fa7
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/gf.h
@@ -0,0 +1,19 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/parallel_matrix_op.c b/crypto_sign/rainbowIIIc-cyclic/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..85671923
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/parallel_matrix_op.c
@@ -0,0 +1,186 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf256v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf256v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf256v_madd( y, tmp, _x[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf256v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf256v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/parallel_matrix_op.h b/crypto_sign/rainbowIIIc-cyclic/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..c6ee1801
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow.c b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow.c
new file mode 100644
index 00000000..a5216e3c
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow.c
@@ -0,0 +1,175 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk ) {
+ unsigned char pk[sizeof(pk_t) +32];
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_cpk_to_pk( (pk_t *)pk, _pk ); // generating classic public key.
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify( digest, signature, (pk_t *)pk );
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow.h b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow.h
new file mode 100644
index 00000000..73333416
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow.h
@@ -0,0 +1,43 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+
+///
+/// @brief Verifying function for cyclic public keys.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key of cyclic rainbow.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *pk );
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_blas.h b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_blas.h
new file mode 100644
index 00000000..a1dd37dc
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf256
+#define batch_trimatTr_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf256
+#define batch_2trimat_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf256
+#define batch_matTr_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf256
+#define batch_bmatTr_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf256
+#define batch_mat_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf256
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf256
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf256
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_config.h b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_config.h
new file mode 100644
index 00000000..44cba4f3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_config.h
@@ -0,0 +1,50 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _GFSIZE 256
+#define _V1 68
+#define _O1 36
+#define _O2 36
+#define _HASH_LEN 48
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF256
+#define _V1_BYTE (_V1)
+#define _V2_BYTE (_V2)
+#define _O1_BYTE (_O1)
+#define _O2_BYTE (_O2)
+#define _PUB_N_BYTE (_PUB_N)
+#define _PUB_M_BYTE (_PUB_M)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair.c b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair.c
new file mode 100644
index 00000000..c5bbe7c2
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair.c
@@ -0,0 +1,170 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+
+
+///////////////////// Cyclic //////////////////////////////////
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( pk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng;
+ prng_t *prng0 = &prng;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set( prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, prng0 ); // S,T: only a part of sk
+
+ unsigned char t2[sizeof(sk->t4)];
+ memcpy( t2, sk->t4, _V1_BYTE * _O2 ); // temporarily store t2
+ calculate_t4( sk->t4, sk->t1, sk->t3 ); // t2 <- t4
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t *prng1 = &prng;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set( prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, prng1 ); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+ // so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6.
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_F_from_Q( sk, Qs, sk ); // calcuate the rest parts of secret key from Qs and S,T
+
+
+ unsigned char t4[sizeof(sk->t4)];
+ memcpy( t4, sk->t4, _V1_BYTE * _O2 ); // temporarily store t4
+ memcpy( sk->t4, t2, _V1_BYTE * _O2 ); // restore t2
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F_cyclic( pk, sk, sk ); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9
+ memcpy( sk->t4, t4, _V1_BYTE * _O2 ); // restore t4
+
+ obsfucate_l1_polys( pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+
+ // clean
+ memset( &prng, 0, sizeof(prng_t) );
+}
+
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_cpk_to_pk( pk_t *rpk, const cpk_t *cpk ) {
+ // procedure: cpk_t --> extcpk_t --> pk_t
+
+ // convert from cpk_t to extcpk_t
+ ext_cpk_t pk;
+
+ // setup prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set( &prng0, cpk->pk_seed, LEN_SKSEED );
+
+ // generating parts of key with prng
+ generate_l1_F12( pk.l1_Q1, &prng0 );
+ // copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9
+ memcpy( pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * ( _V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2) ) );
+
+ // generating parts of key with prng
+ generate_l2_F12356( pk.l2_Q1, &prng0 );
+ // copying parts of key from input: l2_Q9
+ memcpy( pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // convert from extcpk_t to pk_t
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_extcpk_to_pk( rpk, &pk );
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair.h b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair.h
new file mode 100644
index 00000000..8fe991ab
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair.h
@@ -0,0 +1,109 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+/// @brief public key for cyclic rainbow
+///
+/// public key for cyclic rainbow
+///
+typedef
+struct rainbow_publickey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6
+
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1
+
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2
+} cpk_t;
+
+
+
+/// @brief compressed secret key for cyclic rainbow
+///
+/// compressed secret key for cyclic rainbow
+///
+typedef
+struct rainbow_secretkey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key.
+ unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key.
+} csk_t;
+
+
+
+///
+/// @brief Generate key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of public key.
+/// @param[in] sk_seed - seed for generating secret key.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+
+
+////////////////////////////////////
+
+///
+/// @brief converting formats of public keys : from cyclic version to classic key
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the cyclic public key.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_cpk_to_pk( pk_t *pk, const cpk_t *cpk );
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..bb32b60e
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair_computation.c
@@ -0,0 +1,233 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+
+
+
+static
+void calculate_F_from_Q_ref( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ // Layer 1
+ // F_sk.l1_F1s[i] = Q_pk.l1_F1s[i]
+ memcpy( Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ // F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i]
+ memcpy( Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_2trimat_madd( Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE );
+
+ /*
+ Layer 2
+ computations:
+
+ F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+ Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1
+ F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+
+ Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ #Q1_Q1T_T4 = Q1_Q1T * t4
+ Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ + Q_pk.l2_F2s[i].transpose() * t4
+ + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+
+ */
+ memcpy( Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+
+ // F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ // F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+ memcpy( Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q1_T1+ Q2
+
+ unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32];
+ memset( tempQ, 0, _O1 * _O1 * _O2_BYTE );
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE ); // t1_tr*(Q1_T1+Q2)
+ memcpy( Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // F5
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize( Fs->l2_F5, tempQ, _O1, _O2_BYTE ); // UT( ... )
+
+ batch_trimatTr_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F2 = Q1_T1 + Q2 + Q1^tr*t1
+
+ // Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ // Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ // F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ memcpy( Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE );
+ batch_2trimat_madd( Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE ); // Q1_Q1T_T4
+ batch_mat_madd( Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // Q2_T3
+
+ // F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ // + Q_pk.l2_F2s[i].transpose() * t4
+ // + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+ memcpy( Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE );
+ batch_matTr_madd( Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE ); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ batch_2trimat_madd( Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3
+ batch_bmatTr_madd( Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE );
+
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+static
+void calculate_Q_from_F_cyclic_ref( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+// Layer 1: Computing Q5, Q3, Q6, Q9
+
+// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ const unsigned char *t2 = Ts->t4;
+ sk_t tempQ;
+ memcpy( tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+ memset( tempQ.l2_F1, 0, sizeof(tempQ.l2_F1));
+ memset( tempQ.l2_F2, 0, sizeof(tempQ.l2_F2));
+ batch_matTr_madd( tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE ); // T1tr*(F1*T1 + F2)
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ /*
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2 ); // should be F3. assuming: _O1 >= _O2
+ batch_matTr_madd( tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+ /*
+ Layer 2
+ Computing Q9:
+
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ */
+ sk_t tempQ2;
+ memcpy( tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 ); /// F3 actually.
+ batch_trimat_madd( tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2 );
+ batch_matTr_madd( tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+ batch_trimat_madd( tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+
+ batch_matTr_madd( tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE ); // Q9
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+
+
+// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_
+#define calculate_F_from_Q_impl calculate_F_from_Q_ref
+#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref
+
+
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ calculate_F_from_Q_impl( Fs, Qs, Ts );
+}
+
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_cyclic_impl( Qs, Fs, Ts );
+}
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..d151669e
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/rainbow_keypair_computation.h
@@ -0,0 +1,79 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+
+///
+/// @brief Computing parts of the sk from parts of pk and sk
+///
+/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts );
+
+///
+/// @brief Computing parts of the pk from the secret key
+///
+/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9
+/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/sign.c b/crypto_sign/rainbowIIIc-cyclic/clean/sign.c
new file mode 100644
index 00000000..8730d410
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/sign.c
@@ -0,0 +1,94 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ unsigned char pk_seed[LEN_PKSEED] = {0};
+ randombytes( pk_seed, LEN_PKSEED );
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_generate_keypair_cyclic( (cpk_t *) pk, (sk_t *) sk, pk_seed, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign( sm + mlen, (const sk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic( digest, sm + mlen[0], (const cpk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign( sig, (const sk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic( digest, sig, (const cpk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/utils_hash.c b/crypto_sign/rainbowIIIc-cyclic/clean/utils_hash.c
new file mode 100644
index 00000000..3a8ad8b3
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha384(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/utils_hash.h b/crypto_sign/rainbowIIIc-cyclic/clean/utils_hash.h
new file mode 100644
index 00000000..45f0d129
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/utils_prng.c b/crypto_sign/rainbowIIIc-cyclic/clean/utils_prng.c
new file mode 100644
index 00000000..87ed2c31
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowIIIc-cyclic/clean/utils_prng.h b/crypto_sign/rainbowIIIc-cyclic/clean/utils_prng.h
new file mode 100644
index 00000000..fcf1e7fc
--- /dev/null
+++ b/crypto_sign/rainbowIIIc-cyclic/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+
diff --git a/crypto_sign/rainbowIa-classic/META.yml b/crypto_sign/rainbowIa-classic/META.yml
index 928b1c2c..f6f5c5b2 100644
--- a/crypto_sign/rainbowIa-classic/META.yml
+++ b/crypto_sign/rainbowIa-classic/META.yml
@@ -14,4 +14,4 @@ auxiliary-submitters:
- Bo-Yin Yang
implementations:
- name: clean
- version: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Rainbow-Round2.zip
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowIa-classic/clean/gf.c b/crypto_sign/rainbowIa-classic/clean/gf.c
index e633f56e..24c9cc7f 100644
--- a/crypto_sign/rainbowIa-classic/clean/gf.c
+++ b/crypto_sign/rainbowIa-classic/clean/gf.c
@@ -1,13 +1,5 @@
#include "gf.h"
-static inline uint8_t gf256v_reduce_u32(uint32_t a) {
- // https://godbolt.org/z/7hirMb
- uint16_t *aa = (uint16_t *) (&a);
- uint16_t r = aa[0] ^ aa[1];
- uint8_t *rr = (uint8_t *) (&r);
- return rr[0] ^ rr[1];
-}
-
//// gf4 := gf2[x]/x^2+x+1
static inline uint8_t gf4_mul_2(uint8_t a) {
uint8_t r = (uint8_t) (a << 1);
@@ -36,20 +28,6 @@ static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
}
-static inline uint32_t _gf4v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t b0, uint32_t b1) {
- uint32_t c0 = a0 & b0;
- uint32_t c2 = a1 & b1;
- uint32_t c1_ = (a0 ^ a1) & (b0 ^ b1);
- return ((c1_ ^ c0) << 1) ^ c0 ^ c2;
-}
-
-uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(uint8_t a) {
- unsigned a4 = a & 0xf;
- unsigned r = ((unsigned) 0) - a4;
- r >>= 4;
- return r & 1;
-}
-
//// gf16 := gf4[y]/y^2+y+x
static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
uint8_t a0 = a & 3;
@@ -71,16 +49,7 @@ static inline uint8_t gf16_squ(uint8_t a) {
return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
}
-uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_inv(uint8_t a) {
- uint8_t a2 = gf16_squ(a);
- uint8_t a4 = gf16_squ(a2);
- uint8_t a8 = gf16_squ(a4);
- uint8_t a6 = gf16_mul(a4, a2);
- return gf16_mul(a8, a6);
-}
-
// gf16 := gf4[y]/y^2+y+x
-
uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
uint32_t axb0 = gf4v_mul_u32(a, b);
uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
@@ -91,6 +60,38 @@ uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
}
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+
+
+static inline uint32_t _gf4v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t b0, uint32_t b1) {
+ uint32_t c0 = a0 & b0;
+ uint32_t c2 = a1 & b1;
+ uint32_t c1_ = (a0 ^ a1) & (b0 ^ b1);
+ return ((c1_ ^ c0) << 1) ^ c0 ^ c2;
+}
+
+uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(uint8_t a) {
+ unsigned a4 = a & 0xf;
+ unsigned r = ((unsigned) 0) - a4;
+ r >>= 4;
+ return r & 1;
+}
+
+uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_inv(uint8_t a) {
+ uint8_t a2 = gf16_squ(a);
+ uint8_t a4 = gf16_squ(a2);
+ uint8_t a8 = gf16_squ(a4);
+ uint8_t a6 = gf16_mul(a4, a2);
+ return gf16_mul(a8, a6);
+}
+
static inline uint32_t _gf16v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3, uint32_t b0, uint32_t b1, uint32_t b2, uint32_t b3) {
uint32_t c0 = _gf4v_mul_u32_u32(a0, a1, b0, b1);
uint32_t c1_ = _gf4v_mul_u32_u32(a0 ^ a2, a1 ^ a3, b0 ^ b2, b1 ^ b3);
diff --git a/crypto_sign/rainbowIa-classic/clean/gf.h b/crypto_sign/rainbowIa-classic/clean/gf.h
index b4ad9a1d..e84d086d 100644
--- a/crypto_sign/rainbowIa-classic/clean/gf.h
+++ b/crypto_sign/rainbowIa-classic/clean/gf.h
@@ -8,11 +8,11 @@
/// @brief Library for arithmetics in GF(16) and GF(256)
///
+uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(uint8_t a);
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_inv(uint8_t a);
-uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32_u32(uint32_t a, uint32_t b);
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_reduce_u32(uint32_t a);
diff --git a/crypto_sign/rainbowIa-classic/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowIa-classic/clean/rainbow_keypair_computation.h
index 60b790e3..1282cab4 100644
--- a/crypto_sign/rainbowIa-classic/clean/rainbow_keypair_computation.h
+++ b/crypto_sign/rainbowIa-classic/clean/rainbow_keypair_computation.h
@@ -56,6 +56,5 @@ void PQCLEAN_RAINBOWIACLASSIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_
-
#endif // _RAINBOW_KEYPAIR_COMP_H_
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/META.yml b/crypto_sign/rainbowIa-cyclic-compressed/META.yml
new file mode 100644
index 00000000..895c2965
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-Ia-cyclic-compressed
+type: signature
+claimed-nist-level: 1
+length-public-key: 58144
+length-secret-key: 64
+length-signature: 64
+nistkat-sha256: 65bb9e9b68b3114105e86d1107ede320901e174770ff8474722b4f459c3f2a51
+testvectors-sha256: 79d0bfaee00d058aa39981397016279738925f65bfec1aebb42372030abc4056
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/LICENSE b/crypto_sign/rainbowIa-cyclic-compressed/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/Makefile b/crypto_sign/rainbowIa-cyclic-compressed/clean/Makefile
new file mode 100644
index 00000000..a2ea04cf
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowIa-cyclic-compressed_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowIa-cyclic-compressed/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..cb4cedbd
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowIa-cyclic-compressed_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/api.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/api.h
new file mode 100644
index 00000000..6d2f6c21
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_API_H
+#define PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_CRYPTO_SECRETKEYBYTES 64
+#define PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_CRYPTO_PUBLICKEYBYTES 58144
+#define PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_CRYPTO_BYTES 64
+#define PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_CRYPTO_ALGNAME "RAINBOW(16,32,32,32) - cyclic compressed"
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/blas.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas.h
new file mode 100644
index 00000000..e432b780
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas.h
@@ -0,0 +1,21 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_add_u32
+
+
+#define gf16v_mul_scalar PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_scalar_u32
+#define gf16v_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_madd_u32
+#define gf16v_dot PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_dot_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_comm.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_comm.c
new file mode 100644
index 00000000..9a4ae8a8
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_comm.c
@@ -0,0 +1,160 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+
+/// @brief get an element from GF(16) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(const uint8_t *a, unsigned i) {
+ uint8_t r = a[i >> 1];
+ uint8_t r0 = r & 0xf;
+ uint8_t r1 = r >> 4;
+ uint8_t m = (uint8_t)(-((int8_t)i & 1));
+ return (uint8_t)((r1 & m) | ((~m)&r0));
+}
+
+/// @brief set an element for a GF(16) vector .
+///
+/// @param[in,out] a - the vector a.
+/// @param[in] i - the index in the vector a.
+/// @param[in] v - the value for the i-th element in vector a.
+/// @return the value of the element.
+///
+static uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_set_ele(uint8_t *a, unsigned i, uint8_t v) {
+ uint8_t m = (uint8_t) (0xf ^ (-((int8_t)i & 1))); /// 1--> 0xf0 , 0--> 0x0f
+ uint8_t ai_remaining = (uint8_t) (a[i >> 1] & (~m)); /// erase
+ a[i >> 1] = (uint8_t) (ai_remaining | (m & (v << 4)) | (m & v & 0xf)); /// set
+ return v;
+}
+
+static void gf16mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ uint8_t bb = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(b, i);
+ gf16v_madd(c, matA, bb, n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = (len_vec + 1) / 2;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ uint8_t bb = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(bk, i);
+ gf16v_madd(c, a + n_vec_byte * i, bb, n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf16mat_gauss_elim_ref(uint8_t *mat, unsigned h, unsigned w) {
+ unsigned n_w_byte = (w + 1) / 2;
+ unsigned r8 = 1;
+ for (unsigned i = 0; i < h; i++) {
+ unsigned offset_byte = i >> 1;
+ uint8_t *ai = mat + n_w_byte * i;
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + n_w_byte * j;
+ gf256v_predicated_add(ai + offset_byte, !PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_is_nonzero(PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(ai, i)), aj + offset_byte, n_w_byte - offset_byte);
+ }
+ uint8_t pivot = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(ai, i);
+ r8 &= PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_is_nonzero(pivot);
+ pivot = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_inv(pivot);
+ offset_byte = (i + 1) >> 1;
+ gf16v_mul_scalar(ai + offset_byte, pivot, n_w_byte - offset_byte);
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + n_w_byte * j;
+ gf16v_madd(aj + offset_byte, ai + offset_byte, PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(aj, i), n_w_byte - offset_byte);
+ }
+ }
+ return r8;
+}
+
+static
+unsigned gf16mat_solve_linear_eq_ref(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n) {
+ uint8_t mat[64 * 33];
+ unsigned n_byte = (n + 1) >> 1;
+ for (unsigned i = 0; i < n; i++) {
+ memcpy(mat + i * (n_byte + 1), inp_mat + i * n_byte, n_byte);
+ mat[i * (n_byte + 1) + n_byte] = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(c_terms, i);
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_gauss_elim(mat, n, n + 2); /// XXX: this function is ``defined'' in blas.h
+ for (unsigned i = 0; i < n; i++) {
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_set_ele(sol, i, mat[i * (n_byte + 1) + n_byte]);
+ }
+ return r8;
+}
+
+static inline void gf16mat_submat(uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h) {
+ unsigned n_byte_w1 = (w + 1) / 2;
+ unsigned n_byte_w2 = (w2 + 1) / 2;
+ unsigned st_2 = st / 2;
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < n_byte_w2; j++) {
+ mat2[i * n_byte_w2 + j] = mat[i * n_byte_w1 + st_2 + j];
+ }
+ }
+}
+
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer) {
+ unsigned n_w_byte = (H + 1) / 2;
+
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * n_w_byte;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero(ai, 2 * n_w_byte);
+ gf256v_add(ai, a + i * n_w_byte, n_w_byte);
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_set_ele(ai + n_w_byte, i, 1);
+ }
+ unsigned r8 = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_gauss_elim(aa, H, 2 * H); /// XXX: would 2*H fail if H is odd ???
+ gf16mat_submat(inv_a, H, H, aa, 2 * H, H);
+ return r8;
+}
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf16mat_prod_impl gf16mat_prod_ref
+#define gf16mat_gauss_elim_impl gf16mat_gauss_elim_ref
+#define gf16mat_solve_linear_eq_impl gf16mat_solve_linear_eq_ref
+
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf16mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w) {
+ return gf16mat_gauss_elim_impl( mat, h, w);
+}
+
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf16mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_comm.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_comm.h
new file mode 100644
index 00000000..91821ec6
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_comm.h
@@ -0,0 +1,76 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(16) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele(const uint8_t *a, unsigned i);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(16)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(16)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(16)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(16)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(16)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_u32.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_u32.c
new file mode 100644
index 00000000..84ca9099
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_u32.c
@@ -0,0 +1,116 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_scalar_u32(uint8_t *a, uint8_t gf16_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a_u32[i], gf16_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(t.u32, gf16_b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf16_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a_u32[i], gf16_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(t.u32, gf16_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_dot_u32(const uint8_t *a, const uint8_t *b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ const uint32_t *b_u32 = (const uint32_t *) b;
+ uint32_t r = 0;
+ for (unsigned i = 0; i < n_u32; i++) {
+ r ^= PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32_u32(a_u32[i], b_u32[i]);
+ }
+
+ unsigned rem = _num_byte & 3;
+ if (rem) {
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } ta, tb;
+ ta.u32 = 0;
+ tb.u32 = 0;
+ for (unsigned i = 0; i < rem; i++) {
+ ta.u8[i] = a[(n_u32 << 2) + i];
+ }
+ for (unsigned i = 0; i < rem; i++) {
+ tb.u8[i] = b[(n_u32 << 2) + i];
+ }
+ r ^= PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32_u32(ta.u32, tb.u32);
+ }
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_reduce_u32(r);
+}
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_u32.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_u32.h
new file mode 100644
index 00000000..6321703a
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/blas_u32.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf16_b, unsigned _num_byte);
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_scalar_u32(uint8_t *a, uint8_t gf16_b, unsigned _num_byte);
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_dot_u32(const uint8_t *a, const uint8_t *b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/gf.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/gf.c
new file mode 100644
index 00000000..b1f15e0c
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/gf.c
@@ -0,0 +1,125 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+
+
+static inline uint32_t _gf4v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t b0, uint32_t b1) {
+ uint32_t c0 = a0 & b0;
+ uint32_t c2 = a1 & b1;
+ uint32_t c1_ = (a0 ^ a1) & (b0 ^ b1);
+ return ((c1_ ^ c0) << 1) ^ c0 ^ c2;
+}
+
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_is_nonzero(uint8_t a) {
+ unsigned a4 = a & 0xf;
+ unsigned r = ((unsigned) 0) - a4;
+ r >>= 4;
+ return r & 1;
+}
+
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_inv(uint8_t a) {
+ uint8_t a2 = gf16_squ(a);
+ uint8_t a4 = gf16_squ(a2);
+ uint8_t a8 = gf16_squ(a4);
+ uint8_t a6 = gf16_mul(a4, a2);
+ return gf16_mul(a8, a6);
+}
+
+static inline uint32_t _gf16v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3, uint32_t b0, uint32_t b1, uint32_t b2, uint32_t b3) {
+ uint32_t c0 = _gf4v_mul_u32_u32(a0, a1, b0, b1);
+ uint32_t c1_ = _gf4v_mul_u32_u32(a0 ^ a2, a1 ^ a3, b0 ^ b2, b1 ^ b3);
+
+ uint32_t c2_0 = a2 & b2;
+ uint32_t c2_2 = a3 & b3;
+ uint32_t c2_1_ = (a2 ^ a3) & (b2 ^ b3);
+ uint32_t c2_r0 = c2_0 ^ c2_2;
+ uint32_t c2_r1 = c2_0 ^ c2_1_;
+ // GF(4) x2: (bit0<<1)^bit1^(bit1>>1);
+ return ((c1_ ^ c0) << 2) ^ c0 ^ (c2_r0 << 1) ^ c2_r1 ^ (c2_r1 << 1);
+}
+
+uint32_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32_u32(uint32_t a, uint32_t b) {
+ uint32_t a0 = a & 0x11111111;
+ uint32_t a1 = (a >> 1) & 0x11111111;
+ uint32_t a2 = (a >> 2) & 0x11111111;
+ uint32_t a3 = (a >> 3) & 0x11111111;
+ uint32_t b0 = b & 0x11111111;
+ uint32_t b1 = (b >> 1) & 0x11111111;
+ uint32_t b2 = (b >> 2) & 0x11111111;
+ uint32_t b3 = (b >> 3) & 0x11111111;
+
+ return _gf16v_mul_u32_u32(a0, a1, a2, a3, b0, b1, b2, b3);
+}
+
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_reduce_u32(uint32_t a) {
+ uint8_t r256 = gf256v_reduce_u32(a);
+ return (uint8_t)((r256 & 0xf) ^ (r256 >> 4));
+}
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/gf.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/gf.h
new file mode 100644
index 00000000..946db489
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/gf.h
@@ -0,0 +1,20 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_u32_u32(uint32_t a, uint32_t b);
+uint8_t PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_reduce_u32(uint32_t a);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/parallel_matrix_op.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..4b61c718
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/parallel_matrix_op.c
@@ -0,0 +1,185 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf16v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf16v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf16v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf16( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf16v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf16v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf16v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf16v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf16v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf16v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf16v_madd( y, tmp, _x[i], size_batch );
+ }
+}
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/parallel_matrix_op.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..ba01df60
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow.c
new file mode 100644
index 00000000..4e87ca00
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow.c
@@ -0,0 +1,181 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+/////////////// cyclic version ///////////////////////////
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( uint8_t *signature, const csk_t *csk, const uint8_t *digest ) {
+ unsigned char sk[sizeof(sk_t) + 32];
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic((sk_t *)sk, csk->pk_seed, csk->sk_seed ); // generating classic secret key.
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign( signature, (sk_t *) sk, digest );
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk ) {
+ unsigned char pk[sizeof(pk_t) +32];
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_cpk_to_pk( (pk_t *)pk, _pk ); // generating classic public key.
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify( digest, signature, (pk_t *)pk );
+}
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow.h
new file mode 100644
index 00000000..d67ee069
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow.h
@@ -0,0 +1,51 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+///
+/// @brief Signing function for compressed secret key of the cyclic rainbow.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the compressed secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( uint8_t *signature, const csk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function for cyclic public keys.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key of cyclic rainbow.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *pk );
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_blas.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_blas.h
new file mode 100644
index 00000000..abdd4831
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_gf16mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf16
+#define batch_trimatTr_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf16
+#define batch_2trimat_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf16
+#define batch_matTr_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf16
+#define batch_bmatTr_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf16
+#define batch_mat_madd PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf16
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf16
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf16
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_config.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_config.h
new file mode 100644
index 00000000..abdd312c
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_config.h
@@ -0,0 +1,51 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _USE_GF16
+#define _GFSIZE 16
+#define _V1 32
+#define _O1 32
+#define _O2 32
+#define _HASH_LEN 32
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF16
+#define _V1_BYTE (_V1/2)
+#define _V2_BYTE (_V2/2)
+#define _O1_BYTE (_O1/2)
+#define _O2_BYTE (_O2/2)
+#define _PUB_N_BYTE (_PUB_N/2)
+#define _PUB_M_BYTE (_PUB_M/2)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair.c
new file mode 100644
index 00000000..f03d2473
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair.c
@@ -0,0 +1,201 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+
+
+///////////////////// Cyclic //////////////////////////////////
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( pk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng;
+ prng_t *prng0 = &prng;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set( prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, prng0 ); // S,T: only a part of sk
+
+ unsigned char t2[sizeof(sk->t4)];
+ memcpy( t2, sk->t4, _V1_BYTE * _O2 ); // temporarily store t2
+ calculate_t4( sk->t4, sk->t1, sk->t3 ); // t2 <- t4
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t *prng1 = &prng;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set( prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, prng1 ); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+ // so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6.
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk, Qs, sk ); // calcuate the rest parts of secret key from Qs and S,T
+
+
+ unsigned char t4[sizeof(sk->t4)];
+ memcpy( t4, sk->t4, _V1_BYTE * _O2 ); // temporarily store t4
+ memcpy( sk->t4, t2, _V1_BYTE * _O2 ); // restore t2
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( pk, sk, sk ); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9
+ memcpy( sk->t4, t4, _V1_BYTE * _O2 ); // restore t4
+
+ obsfucate_l1_polys( pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+
+ // clean
+ memset( &prng, 0, sizeof(prng_t) );
+}
+
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( cpk_t *pk, csk_t *rsk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( rsk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( rsk->sk_seed, sk_seed, LEN_SKSEED );
+ sk_t sk;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( pk, &sk, pk_seed, sk_seed );
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic( sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng0;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set( &prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, &prng0 );
+ calculate_t4( sk->t4, sk->t1, sk->t3 );
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t prng1;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set( &prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, &prng1 );
+
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+
+ // calcuate the parts of sk according to pk.
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk, Qs, sk );
+
+ // clean prng for sk
+ memset( &prng0, 0, sizeof(prng_t) );
+}
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_cpk_to_pk( pk_t *rpk, const cpk_t *cpk ) {
+ // procedure: cpk_t --> extcpk_t --> pk_t
+
+ // convert from cpk_t to extcpk_t
+ ext_cpk_t pk;
+
+ // setup prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set( &prng0, cpk->pk_seed, LEN_SKSEED );
+
+ // generating parts of key with prng
+ generate_l1_F12( pk.l1_Q1, &prng0 );
+ // copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9
+ memcpy( pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * ( _V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2) ) );
+
+ // generating parts of key with prng
+ generate_l2_F12356( pk.l2_Q1, &prng0 );
+ // copying parts of key from input: l2_Q9
+ memcpy( pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // convert from extcpk_t to pk_t
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_extcpk_to_pk( rpk, &pk );
+}
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair.h
new file mode 100644
index 00000000..d046772d
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair.h
@@ -0,0 +1,126 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+/// @brief public key for cyclic rainbow
+///
+/// public key for cyclic rainbow
+///
+typedef
+struct rainbow_publickey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6
+
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1
+
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2
+} cpk_t;
+
+
+
+/// @brief compressed secret key for cyclic rainbow
+///
+/// compressed secret key for cyclic rainbow
+///
+typedef
+struct rainbow_secretkey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key.
+ unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key.
+} csk_t;
+
+
+
+///
+/// @brief Generate key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of public key.
+/// @param[in] sk_seed - seed for generating secret key.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+///
+/// @brief Generate compressed key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the compressed secret key.
+/// @param[in] pk_seed - seed for generating parts of the public key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( cpk_t *pk, csk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+///
+/// @brief Generate secret key for cyclic rainbow.
+///
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of the pbulic key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic( sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+////////////////////////////////////
+
+///
+/// @brief converting formats of public keys : from cyclic version to classic key
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the cyclic public key.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_cpk_to_pk( pk_t *pk, const cpk_t *cpk );
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..1f71ea72
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair_computation.c
@@ -0,0 +1,233 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+
+
+
+static
+void calculate_F_from_Q_ref( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ // Layer 1
+ // F_sk.l1_F1s[i] = Q_pk.l1_F1s[i]
+ memcpy( Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ // F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i]
+ memcpy( Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_2trimat_madd( Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE );
+
+ /*
+ Layer 2
+ computations:
+
+ F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+ Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1
+ F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+
+ Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ #Q1_Q1T_T4 = Q1_Q1T * t4
+ Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ + Q_pk.l2_F2s[i].transpose() * t4
+ + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+
+ */
+ memcpy( Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+
+ // F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ // F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+ memcpy( Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q1_T1+ Q2
+
+ unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32];
+ memset( tempQ, 0, _O1 * _O1 * _O2_BYTE );
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE ); // t1_tr*(Q1_T1+Q2)
+ memcpy( Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // F5
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_UpperTrianglize( Fs->l2_F5, tempQ, _O1, _O2_BYTE ); // UT( ... )
+
+ batch_trimatTr_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F2 = Q1_T1 + Q2 + Q1^tr*t1
+
+ // Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ // Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ // F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ memcpy( Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE );
+ batch_2trimat_madd( Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE ); // Q1_Q1T_T4
+ batch_mat_madd( Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // Q2_T3
+
+ // F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ // + Q_pk.l2_F2s[i].transpose() * t4
+ // + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+ memcpy( Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE );
+ batch_matTr_madd( Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE ); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ batch_2trimat_madd( Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3
+ batch_bmatTr_madd( Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE );
+
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+static
+void calculate_Q_from_F_cyclic_ref( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+// Layer 1: Computing Q5, Q3, Q6, Q9
+
+// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ const unsigned char *t2 = Ts->t4;
+ sk_t tempQ;
+ memcpy( tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+ memset( tempQ.l2_F1, 0, sizeof(tempQ.l2_F1));
+ memset( tempQ.l2_F2, 0, sizeof(tempQ.l2_F2));
+ batch_matTr_madd( tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE ); // T1tr*(F1*T1 + F2)
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ /*
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2 ); // should be F3. assuming: _O1 >= _O2
+ batch_matTr_madd( tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+ /*
+ Layer 2
+ Computing Q9:
+
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ */
+ sk_t tempQ2;
+ memcpy( tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 ); /// F3 actually.
+ batch_trimat_madd( tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2 );
+ batch_matTr_madd( tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+ batch_trimat_madd( tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+
+ batch_matTr_madd( tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE ); // Q9
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+
+
+// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_
+#define calculate_F_from_Q_impl calculate_F_from_Q_ref
+#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref
+
+
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ calculate_F_from_Q_impl( Fs, Qs, Ts );
+}
+
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_cyclic_impl( Qs, Fs, Ts );
+}
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..9036f6db
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/rainbow_keypair_computation.h
@@ -0,0 +1,79 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+
+///
+/// @brief Computing parts of the sk from parts of pk and sk
+///
+/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts );
+
+///
+/// @brief Computing parts of the pk from the secret key
+///
+/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9
+/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/sign.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/sign.c
new file mode 100644
index 00000000..6ef18fff
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/sign.c
@@ -0,0 +1,94 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ unsigned char pk_seed[LEN_PKSEED] = {0};
+ randombytes( pk_seed, LEN_PKSEED );
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( (cpk_t *) pk, (csk_t *) sk, pk_seed, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( sm + mlen, (const csk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( digest, sm + mlen[0], (const cpk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( sig, (const csk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( digest, sig, (const cpk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_hash.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_hash.c
new file mode 100644
index 00000000..b0da07ab
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha256(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_hash.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_hash.h
new file mode 100644
index 00000000..f1a7fd34
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_prng.c b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_prng.c
new file mode 100644
index 00000000..c0098576
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_prng.h b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_prng.h
new file mode 100644
index 00000000..f24cc0d5
--- /dev/null
+++ b/crypto_sign/rainbowIa-cyclic-compressed/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWIACYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+
diff --git a/crypto_sign/rainbowIa-cyclic/META.yml b/crypto_sign/rainbowIa-cyclic/META.yml
index 43ea4b23..5955b846 100644
--- a/crypto_sign/rainbowIa-cyclic/META.yml
+++ b/crypto_sign/rainbowIa-cyclic/META.yml
@@ -5,7 +5,7 @@ length-public-key: 58144
length-secret-key: 92960
length-signature: 64
nistkat-sha256: 16f53bf0966b433451ae26e47f09f2dc8ea42db6a5c58fff1a2e7954f94dac0a
-testvectors-sha256: b7341bd862a8f683339e03cf236b885804854d9e0479cb53955761864ecc18bf
+testvectors-sha256: b7341bd862a8f683339e03cf236b885804854d9e0479cb53955761864ecc18bf
principal-submitter: Jintai Ding
auxiliary-submitters:
- Ming-Shing Chen
@@ -14,4 +14,4 @@ auxiliary-submitters:
- Bo-Yin Yang
implementations:
- name: clean
- version: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Rainbow-Round2.zip
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowIa-cyclic/clean/gf.c b/crypto_sign/rainbowIa-cyclic/clean/gf.c
index ef479074..9ce30191 100644
--- a/crypto_sign/rainbowIa-cyclic/clean/gf.c
+++ b/crypto_sign/rainbowIa-cyclic/clean/gf.c
@@ -1,13 +1,5 @@
#include "gf.h"
-static inline uint8_t gf256v_reduce_u32(uint32_t a) {
- // https://godbolt.org/z/7hirMb
- uint16_t *aa = (uint16_t *) (&a);
- uint16_t r = aa[0] ^ aa[1];
- uint8_t *rr = (uint8_t *) (&r);
- return rr[0] ^ rr[1];
-}
-
//// gf4 := gf2[x]/x^2+x+1
static inline uint8_t gf4_mul_2(uint8_t a) {
uint8_t r = (uint8_t) (a << 1);
@@ -36,20 +28,6 @@ static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
}
-static inline uint32_t _gf4v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t b0, uint32_t b1) {
- uint32_t c0 = a0 & b0;
- uint32_t c2 = a1 & b1;
- uint32_t c1_ = (a0 ^ a1) & (b0 ^ b1);
- return ((c1_ ^ c0) << 1) ^ c0 ^ c2;
-}
-
-uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16_is_nonzero(uint8_t a) {
- unsigned a4 = a & 0xf;
- unsigned r = ((unsigned) 0) - a4;
- r >>= 4;
- return r & 1;
-}
-
//// gf16 := gf4[y]/y^2+y+x
static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
uint8_t a0 = a & 3;
@@ -71,16 +49,7 @@ static inline uint8_t gf16_squ(uint8_t a) {
return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
}
-uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16_inv(uint8_t a) {
- uint8_t a2 = gf16_squ(a);
- uint8_t a4 = gf16_squ(a2);
- uint8_t a8 = gf16_squ(a4);
- uint8_t a6 = gf16_mul(a4, a2);
- return gf16_mul(a8, a6);
-}
-
// gf16 := gf4[y]/y^2+y+x
-
uint32_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
uint32_t axb0 = gf4v_mul_u32(a, b);
uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
@@ -91,6 +60,38 @@ uint32_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
}
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+
+
+static inline uint32_t _gf4v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t b0, uint32_t b1) {
+ uint32_t c0 = a0 & b0;
+ uint32_t c2 = a1 & b1;
+ uint32_t c1_ = (a0 ^ a1) & (b0 ^ b1);
+ return ((c1_ ^ c0) << 1) ^ c0 ^ c2;
+}
+
+uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16_is_nonzero(uint8_t a) {
+ unsigned a4 = a & 0xf;
+ unsigned r = ((unsigned) 0) - a4;
+ r >>= 4;
+ return r & 1;
+}
+
+uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16_inv(uint8_t a) {
+ uint8_t a2 = gf16_squ(a);
+ uint8_t a4 = gf16_squ(a2);
+ uint8_t a8 = gf16_squ(a4);
+ uint8_t a6 = gf16_mul(a4, a2);
+ return gf16_mul(a8, a6);
+}
+
static inline uint32_t _gf16v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3, uint32_t b0, uint32_t b1, uint32_t b2, uint32_t b3) {
uint32_t c0 = _gf4v_mul_u32_u32(a0, a1, b0, b1);
uint32_t c1_ = _gf4v_mul_u32_u32(a0 ^ a2, a1 ^ a3, b0 ^ b2, b1 ^ b3);
diff --git a/crypto_sign/rainbowIa-cyclic/clean/gf.h b/crypto_sign/rainbowIa-cyclic/clean/gf.h
index dd6a1ee0..e45cf934 100644
--- a/crypto_sign/rainbowIa-cyclic/clean/gf.h
+++ b/crypto_sign/rainbowIa-cyclic/clean/gf.h
@@ -8,11 +8,11 @@
/// @brief Library for arithmetics in GF(16) and GF(256)
///
+uint32_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16_is_nonzero(uint8_t a);
uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16_inv(uint8_t a);
-uint32_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
uint32_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16v_mul_u32_u32(uint32_t a, uint32_t b);
uint8_t PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf16v_reduce_u32(uint32_t a);
diff --git a/crypto_sign/rainbowIa-cyclic/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowIa-cyclic/clean/rainbow_keypair_computation.h
index 1dc6e48f..d7b9eafe 100644
--- a/crypto_sign/rainbowIa-cyclic/clean/rainbow_keypair_computation.h
+++ b/crypto_sign/rainbowIa-cyclic/clean/rainbow_keypair_computation.h
@@ -57,7 +57,6 @@ void PQCLEAN_RAINBOWIACYCLIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t
-
///
/// @brief Computing parts of the sk from parts of pk and sk
///
diff --git a/crypto_sign/rainbowVc-classic/META.yml b/crypto_sign/rainbowVc-classic/META.yml
new file mode 100644
index 00000000..666b9b16
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-Vc-classic
+type: signature
+claimed-nist-level: 5
+length-public-key: 1705536
+length-secret-key: 1227104
+length-signature: 204
+nistkat-sha256: e9d065cbdd5736f4ad2bf5c910fcdf163c3e93828a2e59cd4d1dbebb8c1de202
+testvectors-sha256: 729d88ca4b5a64508c15c86f986ab81489275ee84d371b5ec0792f89b9ca5ac3
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowVc-classic/clean/LICENSE b/crypto_sign/rainbowVc-classic/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowVc-classic/clean/Makefile b/crypto_sign/rainbowVc-classic/clean/Makefile
new file mode 100644
index 00000000..5aa2d89b
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowVc-classic_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowVc-classic/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowVc-classic/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..1c09a88e
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowVc-classic_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowVc-classic/clean/api.h b/crypto_sign/rainbowVc-classic/clean/api.h
new file mode 100644
index 00000000..11edfb14
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWVCCLASSIC_CLEAN_API_H
+#define PQCLEAN_RAINBOWVCCLASSIC_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWVCCLASSIC_CLEAN_CRYPTO_SECRETKEYBYTES 1227104
+#define PQCLEAN_RAINBOWVCCLASSIC_CLEAN_CRYPTO_PUBLICKEYBYTES 1705536
+#define PQCLEAN_RAINBOWVCCLASSIC_CLEAN_CRYPTO_BYTES 204
+#define PQCLEAN_RAINBOWVCCLASSIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,92,48,48) - classic"
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowVc-classic/clean/blas.h b/crypto_sign/rainbowVc-classic/clean/blas.h
new file mode 100644
index 00000000..6fd9cfea
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/blas.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_add_u32
+
+
+#define gf256v_mul_scalar PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_scalar_u32
+#define gf256v_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_madd_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/blas_comm.c b/crypto_sign/rainbowVc-classic/clean/blas_comm.c
new file mode 100644
index 00000000..aa708e68
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/blas_comm.c
@@ -0,0 +1,153 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i) {
+ return a[i];
+}
+
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte) {
+ uint8_t r = 0;
+ while ( _num_byte-- ) {
+ r |= a[0];
+ a++;
+ }
+ return (0 == r);
+}
+
+/// polynomial multplication
+/// School boook
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num) {
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero(c, _num * 2 - 1);
+ for (unsigned i = 0; i < _num; i++) {
+ gf256v_madd(c + i, a, b[i], _num);
+ }
+}
+
+static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ gf256v_madd(c, matA, b[i], n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = len_vec;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf256mat_gauss_elim_ref( uint8_t *mat, unsigned h, unsigned w ) {
+ unsigned r8 = 1;
+
+ for (unsigned i = 0; i < h; i++) {
+ uint8_t *ai = mat + w * i;
+ unsigned skip_len_align4 = i & ((unsigned)~0x3);
+
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + w * j;
+ gf256v_predicated_add( ai + skip_len_align4, !PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4 );
+ }
+ r8 &= PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_is_nonzero(ai[i]);
+ uint8_t pivot = ai[i];
+ pivot = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_inv( pivot );
+ gf256v_mul_scalar( ai + skip_len_align4, pivot, w - skip_len_align4 );
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + w * j;
+ gf256v_madd( aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4 );
+ }
+ }
+
+ return r8;
+}
+
+static
+unsigned gf256mat_solve_linear_eq_ref( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ uint8_t mat[ 64 * 64 ];
+ for (unsigned i = 0; i < n; i++) {
+ memcpy( mat + i * (n + 1), inp_mat + i * n, n );
+ mat[i * (n + 1) + n] = c_terms[i];
+ }
+ unsigned r8 = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_gauss_elim( mat, n, n + 1 );
+ for (unsigned i = 0; i < n; i++) {
+ sol[i] = mat[i * (n + 1) + n];
+ }
+ return r8;
+}
+
+
+
+static inline
+void gf256mat_submat( uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h ) {
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < w2; j++) {
+ mat2[i * w2 + j] = mat[i * w + st + j];
+ }
+ }
+}
+
+
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_inv( uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer ) {
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * H;
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero( ai, 2 * H );
+ gf256v_add( ai, a + i * H, H );
+ ai[H + i] = 1;
+ }
+ unsigned r8 = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_gauss_elim( aa, H, 2 * H );
+ gf256mat_submat( inv_a, H, H, aa, 2 * H, H );
+ return r8;
+}
+
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf256mat_prod_impl gf256mat_prod_ref
+#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref
+#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf256mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_gauss_elim( uint8_t *mat, unsigned h, unsigned w ) {
+ return gf256mat_gauss_elim_impl( mat, h, w );
+}
+
+
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf256mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
diff --git a/crypto_sign/rainbowVc-classic/clean/blas_comm.h b/crypto_sign/rainbowVc-classic/clean/blas_comm.h
new file mode 100644
index 00000000..cd54acac
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/blas_comm.h
@@ -0,0 +1,96 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i);
+
+
+
+/// @brief check if a vector is 0.
+///
+/// @param[in] a - the vector a.
+/// @param[in] _num_byte - number of bytes for the vector a.
+/// @return 1(true) if a is 0. 0(false) else.
+///
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte);
+
+
+/// @brief polynomial multiplication: c = a*b
+///
+/// @param[out] c - the output polynomial c
+/// @param[in] a - the vector a.
+/// @param[in] b - the vector b.
+/// @param[in] _num - number of elements for the polynomials a and b.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num);
+
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(256)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(256)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(256)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/blas_u32.c b/crypto_sign/rainbowVc-classic/clean/blas_u32.c
new file mode 100644
index 00000000..a20931ba
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/blas_u32.c
@@ -0,0 +1,90 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_u32(a_u32[i], b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_u32(t.u32, b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_u32(t.u32, gf256_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
diff --git a/crypto_sign/rainbowVc-classic/clean/blas_u32.h b/crypto_sign/rainbowVc-classic/clean/blas_u32.h
new file mode 100644
index 00000000..c72622dc
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/blas_u32.h
@@ -0,0 +1,19 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte);
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/gf.c b/crypto_sign/rainbowVc-classic/clean/gf.c
new file mode 100644
index 00000000..2af61837
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/gf.c
@@ -0,0 +1,142 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_is_nonzero(uint8_t a) {
+ unsigned a8 = a;
+ unsigned r = ((unsigned) 0) - a8;
+ r >>= 8;
+ return r & 1;
+}
+
+static inline uint8_t gf4_mul_3(uint8_t a) {
+ uint8_t msk = (uint8_t) ((a - 2) >> 1);
+ return (uint8_t) ((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1)));
+}
+static inline uint8_t gf16_mul_8(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = a >> 2;
+ return (uint8_t) ((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1));
+}
+
+// gf256 := gf16[X]/X^2+X+xy
+static inline uint8_t gf256_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ uint8_t b0 = b & 15;
+ uint8_t b1 = (b >> 4);
+ uint8_t a0b0 = gf16_mul(a0, b0);
+ uint8_t a1b1 = gf16_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x8 = gf16_mul_8(a1b1);
+ return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8);
+}
+
+static inline uint8_t gf256_squ(uint8_t a) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ a1 = gf16_squ(a1);
+ uint8_t a1squ_x8 = gf16_mul_8(a1);
+ return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0));
+}
+
+uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_inv(uint8_t a) {
+ // 128+64+32+16+8+4+2 = 254
+ uint8_t a2 = gf256_squ(a);
+ uint8_t a4 = gf256_squ(a2);
+ uint8_t a8 = gf256_squ(a4);
+ uint8_t a4_2 = gf256_mul(a4, a2);
+ uint8_t a8_4_2 = gf256_mul(a4_2, a8);
+ uint8_t a64_ = gf256_squ(a8_4_2);
+ a64_ = gf256_squ(a64_);
+ a64_ = gf256_squ(a64_);
+ uint8_t a64_2 = gf256_mul(a64_, a8_4_2);
+ uint8_t a128_ = gf256_squ(a64_2);
+ return gf256_mul(a2, a128_);
+}
+
+static inline uint32_t gf4v_mul_3_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit0 ^ (bit1 >> 1);
+}
+static inline uint32_t gf16v_mul_8_u32(uint32_t a) {
+ uint32_t a1 = a & 0xcccccccc;
+ uint32_t a0 = (a << 2) & 0xcccccccc;
+ return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2);
+}
+uint32_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf16v_mul_u32(a, b);
+ uint32_t axb1 = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf16v_mul_u32(a, b >> 4);
+ uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0;
+ uint32_t a1b1 = axb1 & 0xf0f0f0f0;
+ uint32_t a1b1_4 = a1b1 >> 4;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4);
+}
diff --git a/crypto_sign/rainbowVc-classic/clean/gf.h b/crypto_sign/rainbowVc-classic/clean/gf.h
new file mode 100644
index 00000000..7137179e
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/gf.h
@@ -0,0 +1,19 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowVc-classic/clean/parallel_matrix_op.c b/crypto_sign/rainbowVc-classic/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..c57cf059
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/parallel_matrix_op.c
@@ -0,0 +1,186 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf256v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf256v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf256v_madd( y, tmp, _x[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf256v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf256v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
diff --git a/crypto_sign/rainbowVc-classic/clean/parallel_matrix_op.h b/crypto_sign/rainbowVc-classic/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..b627ac4b
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow.c b/crypto_sign/rainbowVc-classic/clean/rainbow.c
new file mode 100644
index 00000000..2b0c6e16
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow.c
@@ -0,0 +1,170 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow.h b/crypto_sign/rainbowVc-classic/clean/rainbow.h
new file mode 100644
index 00000000..7b82b2b6
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow_blas.h b/crypto_sign/rainbowVc-classic/clean/rainbow_blas.h
new file mode 100644
index 00000000..c84faa35
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimat_madd_gf256
+#define batch_trimatTr_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_trimatTr_madd_gf256
+#define batch_2trimat_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_2trimat_madd_gf256
+#define batch_matTr_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_matTr_madd_gf256
+#define batch_bmatTr_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_bmatTr_madd_gf256
+#define batch_mat_madd PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_mat_madd_gf256
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_trimat_eval_gf256
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWVCCLASSIC_CLEAN_batch_quad_recmat_eval_gf256
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow_config.h b/crypto_sign/rainbowVc-classic/clean/rainbow_config.h
new file mode 100644
index 00000000..20f1068f
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow_config.h
@@ -0,0 +1,50 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _GFSIZE 256
+#define _V1 92
+#define _O1 48
+#define _O2 48
+#define _HASH_LEN 64
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF256
+#define _V1_BYTE (_V1)
+#define _V2_BYTE (_V2)
+#define _O1_BYTE (_O1)
+#define _O2_BYTE (_O2)
+#define _PUB_N_BYTE (_PUB_N)
+#define _PUB_M_BYTE (_PUB_M)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow_keypair.c b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair.c
new file mode 100644
index 00000000..e870c437
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair.c
@@ -0,0 +1,139 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+static
+void _generate_secretkey( sk_t *sk, const unsigned char *sk_seed ) {
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // set up prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_set( &prng0, sk_seed, LEN_SKSEED );
+
+ // generating secret key with prng.
+ generate_S_T( sk->s1, &prng0 );
+ generate_B1_B2( sk->l1_F1, &prng0 );
+
+ // clean prng
+ memset( &prng0, 0, sizeof(prng_t) );
+}
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_generate_keypair( pk_t *rpk, sk_t *sk, const unsigned char *sk_seed ) {
+ _generate_secretkey( sk, sk_seed );
+
+ // set up a temporary structure ext_cpk_t for calculating public key.
+ ext_cpk_t pk;
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_calculate_Q_from_F( &pk, sk, sk ); // compute the public key in ext_cpk_t format.
+ calculate_t4( sk->t4, sk->t1, sk->t3 );
+
+ obsfucate_l1_polys( pk.l1_Q1, pk.l2_Q1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q2, pk.l2_Q2, _V1 * _O1, sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q3, pk.l2_Q3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q5, pk.l2_Q5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q6, pk.l2_Q6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk.l1_Q9, pk.l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+ // so far, the pk contains the full pk but in ext_cpk_t format.
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_extcpk_to_pk( rpk, &pk ); // convert the public key from ext_cpk_t to pk_t.
+}
+
+
+
+
+
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow_keypair.h b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair.h
new file mode 100644
index 00000000..bc575d90
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair.h
@@ -0,0 +1,72 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+
+
+///
+/// @brief Generate key pairs for classic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_generate_keypair( pk_t *pk, sk_t *sk, const unsigned char *sk_seed );
+
+
+
+
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..78e632a5
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair_computation.c
@@ -0,0 +1,197 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+static
+void calculate_Q_from_F_ref( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ /*
+ Layer 1
+ Computing :
+ Q_pk.l1_F1s[i] = F_sk.l1_F1s[i]
+
+ Q_pk.l1_F2s[i] = (F1* T1 + F2) + F1tr * t1
+ Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ */
+ const unsigned char *t2 = Ts->t4;
+
+ memcpy( Qs->l1_Q1, Fs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ memcpy( Qs->l1_Q2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Qs->l1_Q2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // l1_Q5 : _O1_BYTE * _O1 * _O1
+ // l1_Q9 : _O1_BYTE * _O2 * _O2
+ // l2_Q5 : _O2_BYTE * _V1 * _O1
+ // l2_Q9 : _O2_BYTE * _V1 * _O2
+
+
+ unsigned char tempQ[_O1_BYTE * _O1 * _O1 + 32];
+
+ memset( tempQ, 0, _O1_BYTE * _O1 * _O1 ); // l1_Q5
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q2, _O1, _O1_BYTE ); // t1_tr*(F1*T1 + F2)
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ batch_trimatTr_madd( Qs->l1_Q2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // Q2
+ /*
+ Computing:
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ, 0, _O1_BYTE * _O2 * _O2 ); // l1_Q9
+ batch_matTr_madd( tempQ, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+
+ /*
+ layer 2
+ Computing:
+ Q1 = F1
+ Q2 = F1_F1T*T1 + F2
+ Q5 = UT( T1tr( F1*T1 + F2 ) + F5 )
+ */
+ memcpy( Qs->l2_Q1, Fs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ memcpy( Qs->l2_Q2, Fs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Qs->l2_Q2, Fs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F1*T1 + F2
+
+ memcpy( Qs->l2_Q5, Fs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) );
+ memset( tempQ, 0, _O2_BYTE * _O1 * _O1 ); // l2_Q5
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l2_Q2, _O1, _O2_BYTE ); // t1_tr*(F1*T1 + F2)
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_UpperTrianglize( Qs->l2_Q5, tempQ, _O1, _O2_BYTE ); // UT( ... ) // Q5
+
+ batch_trimatTr_madd( Qs->l2_Q2, Fs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q2
+
+ /*
+ Computing:
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+
+ Q3 = F1_F1T*T2 + F2*T3 + F3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ Q6 = T1tr*( F1_F1T*T2 + F2*T3 + F3 ) + F2Tr*T2 + F5_F5T*T3 + F6
+ */
+ memcpy( Qs->l2_Q3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 );
+ batch_trimat_madd( Qs->l2_Q3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( Qs->l2_Q3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ, 0, _O2_BYTE * _O2 * _O2 ); // l2_Q9
+ batch_matTr_madd( tempQ, t2, _V1, _V1_BYTE, _O2, Qs->l2_Q3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( Qs->l2_Q6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+
+ batch_trimat_madd( Qs->l2_Q6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+ batch_matTr_madd( tempQ, Ts->t3, _O1, _O1_BYTE, _O2, Qs->l2_Q6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ, _O2, _O2_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l2_Q3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1_F1T_T2 + F2_T3 + F3 // Q3
+
+ batch_bmatTr_madd( Qs->l2_Q6, Fs->l2_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6 + F2tr*T2
+ batch_trimatTr_madd( Qs->l2_Q6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F2tr*T2 + F5_F5T*T3 + F6
+ batch_matTr_madd( Qs->l2_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l2_Q3, _O2, _O2_BYTE ); // Q6
+}
+// TODO: these defines are not really required for a clean implementation - just implement directly
+#define calculate_Q_from_F_impl calculate_Q_from_F_ref
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_impl( Qs, Fs, Ts );
+}
+
+
+
diff --git a/crypto_sign/rainbowVc-classic/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..decf2f1c
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/rainbow_keypair_computation.h
@@ -0,0 +1,60 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/sign.c b/crypto_sign/rainbowVc-classic/clean/sign.c
new file mode 100644
index 00000000..c0e87b4d
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/sign.c
@@ -0,0 +1,92 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_generate_keypair( (pk_t *) pk, (sk_t *) sk, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_sign( sm + mlen, (const sk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_verify( digest, sm + mlen[0], (const pk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_sign( sig, (const sk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWVCCLASSIC_CLEAN_rainbow_verify( digest, sig, (const pk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowVc-classic/clean/utils_hash.c b/crypto_sign/rainbowVc-classic/clean/utils_hash.c
new file mode 100644
index 00000000..2f80fff9
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha512(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowVc-classic/clean/utils_hash.h b/crypto_sign/rainbowVc-classic/clean/utils_hash.h
new file mode 100644
index 00000000..f7ccd524
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowVc-classic/clean/utils_prng.c b/crypto_sign/rainbowVc-classic/clean/utils_prng.c
new file mode 100644
index 00000000..4a136b27
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWVCCLASSIC_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowVc-classic/clean/utils_prng.h b/crypto_sign/rainbowVc-classic/clean/utils_prng.h
new file mode 100644
index 00000000..b75b395a
--- /dev/null
+++ b/crypto_sign/rainbowVc-classic/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/META.yml b/crypto_sign/rainbowVc-cyclic-compressed/META.yml
new file mode 100644
index 00000000..606d989d
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-Vc-cyclic-compressed
+type: signature
+claimed-nist-level: 5
+length-public-key: 491936
+length-secret-key: 64
+length-signature: 204
+nistkat-sha256: 7bc9f57b718843d525d893fc361d97417de0b06e954f2687f808bebaaf2c762c
+testvectors-sha256: acd054aed76af99bf0b31438226bdcca8ac34efde180cf80732c30bc00a63a9c
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/LICENSE b/crypto_sign/rainbowVc-cyclic-compressed/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/Makefile b/crypto_sign/rainbowVc-cyclic-compressed/clean/Makefile
new file mode 100644
index 00000000..e4387a30
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowVc-cyclic-compressed_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowVc-cyclic-compressed/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..e2aa7250
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowVc-cyclic-compressed_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/api.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/api.h
new file mode 100644
index 00000000..7f4a866c
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_API_H
+#define PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_CRYPTO_SECRETKEYBYTES 64
+#define PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_CRYPTO_PUBLICKEYBYTES 491936
+#define PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_CRYPTO_BYTES 204
+#define PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,92,48,48) - cyclic compressed"
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/blas.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas.h
new file mode 100644
index 00000000..0bad5653
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_add_u32
+
+
+#define gf256v_mul_scalar PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32
+#define gf256v_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_comm.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_comm.c
new file mode 100644
index 00000000..e1725ac1
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_comm.c
@@ -0,0 +1,153 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i) {
+ return a[i];
+}
+
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte) {
+ uint8_t r = 0;
+ while ( _num_byte-- ) {
+ r |= a[0];
+ a++;
+ }
+ return (0 == r);
+}
+
+/// polynomial multplication
+/// School boook
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num) {
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, _num * 2 - 1);
+ for (unsigned i = 0; i < _num; i++) {
+ gf256v_madd(c + i, a, b[i], _num);
+ }
+}
+
+static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ gf256v_madd(c, matA, b[i], n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = len_vec;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf256mat_gauss_elim_ref( uint8_t *mat, unsigned h, unsigned w ) {
+ unsigned r8 = 1;
+
+ for (unsigned i = 0; i < h; i++) {
+ uint8_t *ai = mat + w * i;
+ unsigned skip_len_align4 = i & ((unsigned)~0x3);
+
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + w * j;
+ gf256v_predicated_add( ai + skip_len_align4, !PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4 );
+ }
+ r8 &= PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(ai[i]);
+ uint8_t pivot = ai[i];
+ pivot = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_inv( pivot );
+ gf256v_mul_scalar( ai + skip_len_align4, pivot, w - skip_len_align4 );
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + w * j;
+ gf256v_madd( aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4 );
+ }
+ }
+
+ return r8;
+}
+
+static
+unsigned gf256mat_solve_linear_eq_ref( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ uint8_t mat[ 64 * 64 ];
+ for (unsigned i = 0; i < n; i++) {
+ memcpy( mat + i * (n + 1), inp_mat + i * n, n );
+ mat[i * (n + 1) + n] = c_terms[i];
+ }
+ unsigned r8 = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim( mat, n, n + 1 );
+ for (unsigned i = 0; i < n; i++) {
+ sol[i] = mat[i * (n + 1) + n];
+ }
+ return r8;
+}
+
+
+
+static inline
+void gf256mat_submat( uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h ) {
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < w2; j++) {
+ mat2[i * w2 + j] = mat[i * w + st + j];
+ }
+ }
+}
+
+
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_inv( uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer ) {
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * H;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( ai, 2 * H );
+ gf256v_add( ai, a + i * H, H );
+ ai[H + i] = 1;
+ }
+ unsigned r8 = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim( aa, H, 2 * H );
+ gf256mat_submat( inv_a, H, H, aa, 2 * H, H );
+ return r8;
+}
+
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf256mat_prod_impl gf256mat_prod_ref
+#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref
+#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf256mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim( uint8_t *mat, unsigned h, unsigned w ) {
+ return gf256mat_gauss_elim_impl( mat, h, w );
+}
+
+
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf256mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_comm.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_comm.h
new file mode 100644
index 00000000..a0c1a5ff
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_comm.h
@@ -0,0 +1,96 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i);
+
+
+
+/// @brief check if a vector is 0.
+///
+/// @param[in] a - the vector a.
+/// @param[in] _num_byte - number of bytes for the vector a.
+/// @return 1(true) if a is 0. 0(false) else.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte);
+
+
+/// @brief polynomial multiplication: c = a*b
+///
+/// @param[out] c - the output polynomial c
+/// @param[in] a - the vector a.
+/// @param[in] b - the vector b.
+/// @param[in] _num - number of elements for the polynomials a and b.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num);
+
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(256)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(256)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(256)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_u32.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_u32.c
new file mode 100644
index 00000000..4e423280
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_u32.c
@@ -0,0 +1,90 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(a_u32[i], b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(t.u32, b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(t.u32, gf256_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_u32.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_u32.h
new file mode 100644
index 00000000..5e0ce1ae
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/blas_u32.h
@@ -0,0 +1,19 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte);
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/gf.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/gf.c
new file mode 100644
index 00000000..c61b7bd8
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/gf.c
@@ -0,0 +1,142 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+uint8_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(uint8_t a) {
+ unsigned a8 = a;
+ unsigned r = ((unsigned) 0) - a8;
+ r >>= 8;
+ return r & 1;
+}
+
+static inline uint8_t gf4_mul_3(uint8_t a) {
+ uint8_t msk = (uint8_t) ((a - 2) >> 1);
+ return (uint8_t) ((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1)));
+}
+static inline uint8_t gf16_mul_8(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = a >> 2;
+ return (uint8_t) ((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1));
+}
+
+// gf256 := gf16[X]/X^2+X+xy
+static inline uint8_t gf256_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ uint8_t b0 = b & 15;
+ uint8_t b1 = (b >> 4);
+ uint8_t a0b0 = gf16_mul(a0, b0);
+ uint8_t a1b1 = gf16_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x8 = gf16_mul_8(a1b1);
+ return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8);
+}
+
+static inline uint8_t gf256_squ(uint8_t a) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ a1 = gf16_squ(a1);
+ uint8_t a1squ_x8 = gf16_mul_8(a1);
+ return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0));
+}
+
+uint8_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_inv(uint8_t a) {
+ // 128+64+32+16+8+4+2 = 254
+ uint8_t a2 = gf256_squ(a);
+ uint8_t a4 = gf256_squ(a2);
+ uint8_t a8 = gf256_squ(a4);
+ uint8_t a4_2 = gf256_mul(a4, a2);
+ uint8_t a8_4_2 = gf256_mul(a4_2, a8);
+ uint8_t a64_ = gf256_squ(a8_4_2);
+ a64_ = gf256_squ(a64_);
+ a64_ = gf256_squ(a64_);
+ uint8_t a64_2 = gf256_mul(a64_, a8_4_2);
+ uint8_t a128_ = gf256_squ(a64_2);
+ return gf256_mul(a2, a128_);
+}
+
+static inline uint32_t gf4v_mul_3_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit0 ^ (bit1 >> 1);
+}
+static inline uint32_t gf16v_mul_8_u32(uint32_t a) {
+ uint32_t a1 = a & 0xcccccccc;
+ uint32_t a0 = (a << 2) & 0xcccccccc;
+ return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2);
+}
+uint32_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a, b);
+ uint32_t axb1 = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a, b >> 4);
+ uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0;
+ uint32_t a1b1 = axb1 & 0xf0f0f0f0;
+ uint32_t a1b1_4 = a1b1 >> 4;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4);
+}
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/gf.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/gf.h
new file mode 100644
index 00000000..57031de2
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/gf.h
@@ -0,0 +1,19 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/parallel_matrix_op.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..0e93b149
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/parallel_matrix_op.c
@@ -0,0 +1,186 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf256v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf256v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf256v_madd( y, tmp, _x[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf256v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf256v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/parallel_matrix_op.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..5436d930
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow.c
new file mode 100644
index 00000000..2e390340
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow.c
@@ -0,0 +1,181 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+/////////////// cyclic version ///////////////////////////
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( uint8_t *signature, const csk_t *csk, const uint8_t *digest ) {
+ unsigned char sk[sizeof(sk_t) + 32];
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic((sk_t *)sk, csk->pk_seed, csk->sk_seed ); // generating classic secret key.
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign( signature, (sk_t *) sk, digest );
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk ) {
+ unsigned char pk[sizeof(pk_t) +32];
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_cpk_to_pk( (pk_t *)pk, _pk ); // generating classic public key.
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify( digest, signature, (pk_t *)pk );
+}
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow.h
new file mode 100644
index 00000000..8a491d2c
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow.h
@@ -0,0 +1,51 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+///
+/// @brief Signing function for compressed secret key of the cyclic rainbow.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the compressed secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( uint8_t *signature, const csk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function for cyclic public keys.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key of cyclic rainbow.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *pk );
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_blas.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_blas.h
new file mode 100644
index 00000000..a89e9f76
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_gf256mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256
+#define batch_trimatTr_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256
+#define batch_2trimat_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256
+#define batch_matTr_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256
+#define batch_bmatTr_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256
+#define batch_mat_madd PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_config.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_config.h
new file mode 100644
index 00000000..20f1068f
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_config.h
@@ -0,0 +1,50 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _GFSIZE 256
+#define _V1 92
+#define _O1 48
+#define _O2 48
+#define _HASH_LEN 64
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF256
+#define _V1_BYTE (_V1)
+#define _V2_BYTE (_V2)
+#define _O1_BYTE (_O1)
+#define _O2_BYTE (_O2)
+#define _PUB_N_BYTE (_PUB_N)
+#define _PUB_M_BYTE (_PUB_M)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair.c
new file mode 100644
index 00000000..4c05b519
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair.c
@@ -0,0 +1,201 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+
+
+///////////////////// Cyclic //////////////////////////////////
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( pk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng;
+ prng_t *prng0 = &prng;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set( prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, prng0 ); // S,T: only a part of sk
+
+ unsigned char t2[sizeof(sk->t4)];
+ memcpy( t2, sk->t4, _V1_BYTE * _O2 ); // temporarily store t2
+ calculate_t4( sk->t4, sk->t1, sk->t3 ); // t2 <- t4
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t *prng1 = &prng;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set( prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, prng1 ); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+ // so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6.
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk, Qs, sk ); // calcuate the rest parts of secret key from Qs and S,T
+
+
+ unsigned char t4[sizeof(sk->t4)];
+ memcpy( t4, sk->t4, _V1_BYTE * _O2 ); // temporarily store t4
+ memcpy( sk->t4, t2, _V1_BYTE * _O2 ); // restore t2
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( pk, sk, sk ); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9
+ memcpy( sk->t4, t4, _V1_BYTE * _O2 ); // restore t4
+
+ obsfucate_l1_polys( pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+
+ // clean
+ memset( &prng, 0, sizeof(prng_t) );
+}
+
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( cpk_t *pk, csk_t *rsk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( rsk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( rsk->sk_seed, sk_seed, LEN_SKSEED );
+ sk_t sk;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( pk, &sk, pk_seed, sk_seed );
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic( sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng0;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set( &prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, &prng0 );
+ calculate_t4( sk->t4, sk->t1, sk->t3 );
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t prng1;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set( &prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, &prng1 );
+
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+
+ // calcuate the parts of sk according to pk.
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk, Qs, sk );
+
+ // clean prng for sk
+ memset( &prng0, 0, sizeof(prng_t) );
+}
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_cpk_to_pk( pk_t *rpk, const cpk_t *cpk ) {
+ // procedure: cpk_t --> extcpk_t --> pk_t
+
+ // convert from cpk_t to extcpk_t
+ ext_cpk_t pk;
+
+ // setup prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set( &prng0, cpk->pk_seed, LEN_SKSEED );
+
+ // generating parts of key with prng
+ generate_l1_F12( pk.l1_Q1, &prng0 );
+ // copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9
+ memcpy( pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * ( _V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2) ) );
+
+ // generating parts of key with prng
+ generate_l2_F12356( pk.l2_Q1, &prng0 );
+ // copying parts of key from input: l2_Q9
+ memcpy( pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // convert from extcpk_t to pk_t
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_extcpk_to_pk( rpk, &pk );
+}
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair.h
new file mode 100644
index 00000000..20fab7f9
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair.h
@@ -0,0 +1,126 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+/// @brief public key for cyclic rainbow
+///
+/// public key for cyclic rainbow
+///
+typedef
+struct rainbow_publickey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6
+
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1
+
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2
+} cpk_t;
+
+
+
+/// @brief compressed secret key for cyclic rainbow
+///
+/// compressed secret key for cyclic rainbow
+///
+typedef
+struct rainbow_secretkey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key.
+ unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key.
+} csk_t;
+
+
+
+///
+/// @brief Generate key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of public key.
+/// @param[in] sk_seed - seed for generating secret key.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+///
+/// @brief Generate compressed key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the compressed secret key.
+/// @param[in] pk_seed - seed for generating parts of the public key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( cpk_t *pk, csk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+///
+/// @brief Generate secret key for cyclic rainbow.
+///
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of the pbulic key.
+/// @param[in] sk_seed - seed for generating the secret key.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic( sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+////////////////////////////////////
+
+///
+/// @brief converting formats of public keys : from cyclic version to classic key
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the cyclic public key.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_cpk_to_pk( pk_t *pk, const cpk_t *cpk );
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..7762e3f5
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair_computation.c
@@ -0,0 +1,233 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+
+
+
+static
+void calculate_F_from_Q_ref( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ // Layer 1
+ // F_sk.l1_F1s[i] = Q_pk.l1_F1s[i]
+ memcpy( Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ // F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i]
+ memcpy( Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_2trimat_madd( Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE );
+
+ /*
+ Layer 2
+ computations:
+
+ F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+ Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1
+ F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+
+ Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ #Q1_Q1T_T4 = Q1_Q1T * t4
+ Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ + Q_pk.l2_F2s[i].transpose() * t4
+ + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+
+ */
+ memcpy( Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+
+ // F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ // F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+ memcpy( Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q1_T1+ Q2
+
+ unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32];
+ memset( tempQ, 0, _O1 * _O1 * _O2_BYTE );
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE ); // t1_tr*(Q1_T1+Q2)
+ memcpy( Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // F5
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Fs->l2_F5, tempQ, _O1, _O2_BYTE ); // UT( ... )
+
+ batch_trimatTr_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F2 = Q1_T1 + Q2 + Q1^tr*t1
+
+ // Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ // Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ // F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ memcpy( Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE );
+ batch_2trimat_madd( Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE ); // Q1_Q1T_T4
+ batch_mat_madd( Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // Q2_T3
+
+ // F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ // + Q_pk.l2_F2s[i].transpose() * t4
+ // + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+ memcpy( Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE );
+ batch_matTr_madd( Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE ); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ batch_2trimat_madd( Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3
+ batch_bmatTr_madd( Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE );
+
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+static
+void calculate_Q_from_F_cyclic_ref( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+// Layer 1: Computing Q5, Q3, Q6, Q9
+
+// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ const unsigned char *t2 = Ts->t4;
+ sk_t tempQ;
+ memcpy( tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+ memset( tempQ.l2_F1, 0, sizeof(tempQ.l2_F1));
+ memset( tempQ.l2_F2, 0, sizeof(tempQ.l2_F2));
+ batch_matTr_madd( tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE ); // T1tr*(F1*T1 + F2)
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ /*
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2 ); // should be F3. assuming: _O1 >= _O2
+ batch_matTr_madd( tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+ /*
+ Layer 2
+ Computing Q9:
+
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ */
+ sk_t tempQ2;
+ memcpy( tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 ); /// F3 actually.
+ batch_trimat_madd( tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2 );
+ batch_matTr_madd( tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+ batch_trimat_madd( tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+
+ batch_matTr_madd( tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE ); // Q9
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+
+
+// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_
+#define calculate_F_from_Q_impl calculate_F_from_Q_ref
+#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref
+
+
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ calculate_F_from_Q_impl( Fs, Qs, Ts );
+}
+
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_cyclic_impl( Qs, Fs, Ts );
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..b4ddf049
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/rainbow_keypair_computation.h
@@ -0,0 +1,79 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+
+///
+/// @brief Computing parts of the sk from parts of pk and sk
+///
+/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts );
+
+///
+/// @brief Computing parts of the pk from the secret key
+///
+/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9
+/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/sign.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/sign.c
new file mode 100644
index 00000000..41c9baeb
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/sign.c
@@ -0,0 +1,94 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ unsigned char pk_seed[LEN_PKSEED] = {0};
+ randombytes( pk_seed, LEN_PKSEED );
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic( (cpk_t *) pk, (csk_t *) sk, pk_seed, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( sm + mlen, (const csk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( digest, sm + mlen[0], (const cpk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic( sig, (const csk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic( digest, sig, (const cpk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_hash.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_hash.c
new file mode 100644
index 00000000..e626ea18
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha512(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_hash.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_hash.h
new file mode 100644
index 00000000..98bee65d
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_prng.c b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_prng.c
new file mode 100644
index 00000000..d417d9d8
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_prng.h b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_prng.h
new file mode 100644
index 00000000..ddb2f19a
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic-compressed/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWVCCYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+
diff --git a/crypto_sign/rainbowVc-cyclic/META.yml b/crypto_sign/rainbowVc-cyclic/META.yml
new file mode 100644
index 00000000..6d8d7a44
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/META.yml
@@ -0,0 +1,17 @@
+name: Rainbow-Vc-cyclic
+type: signature
+claimed-nist-level: 5
+length-public-key: 491936
+length-secret-key: 1227104
+length-signature: 204
+nistkat-sha256: f33608a7f2db6ea71394f38a9e1ee06b96330759ccd4fc1719ac2286dac43650
+testvectors-sha256: d760ae98b24bdc3f8d22e8324ba73e0dd759a99a58b9e8860a168182de02b669
+principal-submitter: Jintai Ding
+auxiliary-submitters:
+ - Ming-Shing Chen
+ - Albrecht Petzoldt
+ - Dieter Schmidt
+ - Bo-Yin Yang
+implementations:
+ - name: clean
+ version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd
diff --git a/crypto_sign/rainbowVc-cyclic/clean/LICENSE b/crypto_sign/rainbowVc-cyclic/clean/LICENSE
new file mode 100644
index 00000000..cb00a6e3
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/LICENSE
@@ -0,0 +1,8 @@
+`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen
+
+To the extent possible under law, the person who associated CC0 with
+`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights
+to `Software implementation of Rainbow for NIST R2 submission'.
+
+You should have received a copy of the CC0 legalcode along with this
+work. If not, see .
diff --git a/crypto_sign/rainbowVc-cyclic/clean/Makefile b/crypto_sign/rainbowVc-cyclic/clean/Makefile
new file mode 100644
index 00000000..de6d19fd
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/Makefile
@@ -0,0 +1,20 @@
+# This Makefile can be used with GNU Make or BSD Make
+
+LIB=librainbowVc-cyclic_clean.a
+
+HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h
+OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o
+
+CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)
+
+all: $(LIB)
+
+%.o: %.c $(HEADERS)
+ $(CC) $(CFLAGS) -c -o $@ $<
+
+$(LIB): $(OBJECTS)
+ $(AR) -r $@ $(OBJECTS)
+
+clean:
+ $(RM) $(OBJECTS)
+ $(RM) $(LIB)
diff --git a/crypto_sign/rainbowVc-cyclic/clean/Makefile.Microsoft_nmake b/crypto_sign/rainbowVc-cyclic/clean/Makefile.Microsoft_nmake
new file mode 100644
index 00000000..5b554a44
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/Makefile.Microsoft_nmake
@@ -0,0 +1,19 @@
+# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
+# nmake /f Makefile.Microsoft_nmake
+
+LIBRARY=librainbowVc-cyclic_clean.lib
+OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj
+
+CFLAGS=/nologo /I ..\..\..\common /W4 /WX
+
+all: $(LIBRARY)
+
+# Make sure objects are recompiled if headers change.
+$(OBJECTS): *.h
+
+$(LIBRARY): $(OBJECTS)
+ LIB.EXE /NOLOGO /WX /OUT:$@ $**
+
+clean:
+ -DEL $(OBJECTS)
+ -DEL $(LIBRARY)
diff --git a/crypto_sign/rainbowVc-cyclic/clean/api.h b/crypto_sign/rainbowVc-cyclic/clean/api.h
new file mode 100644
index 00000000..e7106779
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/api.h
@@ -0,0 +1,32 @@
+#ifndef PQCLEAN_RAINBOWVCCYCLIC_CLEAN_API_H
+#define PQCLEAN_RAINBOWVCCYCLIC_CLEAN_API_H
+
+#include
+#include
+
+#define PQCLEAN_RAINBOWVCCYCLIC_CLEAN_CRYPTO_SECRETKEYBYTES 1227104
+#define PQCLEAN_RAINBOWVCCYCLIC_CLEAN_CRYPTO_PUBLICKEYBYTES 491936
+#define PQCLEAN_RAINBOWVCCYCLIC_CLEAN_CRYPTO_BYTES 204
+#define PQCLEAN_RAINBOWVCCYCLIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,92,48,48) - cyclic"
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);
+
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk);
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk);
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
+ const uint8_t *m, size_t mlen,
+ const uint8_t *sk);
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
+ const uint8_t *sm, size_t smlen,
+ const uint8_t *pk);
+
+
+#endif
diff --git a/crypto_sign/rainbowVc-cyclic/clean/blas.h b/crypto_sign/rainbowVc-cyclic/clean/blas.h
new file mode 100644
index 00000000..3124e404
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/blas.h
@@ -0,0 +1,20 @@
+#ifndef _BLAS_H_
+#define _BLAS_H_
+/// @file blas.h
+/// @brief Defining the implementations for linear algebra functions depending on the machine architecture.
+///
+
+#include "blas_comm.h"
+#include "blas_u32.h"
+#include "rainbow_config.h"
+
+#define gf256v_predicated_add PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_predicated_add_u32
+#define gf256v_add PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_add_u32
+
+
+#define gf256v_mul_scalar PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_scalar_u32
+#define gf256v_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_madd_u32
+
+
+#endif // _BLAS_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/blas_comm.c b/crypto_sign/rainbowVc-cyclic/clean/blas_comm.c
new file mode 100644
index 00000000..2040f096
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/blas_comm.c
@@ -0,0 +1,153 @@
+/// @file blas_comm.c
+/// @brief The standard implementations for blas_comm.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "gf.h"
+#include "rainbow_config.h"
+
+#include
+#include
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte) {
+ gf256v_add(b, b, _num_byte);
+}
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i) {
+ return a[i];
+}
+
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte) {
+ uint8_t r = 0;
+ while ( _num_byte-- ) {
+ r |= a[0];
+ a++;
+ }
+ return (0 == r);
+}
+
+/// polynomial multplication
+/// School boook
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num) {
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero(c, _num * 2 - 1);
+ for (unsigned i = 0; i < _num; i++) {
+ gf256v_madd(c + i, a, b[i], _num);
+ }
+}
+
+static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte);
+ for (unsigned i = 0; i < n_A_width; i++) {
+ gf256v_madd(c, matA, b[i], n_A_vec_byte);
+ matA += n_A_vec_byte;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec) {
+ unsigned n_vec_byte = len_vec;
+ for (unsigned k = 0; k < len_vec; k++) {
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero(c, n_vec_byte);
+ const uint8_t *bk = b + n_vec_byte * k;
+ for (unsigned i = 0; i < len_vec; i++) {
+ gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte);
+ }
+ c += n_vec_byte;
+ }
+}
+
+static
+unsigned gf256mat_gauss_elim_ref( uint8_t *mat, unsigned h, unsigned w ) {
+ unsigned r8 = 1;
+
+ for (unsigned i = 0; i < h; i++) {
+ uint8_t *ai = mat + w * i;
+ unsigned skip_len_align4 = i & ((unsigned)~0x3);
+
+ for (unsigned j = i + 1; j < h; j++) {
+ uint8_t *aj = mat + w * j;
+ gf256v_predicated_add( ai + skip_len_align4, !PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4 );
+ }
+ r8 &= PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_is_nonzero(ai[i]);
+ uint8_t pivot = ai[i];
+ pivot = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_inv( pivot );
+ gf256v_mul_scalar( ai + skip_len_align4, pivot, w - skip_len_align4 );
+ for (unsigned j = 0; j < h; j++) {
+ if (i == j) {
+ continue;
+ }
+ uint8_t *aj = mat + w * j;
+ gf256v_madd( aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4 );
+ }
+ }
+
+ return r8;
+}
+
+static
+unsigned gf256mat_solve_linear_eq_ref( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ uint8_t mat[ 64 * 64 ];
+ for (unsigned i = 0; i < n; i++) {
+ memcpy( mat + i * (n + 1), inp_mat + i * n, n );
+ mat[i * (n + 1) + n] = c_terms[i];
+ }
+ unsigned r8 = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_gauss_elim( mat, n, n + 1 );
+ for (unsigned i = 0; i < n; i++) {
+ sol[i] = mat[i * (n + 1) + n];
+ }
+ return r8;
+}
+
+
+
+static inline
+void gf256mat_submat( uint8_t *mat2, unsigned w2, unsigned st, const uint8_t *mat, unsigned w, unsigned h ) {
+ for (unsigned i = 0; i < h; i++) {
+ for (unsigned j = 0; j < w2; j++) {
+ mat2[i * w2 + j] = mat[i * w + st + j];
+ }
+ }
+}
+
+
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_inv( uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer ) {
+ uint8_t *aa = buffer;
+ for (unsigned i = 0; i < H; i++) {
+ uint8_t *ai = aa + i * 2 * H;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero( ai, 2 * H );
+ gf256v_add( ai, a + i * H, H );
+ ai[H + i] = 1;
+ }
+ unsigned r8 = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_gauss_elim( aa, H, 2 * H );
+ gf256mat_submat( inv_a, H, H, aa, 2 * H, H );
+ return r8;
+}
+
+
+
+
+
+// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE
+
+#define gf256mat_prod_impl gf256mat_prod_ref
+#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref
+#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b) {
+ gf256mat_prod_impl( c, matA, n_A_vec_byte, n_A_width, b);
+}
+
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_gauss_elim( uint8_t *mat, unsigned h, unsigned w ) {
+ return gf256mat_gauss_elim_impl( mat, h, w );
+}
+
+
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_solve_linear_eq( uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n ) {
+ return gf256mat_solve_linear_eq_impl( sol, inp_mat, c_terms, n );
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/blas_comm.h b/crypto_sign/rainbowVc-cyclic/clean/blas_comm.h
new file mode 100644
index 00000000..4718f2f4
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/blas_comm.h
@@ -0,0 +1,96 @@
+#ifndef _BLAS_COMM_H_
+#define _BLAS_COMM_H_
+/// @file blas_comm.h
+/// @brief Common functions for linear algebra.
+///
+
+#include "rainbow_config.h"
+#include
+
+
+/// @brief set a vector to 0.
+///
+/// @param[in,out] b - the vector b.
+/// @param[in] _num_byte - number of bytes for the vector b.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned _num_byte);
+
+/// @brief get an element from GF(256) vector .
+///
+/// @param[in] a - the input vector a.
+/// @param[in] i - the index in the vector a.
+/// @return the value of the element.
+///
+uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned i);
+
+
+
+/// @brief check if a vector is 0.
+///
+/// @param[in] a - the vector a.
+/// @param[in] _num_byte - number of bytes for the vector a.
+/// @return 1(true) if a is 0. 0(false) else.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned _num_byte);
+
+
+/// @brief polynomial multiplication: c = a*b
+///
+/// @param[out] c - the output polynomial c
+/// @param[in] a - the vector a.
+/// @param[in] b - the vector b.
+/// @param[in] _num - number of elements for the polynomials a and b.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned _num);
+
+
+/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
+///
+/// @param[out] c - the output vector c
+/// @param[in] matA - a column-major matrix A.
+/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
+/// @param[in] n_A_width - the width of matrix A.
+/// @param[in] b - the vector b.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned n_A_vec_byte, unsigned n_A_width, const uint8_t *b);
+
+/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
+///
+/// @param[out] c - the output matrix c
+/// @param[in] c - a matrix a.
+/// @param[in] b - a matrix b.
+/// @param[in] len_vec - the length of column vectors.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned len_vec);
+
+/// @brief Gauss elimination for a matrix, in GF(256)
+///
+/// @param[in,out] mat - the matrix.
+/// @param[in] h - the height of the matrix.
+/// @param[in] w - the width of the matrix.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned h, unsigned w);
+
+/// @brief Solving linear equations, in GF(256)
+///
+/// @param[out] sol - the solutions.
+/// @param[in] inp_mat - the matrix parts of input equations.
+/// @param[in] c_terms - the constant terms of the input equations.
+/// @param[in] n - the number of equations.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned n);
+
+/// @brief Computing the inverse matrix, in GF(256)
+///
+/// @param[out] inv_a - the output of matrix a.
+/// @param[in] a - a matrix a.
+/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
+/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
+/// @return 1(true) if success. 0(false) if the matrix is singular.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned H, uint8_t *buffer);
+
+#endif // _BLAS_COMM_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/blas_u32.c b/crypto_sign/rainbowVc-cyclic/clean/blas_u32.c
new file mode 100644
index 00000000..a62a973c
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/blas_u32.c
@@ -0,0 +1,90 @@
+#include "blas_u32.h"
+#include "gf.h"
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte) {
+ uint32_t pr_u32 = ((uint32_t) 0) - ((uint32_t) predicate);
+ uint8_t pr_u8 = pr_u32 & 0xff;
+
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= (a_u32[i] & pr_u32);
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= (a[i] & pr_u8);
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *b_u32 = (uint32_t *) accu_b;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ b_u32[i] ^= a_u32[i];
+ }
+
+ a += (n_u32 << 2);
+ accu_b += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ accu_b[i] ^= a[i];
+ }
+}
+
+
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *a_u32 = (uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ a_u32[i] = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_u32(a_u32[i], b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_u32(t.u32, b);
+ for (unsigned i = 0; i < rem; i++) {
+ a[i] = t.u8[i];
+ }
+}
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte) {
+ unsigned n_u32 = _num_byte >> 2;
+ uint32_t *c_u32 = (uint32_t *) accu_c;
+ const uint32_t *a_u32 = (const uint32_t *) a;
+ for (unsigned i = 0; i < n_u32; i++) {
+ c_u32[i] ^= PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b);
+ }
+
+ union tmp_32 {
+ uint8_t u8[4];
+ uint32_t u32;
+ } t;
+ t.u32 = 0;
+ accu_c += (n_u32 << 2);
+ a += (n_u32 << 2);
+ unsigned rem = _num_byte & 3;
+ for (unsigned i = 0; i < rem; i++) {
+ t.u8[i] = a[i];
+ }
+ t.u32 = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_u32(t.u32, gf256_b);
+ for (unsigned i = 0; i < rem; i++) {
+ accu_c[i] ^= t.u8[i];
+ }
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/blas_u32.h b/crypto_sign/rainbowVc-cyclic/clean/blas_u32.h
new file mode 100644
index 00000000..6140037f
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/blas_u32.h
@@ -0,0 +1,19 @@
+#ifndef _BLAS_U32_H_
+#define _BLAS_U32_H_
+/// @file blas_u32.h
+/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch.
+///
+
+#include "rainbow_config.h"
+#include
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned _num_byte);
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned _num_byte);
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned _num_byte);
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned _num_byte);
+
+
+#endif // _BLAS_U32_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/gf.c b/crypto_sign/rainbowVc-cyclic/clean/gf.c
new file mode 100644
index 00000000..8fb20255
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/gf.c
@@ -0,0 +1,142 @@
+#include "gf.h"
+
+//// gf4 := gf2[x]/x^2+x+1
+static inline uint8_t gf4_mul_2(uint8_t a) {
+ uint8_t r = (uint8_t) (a << 1);
+ r ^= (uint8_t) ((a >> 1) * 7);
+ return r;
+}
+
+static inline uint8_t gf4_mul(uint8_t a, uint8_t b) {
+ uint8_t r = (uint8_t) (a * (b & 1));
+ return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1));
+}
+
+static inline uint8_t gf4_squ(uint8_t a) {
+ return a ^ (a >> 1);
+}
+
+static inline uint32_t gf4v_mul_2_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit1 ^ (bit1 >> 1);
+}
+
+static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t bit0_b = ((uint32_t) 0) - ((uint32_t)(b & 1));
+ uint32_t bit1_b = ((uint32_t) 0) - ((uint32_t)((b >> 1) & 1));
+ return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a));
+}
+
+//// gf16 := gf4[y]/y^2+y+x
+static inline uint8_t gf16_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ uint8_t b0 = b & 3;
+ uint8_t b1 = (b >> 2);
+ uint8_t a0b0 = gf4_mul(a0, b0);
+ uint8_t a1b1 = gf4_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x2 = gf4_mul_2(a1b1);
+ return (uint8_t) ((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2);
+}
+
+static inline uint8_t gf16_squ(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = (a >> 2);
+ a1 = gf4_squ(a1);
+ uint8_t a1squ_x2 = gf4_mul_2(a1);
+ return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0));
+}
+
+// gf16 := gf4[y]/y^2+y+x
+uint32_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = gf4v_mul_u32(a, b);
+ uint32_t axb1 = gf4v_mul_u32(a, b >> 2);
+ uint32_t a0b1 = (axb1 << 2) & 0xcccccccc;
+ uint32_t a1b1 = axb1 & 0xcccccccc;
+ uint32_t a1b1_2 = a1b1 >> 2;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2);
+}
+
+static inline uint8_t gf256v_reduce_u32(uint32_t a) {
+ // https://godbolt.org/z/7hirMb
+ uint16_t *aa = (uint16_t *) (&a);
+ uint16_t r = aa[0] ^ aa[1];
+ uint8_t *rr = (uint8_t *) (&r);
+ return rr[0] ^ rr[1];
+}
+
+uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_is_nonzero(uint8_t a) {
+ unsigned a8 = a;
+ unsigned r = ((unsigned) 0) - a8;
+ r >>= 8;
+ return r & 1;
+}
+
+static inline uint8_t gf4_mul_3(uint8_t a) {
+ uint8_t msk = (uint8_t) ((a - 2) >> 1);
+ return (uint8_t) ((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1)));
+}
+static inline uint8_t gf16_mul_8(uint8_t a) {
+ uint8_t a0 = a & 3;
+ uint8_t a1 = a >> 2;
+ return (uint8_t) ((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1));
+}
+
+// gf256 := gf16[X]/X^2+X+xy
+static inline uint8_t gf256_mul(uint8_t a, uint8_t b) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ uint8_t b0 = b & 15;
+ uint8_t b1 = (b >> 4);
+ uint8_t a0b0 = gf16_mul(a0, b0);
+ uint8_t a1b1 = gf16_mul(a1, b1);
+ uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1;
+ uint8_t a1b1_x8 = gf16_mul_8(a1b1);
+ return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8);
+}
+
+static inline uint8_t gf256_squ(uint8_t a) {
+ uint8_t a0 = a & 15;
+ uint8_t a1 = (a >> 4);
+ a1 = gf16_squ(a1);
+ uint8_t a1squ_x8 = gf16_mul_8(a1);
+ return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0));
+}
+
+uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_inv(uint8_t a) {
+ // 128+64+32+16+8+4+2 = 254
+ uint8_t a2 = gf256_squ(a);
+ uint8_t a4 = gf256_squ(a2);
+ uint8_t a8 = gf256_squ(a4);
+ uint8_t a4_2 = gf256_mul(a4, a2);
+ uint8_t a8_4_2 = gf256_mul(a4_2, a8);
+ uint8_t a64_ = gf256_squ(a8_4_2);
+ a64_ = gf256_squ(a64_);
+ a64_ = gf256_squ(a64_);
+ uint8_t a64_2 = gf256_mul(a64_, a8_4_2);
+ uint8_t a128_ = gf256_squ(a64_2);
+ return gf256_mul(a2, a128_);
+}
+
+static inline uint32_t gf4v_mul_3_u32(uint32_t a) {
+ uint32_t bit0 = a & 0x55555555;
+ uint32_t bit1 = a & 0xaaaaaaaa;
+ return (bit0 << 1) ^ bit0 ^ (bit1 >> 1);
+}
+static inline uint32_t gf16v_mul_8_u32(uint32_t a) {
+ uint32_t a1 = a & 0xcccccccc;
+ uint32_t a0 = (a << 2) & 0xcccccccc;
+ return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2);
+}
+uint32_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) {
+ uint32_t axb0 = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf16v_mul_u32(a, b);
+ uint32_t axb1 = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf16v_mul_u32(a, b >> 4);
+ uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0;
+ uint32_t a1b1 = axb1 & 0xf0f0f0f0;
+ uint32_t a1b1_4 = a1b1 >> 4;
+
+ return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4);
+}
diff --git a/crypto_sign/rainbowVc-cyclic/clean/gf.h b/crypto_sign/rainbowVc-cyclic/clean/gf.h
new file mode 100644
index 00000000..8d9cc260
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/gf.h
@@ -0,0 +1,19 @@
+#ifndef _GF16_H_
+#define _GF16_H_
+
+#include "rainbow_config.h"
+#include
+
+/// @file gf16.h
+/// @brief Library for arithmetics in GF(16) and GF(256)
+///
+
+uint32_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b);
+
+
+uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_is_nonzero(uint8_t a);
+uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256_inv(uint8_t a);
+uint32_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b);
+
+
+#endif // _GF16_H_
diff --git a/crypto_sign/rainbowVc-cyclic/clean/parallel_matrix_op.c b/crypto_sign/rainbowVc-cyclic/clean/parallel_matrix_op.c
new file mode 100644
index 00000000..fbd8c7d4
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/parallel_matrix_op.c
@@ -0,0 +1,186 @@
+/// @file parallel_matrix_op.c
+/// @brief the standard implementations for functions in parallel_matrix_op.h
+///
+/// the standard implementations for functions in parallel_matrix_op.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "parallel_matrix_op.h"
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim ) {
+ return (dim + dim - i_row + 1 ) * i_row / 2 + j_col - i_row;
+}
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix.
+///
+/// @param[in] i_row - the i-th row in a triangle matrix.
+/// @param[in] j_col - the j-th column in a triangle matrix.
+/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+static inline
+unsigned idx_of_2trimat( unsigned i_row, unsigned j_col, unsigned n_var ) {
+ if ( i_row > j_col ) {
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(j_col, i_row, n_var);
+ }
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i_row, j_col, n_var);
+}
+
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch ) {
+ unsigned char *runningC = btriC;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < i; j++) {
+ unsigned idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(j, i, Aheight);
+ gf256v_add( btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch );
+ }
+ gf256v_add( runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i) );
+ runningC += size_batch * (Aheight - i);
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ unsigned Aheight = Awidth;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (k < i) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ (k - i)*size_batch ], PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ btriA += (Aheight - i) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i < k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(k, i, Aheight)) ], PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Aheight = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ if (i == k) {
+ continue;
+ }
+ gf256v_madd( bC, & btriA[ size_batch * (idx_of_2trimat(i, k, Aheight)) ], PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC, const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Atr_height = Awidth;
+ unsigned Atr_width = Aheight;
+ for (unsigned i = 0; i < Atr_height; i++) {
+ for (unsigned j = 0; j < Atr_width; j++) {
+ gf256v_madd( bC, & bB[ j * Bwidth * size_batch ], PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( &A_to_tr[size_Acolvec * i], j ), size_batch * Bwidth );
+ }
+ bC += size_batch * Bwidth;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ const unsigned char *bA = bA_to_tr;
+ unsigned Aheight = Awidth_before_tr;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ size_batch * (i + k * Aheight) ], PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch ) {
+ unsigned Awidth = Bheight;
+ for (unsigned i = 0; i < Aheight; i++) {
+ for (unsigned j = 0; j < Bwidth; j++) {
+ for (unsigned k = 0; k < Bheight; k++) {
+ gf256v_madd( bC, & bA[ k * size_batch ], PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( &B[j * size_Bcolvec], k ), size_batch );
+ }
+ bC += size_batch;
+ }
+ bA += (Awidth) * size_batch;
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch ) {
+ unsigned char tmp[256];
+
+ unsigned char _x[256];
+ for (unsigned i = 0; i < dim; i++) {
+ _x[i] = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( x, i );
+ }
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero( y, size_batch );
+ for (unsigned i = 0; i < dim; i++) {
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = i; j < dim; j++) {
+ gf256v_madd( tmp, trimat, _x[j], size_batch );
+ trimat += size_batch;
+ }
+ gf256v_madd( y, tmp, _x[i], size_batch );
+ }
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y, const unsigned char *mat,
+ const unsigned char *x, unsigned dim_x, unsigned size_batch ) {
+ unsigned char tmp[128];
+
+ unsigned char _x[128];
+ for (unsigned i = 0; i < dim_x; i++) {
+ _x[i] = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( x, i );
+ }
+ unsigned char _y[128];
+ for (unsigned i = 0; i < dim_y; i++) {
+ _y[i] = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele( y, i );
+ }
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero( z, size_batch );
+ for (unsigned i = 0; i < dim_y; i++) {
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero( tmp, size_batch );
+ for (unsigned j = 0; j < dim_x; j++) {
+ gf256v_madd( tmp, mat, _x[j], size_batch );
+ mat += size_batch;
+ }
+ gf256v_madd( z, tmp, _y[i], size_batch );
+ }
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/parallel_matrix_op.h b/crypto_sign/rainbowVc-cyclic/clean/parallel_matrix_op.h
new file mode 100644
index 00000000..dedd7df0
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/parallel_matrix_op.h
@@ -0,0 +1,282 @@
+#ifndef _P_MATRIX_OP_H_
+#define _P_MATRIX_OP_H_
+/// @file parallel_matrix_op.h
+/// @brief Librarys for operations of batched matrixes.
+///
+///
+
+//////////////// Section: triangle matrix <-> rectangle matrix ///////////////////////////////////
+
+
+///
+/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix.
+///
+/// @param[in] i_row - the i-th row in an upper-triangle matrix.
+/// @param[in] j_col - the j-th column in an upper-triangle matrix.
+/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix.
+/// @return the corresponding index in an array storage.
+///
+unsigned PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat( unsigned i_row, unsigned j_col, unsigned dim );
+
+///
+/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix.
+///
+/// @param[out] btriC - the batched upper-trianglized matrix C.
+/// @param[in] bA - a batched retangle matrix A.
+/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_UpperTrianglize( unsigned char *btriC, const unsigned char *bA, unsigned Awidth, unsigned size_batch );
+
+
+
+
+//////////////////// Section: matrix multiplications ///////////////////////////////
+
+
+
+///
+/// @brief bC += btriA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += btriA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimatTr_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += btriA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimatTr_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_2trimat_madd_gf16( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += (btriA + btriA^Tr) *B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr).
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_2trimat_madd_gf256( unsigned char *bC, const unsigned char *btriA,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+///
+/// @brief bC += A^Tr * bB , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_matTr_madd_gf16( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += A^Tr * bB , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr.
+/// @param[in] Aheight - the height of A.
+/// @param[in] size_Acolvec - the size of a column vector in A.
+/// @param[in] Awidth - the width of A.
+/// @param[in] bB - a batched matrix B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_matTr_madd_gf256( unsigned char *bC,
+ const unsigned char *A_to_tr, unsigned Aheight, unsigned size_Acolvec, unsigned Awidth,
+ const unsigned char *bB, unsigned Bwidth, unsigned size_batch );
+
+
+///
+/// @brief bC += bA^Tr * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_bmatTr_madd_gf16( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA^Tr * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr).
+/// @param[in] Awidth_befor_tr - the width of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_bmatTr_madd_gf256( unsigned char *bC, const unsigned char *bA_to_tr, unsigned Awidth_before_tr,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(16)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_mat_madd_gf16( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+///
+/// @brief bC += bA * B , in GF(256)
+///
+/// @param[out] bC - the batched matrix C.
+/// @param[in] bA - a batched matrix A.
+/// @param[in] Aheigh - the height of A.
+/// @param[in] B - a column-major matrix B.
+/// @param[in] Bheight - the height of B.
+/// @param[in] size_Bcolvec - the size of the column vector in B.
+/// @param[in] Bwidth - the width of B.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_mat_madd_gf256( unsigned char *bC, const unsigned char *bA, unsigned Aheight,
+ const unsigned char *B, unsigned Bheight, unsigned size_Bcolvec, unsigned Bwidth, unsigned size_batch );
+
+
+
+//////////////////// Section: "quadratric" matrix evaluation ///////////////////////////////
+
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(16)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_trimat_eval_gf16( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+///
+/// @brief y = x^Tr * trimat * x , in GF(256)
+///
+/// @param[out] y - the returned batched element y.
+/// @param[in] trimat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim - the dimension of matrix trimat (and x).
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_trimat_eval_gf256( unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned dim, unsigned size_batch );
+
+
+///
+/// @brief z = y^Tr * mat * x , in GF(16)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_recmat_eval_gf16( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+///
+/// @brief z = y^Tr * mat * x , in GF(256)
+///
+/// @param[out] z - the returned batched element z.
+/// @param[in] y - an input vector y.
+/// @param[in] dim_y - the length of y.
+/// @param[in] mat - a batched matrix.
+/// @param[in] x - an input vector x.
+/// @param[in] dim_x - the length of x.
+/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_recmat_eval_gf256( unsigned char *z, const unsigned char *y, unsigned dim_y,
+ const unsigned char *mat, const unsigned char *x, unsigned dim_x, unsigned size_batch );
+
+
+
+
+
+
+#endif // _P_MATRIX_OP_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow.c b/crypto_sign/rainbowVc-cyclic/clean/rainbow.c
new file mode 100644
index 00000000..5020fe08
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow.c
@@ -0,0 +1,175 @@
+/// @file rainbow.c
+/// @brief The standard implementations for functions in rainbow.h
+///
+
+#include "blas.h"
+#include "rainbow.h"
+#include "rainbow_blas.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+#define MAX_ATTEMPT_FRMAT 128
+#define _MAX_O ((_O1>_O2)?_O1:_O2)
+#define _MAX_O_BYTE ((_O1_BYTE>_O2_BYTE)?_O1_BYTE:_O2_BYTE)
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *_digest ) {
+ uint8_t mat_l1[_O1 * _O1_BYTE];
+ uint8_t mat_l2[_O2 * _O2_BYTE];
+ uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
+
+ // setup PRNG
+ prng_t prng_sign;
+ uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
+ memcpy( prng_preseed, sk->sk_seed, LEN_SKSEED );
+ memcpy( prng_preseed + LEN_SKSEED, _digest, _HASH_LEN ); // prng_preseed = sk_seed || digest
+ uint8_t prng_seed[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED );
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_set( &prng_sign, prng_seed, _HASH_LEN ); // seed = H( sk_seed || digest )
+ for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
+ prng_preseed[i] ^= prng_preseed[i]; // clean
+ }
+ for (unsigned i = 0; i < _HASH_LEN; i++) {
+ prng_seed[i] ^= prng_seed[i]; // clean
+ }
+
+ // roll vinegars.
+ uint8_t vinegar[_V1_BYTE];
+ unsigned n_attempt = 0;
+ unsigned l1_succ = 0;
+ while ( !l1_succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( &prng_sign, vinegar, _V1_BYTE ); // generating vinegars
+ gfmat_prod( mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar ); // generating the linear equations for layer 1
+ l1_succ = gfmat_inv( mat_l1, mat_l1, _O1, mat_buffer ); // check if the linear equation solvable
+ n_attempt ++;
+ }
+
+ // Given the vinegars, pre-compute variables needed for layer 2
+ uint8_t r_l1_F1[_O1_BYTE] = {0};
+ uint8_t r_l2_F1[_O2_BYTE] = {0};
+ batch_quad_trimat_eval( r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE );
+ batch_quad_trimat_eval( r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE );
+ uint8_t mat_l2_F3[ _O2 * _O2_BYTE];
+ uint8_t mat_l2_F2[_O1 * _O2_BYTE];
+ gfmat_prod( mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar );
+ gfmat_prod( mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar );
+
+ // Some local variables.
+ uint8_t _z[_PUB_M_BYTE];
+ uint8_t y[_PUB_M_BYTE];
+ uint8_t *x_v1 = vinegar;
+ uint8_t x_o1[_O1_BYTE];
+ uint8_t x_o2[_O1_BYTE];
+
+ uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, _digest, _HASH_LEN );
+ uint8_t *salt = digest_salt + _HASH_LEN;
+
+ uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
+ unsigned succ = 0;
+ while ( !succ ) {
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ break;
+ }
+ // The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( &prng_sign, salt, _SALT_BYTE ); // roll the salt
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( _z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H(digest||salt)
+
+ // y = S^-1 * z
+ memcpy(y, _z, _PUB_M_BYTE); // identity part of S
+ gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
+ gf256v_add(y, temp_o, _O1_BYTE);
+
+ // Central Map:
+ // layer 1: calculate x_o1
+ memcpy( temp_o, r_l1_F1, _O1_BYTE );
+ gf256v_add( temp_o, y, _O1_BYTE );
+ gfmat_prod( x_o1, mat_l1, _O1_BYTE, _O1, temp_o );
+
+ // layer 2: calculate x_o2
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero( temp_o, _O2_BYTE );
+ gfmat_prod( temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1 ); // F2
+ batch_quad_trimat_eval( mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE ); // F5
+ gf256v_add( temp_o, mat_l2, _O2_BYTE );
+ gf256v_add( temp_o, r_l2_F1, _O2_BYTE ); // F1
+ gf256v_add( temp_o, y + _O1_BYTE, _O2_BYTE );
+
+ // generate the linear equations of the 2nd layer
+ gfmat_prod( mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1 ); // F6
+ gf256v_add( mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
+ succ = gfmat_inv( mat_l2, mat_l2, _O2, mat_buffer );
+ gfmat_prod( x_o2, mat_l2, _O2_BYTE, _O2, temp_o ); // solve l2 eqs
+
+ n_attempt ++;
+ };
+ // w = T^-1 * y
+ uint8_t w[_PUB_N_BYTE];
+ // identity part of T.
+ memcpy( w, x_v1, _V1_BYTE );
+ memcpy( w + _V1_BYTE, x_o1, _O1_BYTE );
+ memcpy( w + _V2_BYTE, x_o2, _O2_BYTE );
+ // Computing the t1 part.
+ gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t4 part.
+ gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2 );
+ gf256v_add(w, y, _V1_BYTE );
+ // Computing the t3 part.
+ gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2 );
+ gf256v_add(w + _V1_BYTE, y, _O1_BYTE );
+
+ memset( signature, 0, _SIGNATURE_BYTE ); // set the output 0
+ // clean
+ memset( &prng_sign, 0, sizeof(prng_t) );
+ memset( vinegar, 0, _V1_BYTE );
+ memset( r_l1_F1, 0, _O1_BYTE );
+ memset( r_l2_F1, 0, _O2_BYTE );
+ memset( _z, 0, _PUB_M_BYTE );
+ memset( y, 0, _PUB_M_BYTE );
+ memset( x_o1, 0, _O1_BYTE );
+ memset( x_o2, 0, _O2_BYTE );
+ memset( temp_o, 0, sizeof(temp_o) );
+
+ // return: copy w and salt to the signature.
+ if ( MAX_ATTEMPT_FRMAT <= n_attempt ) {
+ return -1;
+ }
+ gf256v_add( signature, w, _PUB_N_BYTE );
+ gf256v_add( signature + _PUB_N_BYTE, salt, _SALT_BYTE );
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk ) {
+ unsigned char digest_ck[_PUB_M_BYTE];
+ // public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
+ batch_quad_trimat_eval( digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE );
+
+ unsigned char correct[_PUB_M_BYTE];
+ unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
+ memcpy( digest_salt, digest, _HASH_LEN );
+ memcpy( digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE );
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE ); // H( digest || salt )
+
+ // check consistancy.
+ unsigned char cc = 0;
+ for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
+ cc |= (digest_ck[i] ^ correct[i]);
+ }
+ return (0 == cc) ? 0 : -1;
+}
+
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk ) {
+ unsigned char pk[sizeof(pk_t) +32];
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_cpk_to_pk( (pk_t *)pk, _pk ); // generating classic public key.
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify( digest, signature, (pk_t *)pk );
+}
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow.h b/crypto_sign/rainbowVc-cyclic/clean/rainbow.h
new file mode 100644
index 00000000..23346f45
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow.h
@@ -0,0 +1,43 @@
+#ifndef _RAINBOW_H_
+#define _RAINBOW_H_
+/// @file rainbow.h
+/// @brief APIs for rainbow.
+///
+
+
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+
+#include
+
+///
+/// @brief Signing function for classical secret key.
+///
+/// @param[out] signature - the signature.
+/// @param[in] sk - the secret key.
+/// @param[in] digest - the digest.
+///
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_sign( uint8_t *signature, const sk_t *sk, const uint8_t *digest );
+
+///
+/// @brief Verifying function.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify( const uint8_t *digest, const uint8_t *signature, const pk_t *pk );
+
+
+///
+/// @brief Verifying function for cyclic public keys.
+///
+/// @param[in] digest - the digest.
+/// @param[in] signature - the signature.
+/// @param[in] pk - the public key of cyclic rainbow.
+/// @return 0 for successful verified. -1 for failed verification.
+///
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify_cyclic( const uint8_t *digest, const uint8_t *signature, const cpk_t *pk );
+
+#endif // _RAINBOW_H_
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow_blas.h b/crypto_sign/rainbowVc-cyclic/clean/rainbow_blas.h
new file mode 100644
index 00000000..02c7bd8a
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow_blas.h
@@ -0,0 +1,34 @@
+#ifndef _RAINBOW_BLAS_H_
+#define _RAINBOW_BLAS_H_
+/// @file rainbow_blas.h
+/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+///
+/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h
+
+
+#include "blas.h"
+#include "parallel_matrix_op.h"
+#include "rainbow_config.h"
+
+
+#define gfv_get_ele PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele
+#define gfv_mul_scalar PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_mul_scalar
+#define gfv_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_madd
+
+#define gfmat_prod PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_prod
+#define gfmat_inv PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_inv
+
+#define batch_trimat_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimat_madd_gf256
+#define batch_trimatTr_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_trimatTr_madd_gf256
+#define batch_2trimat_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_2trimat_madd_gf256
+#define batch_matTr_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_matTr_madd_gf256
+#define batch_bmatTr_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_bmatTr_madd_gf256
+#define batch_mat_madd PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_mat_madd_gf256
+
+#define batch_quad_trimat_eval PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_trimat_eval_gf256
+#define batch_quad_recmat_eval PQCLEAN_RAINBOWVCCYCLIC_CLEAN_batch_quad_recmat_eval_gf256
+
+
+
+#endif // _RAINBOW_BLAS_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow_config.h b/crypto_sign/rainbowVc-cyclic/clean/rainbow_config.h
new file mode 100644
index 00000000..20f1068f
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow_config.h
@@ -0,0 +1,50 @@
+#ifndef _H_RAINBOW_CONFIG_H_
+#define _H_RAINBOW_CONFIG_H_
+
+/// @file rainbow_config.h
+/// @brief Defining the parameters of the Rainbow and the corresponding constants.
+///
+
+#define _GFSIZE 256
+#define _V1 92
+#define _O1 48
+#define _O2 48
+#define _HASH_LEN 64
+
+
+
+#define _V2 ((_V1)+(_O1))
+
+/// size of N, in # of gf elements.
+#define _PUB_N (_V1+_O1+_O2)
+
+/// size of M, in # gf elements.
+#define _PUB_M (_O1+_O2)
+
+
+/// size of variables, in # bytes.
+
+
+// GF256
+#define _V1_BYTE (_V1)
+#define _V2_BYTE (_V2)
+#define _O1_BYTE (_O1)
+#define _O2_BYTE (_O2)
+#define _PUB_N_BYTE (_PUB_N)
+#define _PUB_M_BYTE (_PUB_M)
+
+
+
+/// length of seed for public key, in # bytes
+#define LEN_PKSEED 32
+
+/// length of seed for secret key, in # bytes
+#define LEN_SKSEED 32
+
+/// length of salt for a signature, in # bytes
+#define _SALT_BYTE 16
+
+/// length of a signature
+#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE )
+
+#endif // _H_RAINBOW_CONFIG_H_
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair.c b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair.c
new file mode 100644
index 00000000..ab63dfb8
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair.c
@@ -0,0 +1,170 @@
+/// @file rainbow_keypair.c
+/// @brief implementations of functions in rainbow_keypair.h
+///
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include "utils_prng.h"
+#include
+#include
+#include
+
+
+static
+void generate_S_T( unsigned char *s_and_t, prng_t *prng0 ) {
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // S1
+ s_and_t += _O1_BYTE * _O2;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O1 ); // T1
+ s_and_t += _V1_BYTE * _O1;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _V1_BYTE * _O2 ); // T2
+ s_and_t += _V1_BYTE * _O2;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, s_and_t, _O1_BYTE * _O2 ); // T3
+}
+
+
+static
+unsigned generate_l1_F12( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1) ); // l1_F1
+ sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O1_BYTE * _V1 * _O1 ); // l1_F2
+ n_byte_generated += _O1_BYTE * _V1 * _O1;
+ return n_byte_generated;
+}
+
+
+static
+unsigned generate_l2_F12356( unsigned char *sk, prng_t *prng0 ) {
+ unsigned n_byte_generated = 0;
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // l2_F1
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1);
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O1 ); // l2_F2
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _V1 * _O2 ); // l2_F3
+ sk += _O2_BYTE * _V1 * _O1;
+ n_byte_generated += _O2_BYTE * _V1 * _O1;
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // l2_F5
+ sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+ n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1);
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen( prng0, sk, _O2_BYTE * _O1 * _O2 ); // l2_F6
+ n_byte_generated += _O2_BYTE * _O1 * _O2;
+
+ return n_byte_generated;
+}
+
+
+static
+void generate_B1_B2( unsigned char *sk, prng_t *prng0 ) {
+ sk += generate_l1_F12( sk, prng0 );
+ generate_l2_F12356( sk, prng0 );
+}
+
+static
+void calculate_t4( unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3 ) {
+ // t4 = T_sk.t1 * T_sk.t3 - T_sk.t2
+ unsigned char temp[_V1_BYTE + 32];
+ unsigned char *t4 = t2_to_t4;
+ for (unsigned i = 0; i < _O2; i++) { /// t3 width
+ gfmat_prod( temp, t1, _V1_BYTE, _O1, t3 );
+ gf256v_add( t4, temp, _V1_BYTE );
+ t4 += _V1_BYTE;
+ t3 += _O1_BYTE;
+ }
+}
+
+static
+void obsfucate_l1_polys( unsigned char *l1_polys, const unsigned char *l2_polys, unsigned n_terms, const unsigned char *s1 ) {
+ unsigned char temp[_O1_BYTE + 32];
+ while ( n_terms-- ) {
+ gfmat_prod( temp, s1, _O1_BYTE, _O2, l2_polys );
+ gf256v_add( l1_polys, temp, _O1_BYTE );
+ l1_polys += _O1_BYTE;
+ l2_polys += _O2_BYTE;
+ }
+}
+
+/////////////////// Classic //////////////////////////////////
+
+
+
+///////////////////// Cyclic //////////////////////////////////
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed ) {
+ memcpy( pk->pk_seed, pk_seed, LEN_PKSEED );
+ memcpy( sk->sk_seed, sk_seed, LEN_SKSEED );
+
+ // prng for sk
+ prng_t prng;
+ prng_t *prng0 = &prng;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_set( prng0, sk_seed, LEN_SKSEED );
+ generate_S_T( sk->s1, prng0 ); // S,T: only a part of sk
+
+ unsigned char t2[sizeof(sk->t4)];
+ memcpy( t2, sk->t4, _V1_BYTE * _O2 ); // temporarily store t2
+ calculate_t4( sk->t4, sk->t1, sk->t3 ); // t2 <- t4
+
+ // prng for pk
+ sk_t inst_Qs;
+ sk_t *Qs = &inst_Qs;
+ prng_t *prng1 = &prng;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_set( prng1, pk_seed, LEN_PKSEED );
+ generate_B1_B2( Qs->l1_F1, prng1 ); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+ obsfucate_l1_polys( Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1 );
+ obsfucate_l1_polys( Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1 );
+ // so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6.
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_F_from_Q( sk, Qs, sk ); // calcuate the rest parts of secret key from Qs and S,T
+
+
+ unsigned char t4[sizeof(sk->t4)];
+ memcpy( t4, sk->t4, _V1_BYTE * _O2 ); // temporarily store t4
+ memcpy( sk->t4, t2, _V1_BYTE * _O2 ); // restore t2
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_Q_from_F_cyclic( pk, sk, sk ); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9
+ memcpy( sk->t4, t4, _V1_BYTE * _O2 ); // restore t4
+
+ obsfucate_l1_polys( pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1 );
+ obsfucate_l1_polys( pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1 );
+
+ // clean
+ memset( &prng, 0, sizeof(prng_t) );
+}
+
+
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_cpk_to_pk( pk_t *rpk, const cpk_t *cpk ) {
+ // procedure: cpk_t --> extcpk_t --> pk_t
+
+ // convert from cpk_t to extcpk_t
+ ext_cpk_t pk;
+
+ // setup prng
+ prng_t prng0;
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_set( &prng0, cpk->pk_seed, LEN_SKSEED );
+
+ // generating parts of key with prng
+ generate_l1_F12( pk.l1_Q1, &prng0 );
+ // copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9
+ memcpy( pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * ( _V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2) ) );
+
+ // generating parts of key with prng
+ generate_l2_F12356( pk.l2_Q1, &prng0 );
+ // copying parts of key from input: l2_Q9
+ memcpy( pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ // convert from extcpk_t to pk_t
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_extcpk_to_pk( rpk, &pk );
+}
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair.h b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair.h
new file mode 100644
index 00000000..304c8bfe
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair.h
@@ -0,0 +1,109 @@
+#ifndef _RAINBOW_KEYPAIR_H_
+#define _RAINBOW_KEYPAIR_H_
+/// @file rainbow_keypair.h
+/// @brief Formats of key pairs and functions for generating key pairs.
+/// Formats of key pairs and functions for generating key pairs.
+///
+
+
+
+#include "rainbow_config.h"
+
+
+#define N_TRIANGLE_TERMS(n_var) ((n_var)*((n_var)+1)/2)
+
+
+/// @brief public key for classic rainbow
+///
+/// public key for classic rainbow
+///
+typedef
+struct rainbow_publickey {
+ unsigned char pk[(_PUB_M_BYTE) * N_TRIANGLE_TERMS(_PUB_N)];
+} pk_t;
+
+
+/// @brief secret key for classic rainbow
+///
+/// secret key for classic rainbow
+///
+typedef
+struct rainbow_secretkey {
+ ///
+ /// seed for generating secret key.
+ /// Generating S, T, and F for classic rainbow.
+ /// Generating S and T only for cyclic rainbow.
+ unsigned char sk_seed[LEN_SKSEED];
+
+ unsigned char s1[_O1_BYTE * _O2]; ///< part of S map
+ unsigned char t1[_V1_BYTE * _O1]; ///< part of T map
+ unsigned char t4[_V1_BYTE * _O2]; ///< part of T map
+ unsigned char t3[_O1_BYTE * _O2]; ///< part of T map
+
+ unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1
+ unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1
+
+ unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2
+ unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2
+
+ unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2
+ unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2
+ unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2
+} sk_t;
+
+
+
+
+/// @brief public key for cyclic rainbow
+///
+/// public key for cyclic rainbow
+///
+typedef
+struct rainbow_publickey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6
+
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1
+
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2
+} cpk_t;
+
+
+
+/// @brief compressed secret key for cyclic rainbow
+///
+/// compressed secret key for cyclic rainbow
+///
+typedef
+struct rainbow_secretkey_cyclic {
+ unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key.
+ unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key.
+} csk_t;
+
+
+
+///
+/// @brief Generate key pairs for cyclic rainbow.
+///
+/// @param[out] pk - the public key.
+/// @param[out] sk - the secret key.
+/// @param[in] pk_seed - seed for generating parts of public key.
+/// @param[in] sk_seed - seed for generating secret key.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_generate_keypair_cyclic( cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed );
+
+
+
+////////////////////////////////////
+
+///
+/// @brief converting formats of public keys : from cyclic version to classic key
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the cyclic public key.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_cpk_to_pk( pk_t *pk, const cpk_t *cpk );
+
+#endif // _RAINBOW_KEYPAIR_H_
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair_computation.c b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair_computation.c
new file mode 100644
index 00000000..86f5333f
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair_computation.c
@@ -0,0 +1,233 @@
+/// @file rainbow_keypair_computation.c
+/// @brief Implementations for functions in rainbow_keypair_computation.h
+///
+
+
+#include "blas.h"
+#include "blas_comm.h"
+#include "rainbow_blas.h"
+#include "rainbow_keypair.h"
+#include "rainbow_keypair_computation.h"
+#include
+#include
+#include
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk ) {
+ const unsigned char *idx_l1 = cpk->l1_Q1;
+ const unsigned char *idx_l2 = cpk->l2_Q1;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = i; j < _V1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q2;
+ idx_l2 = cpk->l2_Q2;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q3;
+ idx_l2 = cpk->l2_Q3;
+ for (unsigned i = 0; i < _V1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q5;
+ idx_l2 = cpk->l2_Q5;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = i; j < _V1 + _O1; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q6;
+ idx_l2 = cpk->l2_Q6;
+ for (unsigned i = _V1; i < _V1 + _O1; i++) {
+ for (unsigned j = _V1 + _O1; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+ idx_l1 = cpk->l1_Q9;
+ idx_l2 = cpk->l2_Q9;
+ for (unsigned i = _V1 + _O1; i < _PUB_N; i++) {
+ for (unsigned j = i; j < _PUB_N; j++) {
+ unsigned pub_idx = PQCLEAN_RAINBOWVCCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N);
+ memcpy( & pk->pk[ _PUB_M_BYTE * pub_idx ], idx_l1, _O1_BYTE );
+ memcpy( (&pk->pk[ _PUB_M_BYTE * pub_idx ]) + _O1_BYTE, idx_l2, _O2_BYTE );
+ idx_l1 += _O1_BYTE;
+ idx_l2 += _O2_BYTE;
+ }
+ }
+}
+
+
+
+
+static
+void calculate_F_from_Q_ref( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ // Layer 1
+ // F_sk.l1_F1s[i] = Q_pk.l1_F1s[i]
+ memcpy( Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1) );
+
+ // F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i]
+ memcpy( Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_2trimat_madd( Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE );
+
+ /*
+ Layer 2
+ computations:
+
+ F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+ Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1
+ F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+
+ Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ #Q1_Q1T_T4 = Q1_Q1T * t4
+ Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ + Q_pk.l2_F2s[i].transpose() * t4
+ + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+
+ */
+ memcpy( Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1) ); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i]
+
+
+ // F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1
+ // F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i]
+ memcpy( Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1 );
+ batch_trimat_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // Q1_T1+ Q2
+
+ unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32];
+ memset( tempQ, 0, _O1 * _O1 * _O2_BYTE );
+ batch_matTr_madd( tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE ); // t1_tr*(Q1_T1+Q2)
+ memcpy( Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1) ); // F5
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_UpperTrianglize( Fs->l2_F5, tempQ, _O1, _O2_BYTE ); // UT( ... )
+
+ batch_trimatTr_madd( Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE ); // F2 = Q1_T1 + Q2 + Q1^tr*t1
+
+ // Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4
+ // Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3
+ // F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i]
+ memcpy( Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE );
+ batch_2trimat_madd( Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE ); // Q1_Q1T_T4
+ batch_mat_madd( Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // Q2_T3
+
+ // F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ // + Q_pk.l2_F2s[i].transpose() * t4
+ // + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i]
+ memcpy( Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE );
+ batch_matTr_madd( Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE ); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] )
+ batch_2trimat_madd( Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3
+ batch_bmatTr_madd( Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE );
+
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+static
+void calculate_Q_from_F_cyclic_ref( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+// Layer 1: Computing Q5, Q3, Q6, Q9
+
+// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) )
+ const unsigned char *t2 = Ts->t4;
+ sk_t tempQ;
+ memcpy( tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1 );
+ batch_trimat_madd( tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE ); // F1*T1 + F2
+ memset( tempQ.l2_F1, 0, sizeof(tempQ.l2_F1));
+ memset( tempQ.l2_F2, 0, sizeof(tempQ.l2_F2));
+ batch_matTr_madd( tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE ); // T1tr*(F1*T1 + F2)
+ memset( Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1) );
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_UpperTrianglize( Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE ); // UT( ... ) // Q5
+
+ /*
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2
+ Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3
+ Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2
+ Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) )
+ */
+ memset( Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2 );
+ memset( Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2 );
+ memset( Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2) );
+
+ batch_trimat_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1*T2
+ batch_mat_madd( Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE ); // F1_T2 + F2_T3
+
+ memset( tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2 ); // should be F3. assuming: _O1 >= _O2
+ batch_matTr_madd( tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE ); // T2tr * ( F1_T2 + F2_T3 )
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_UpperTrianglize( Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE ); // Q9
+
+ batch_trimatTr_madd( Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F1_F1T_T2 + F2_T3 // Q3
+
+ batch_bmatTr_madd( Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE ); // F2tr*T2
+ batch_matTr_madd( Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE ); // Q6
+ /*
+ Layer 2
+ Computing Q9:
+
+ F1_T2 = F1 * t2
+ F2_T3 = F2 * t3
+ Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) )
+ */
+ sk_t tempQ2;
+ memcpy( tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2 ); /// F3 actually.
+ batch_trimat_madd( tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE ); // F1*T2 + F3
+ batch_mat_madd( tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F1_T2 + F2_T3 + F3
+
+ memset( tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2 );
+ batch_matTr_madd( tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE ); // T2tr * ( ..... )
+
+ memcpy( tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2 );
+ batch_trimat_madd( tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE ); // F5*T3 + F6
+
+ batch_matTr_madd( tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE ); // T2tr*( ..... ) + T3tr*( ..... )
+ memset( Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2) );
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_UpperTrianglize( Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE ); // Q9
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+
+
+// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_
+#define calculate_F_from_Q_impl calculate_F_from_Q_ref
+#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref
+
+
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts ) {
+ calculate_F_from_Q_impl( Fs, Qs, Ts );
+}
+
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts ) {
+ calculate_Q_from_F_cyclic_impl( Qs, Fs, Ts );
+}
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair_computation.h b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair_computation.h
new file mode 100644
index 00000000..eccbc019
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/rainbow_keypair_computation.h
@@ -0,0 +1,79 @@
+#ifndef _RAINBOW_KEYPAIR_COMP_H_
+#define _RAINBOW_KEYPAIR_COMP_H_
+/// @file rainbow_keypair_computation.h
+/// @brief Functions for calculating pk/sk while generating keys.
+///
+/// Defining an internal structure of public key.
+/// Functions for calculating pk/sk for key generation.
+///
+
+
+
+#include "rainbow_keypair.h"
+
+/// @brief The (internal use) public key for rainbow
+///
+/// The (internal use) public key for rainbow. The public
+/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9,
+/// l2_Q1, .... , l2_Q9.
+///
+typedef
+struct rainbow_extend_publickey {
+ unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l1_Q2[_O1_BYTE * _V1 * _O1];
+ unsigned char l1_Q3[_O1_BYTE * _V1 * _O2];
+ unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l1_Q6[_O1_BYTE * _O1 * _O2];
+ unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)];
+
+ unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)];
+ unsigned char l2_Q2[_O2_BYTE * _V1 * _O1];
+ unsigned char l2_Q3[_O2_BYTE * _V1 * _O2];
+ unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)];
+ unsigned char l2_Q6[_O2_BYTE * _O1 * _O2];
+ unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)];
+} ext_cpk_t;
+
+
+
+///
+/// @brief converting formats of public keys : from ext_cpk_t version to pk_t
+///
+/// @param[out] pk - the classic public key.
+/// @param[in] cpk - the internel public key.
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_extcpk_to_pk( pk_t *pk, const ext_cpk_t *cpk );
+/////////////////////////////////////////////////
+
+///
+/// @brief Computing public key from secret key
+///
+/// @param[out] Qs - the public key
+/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the secret key: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_Q_from_F( ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+
+
+
+///
+/// @brief Computing parts of the sk from parts of pk and sk
+///
+/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_F_from_Q( sk_t *Fs, const sk_t *Qs, sk_t *Ts );
+
+///
+/// @brief Computing parts of the pk from the secret key
+///
+/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9
+/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
+/// @param[in] Ts - parts of the sk: T1, T4, T3
+///
+void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_calculate_Q_from_F_cyclic( cpk_t *Qs, const sk_t *Fs, const sk_t *Ts );
+
+#endif // _RAINBOW_KEYPAIR_COMP_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/sign.c b/crypto_sign/rainbowVc-cyclic/clean/sign.c
new file mode 100644
index 00000000..a2c7bd3a
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/sign.c
@@ -0,0 +1,94 @@
+/// @file sign.c
+/// @brief the implementations for functions in api.h
+///
+///
+
+#include "api.h"
+#include "rainbow.h"
+#include "rainbow_config.h"
+#include "rainbow_keypair.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include
+#include
+
+
+
+int
+PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
+ unsigned char sk_seed[LEN_SKSEED] = {0};
+ randombytes( sk_seed, LEN_SKSEED );
+
+
+ unsigned char pk_seed[LEN_PKSEED] = {0};
+ randombytes( pk_seed, LEN_PKSEED );
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_generate_keypair_cyclic( (cpk_t *) pk, (sk_t *) sk, pk_seed, sk_seed );
+
+ return 0;
+}
+
+
+
+
+
+int
+PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+
+ memcpy( sm, m, mlen );
+ smlen[0] = mlen + _SIGNATURE_BYTE;
+
+
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_sign( sm + mlen, (const sk_t *)sk, digest );
+
+
+
+}
+
+
+
+
+
+
+int
+PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) {
+ //TODO: this should not copy out the message if verification fails
+ if ( _SIGNATURE_BYTE > smlen ) {
+ return -1;
+ }
+ memcpy( m, sm, smlen - _SIGNATURE_BYTE );
+ mlen[0] = smlen - _SIGNATURE_BYTE;
+
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, *mlen );
+
+
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify_cyclic( digest, sm + mlen[0], (const cpk_t *)pk );
+
+
+
+}
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_signature(
+ uint8_t *sig, size_t *siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *sk) {
+ unsigned char digest[_HASH_LEN];
+
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ *siglen = _SIGNATURE_BYTE;
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_sign( sig, (const sk_t *)sk, digest );
+}
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_crypto_sign_verify(
+ const uint8_t *sig, size_t siglen,
+ const uint8_t *m, size_t mlen, const uint8_t *pk) {
+ if (siglen != _SIGNATURE_BYTE) {
+ return -1;
+ }
+ unsigned char digest[_HASH_LEN];
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( digest, _HASH_LEN, m, mlen );
+ return PQCLEAN_RAINBOWVCCYCLIC_CLEAN_rainbow_verify_cyclic( digest, sig, (const cpk_t *)pk );
+
+}
diff --git a/crypto_sign/rainbowVc-cyclic/clean/utils_hash.c b/crypto_sign/rainbowVc-cyclic/clean/utils_hash.c
new file mode 100644
index 00000000..e99d82e6
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/utils_hash.c
@@ -0,0 +1,55 @@
+/// @file utils_hash.c
+/// @brief the adapter for SHA2 families.
+///
+///
+
+#include "rainbow_config.h"
+#include "sha2.h"
+#include "utils_hash.h"
+
+static inline
+int _hash( unsigned char *digest, const unsigned char *m, size_t mlen ) {
+ sha512(digest, m, mlen);
+ return 0;
+}
+
+static inline
+int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) {
+ if ( _HASH_LEN >= n_digest ) {
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[i] = hash[i];
+ }
+ return 0;
+ }
+ for (size_t i = 0; i < _HASH_LEN; i++) {
+ digest[i] = hash[i];
+ }
+ n_digest -= _HASH_LEN;
+
+
+ while (_HASH_LEN <= n_digest ) {
+ _hash( digest + _HASH_LEN, digest, _HASH_LEN );
+
+ n_digest -= _HASH_LEN;
+ digest += _HASH_LEN;
+ }
+ unsigned char temp[_HASH_LEN];
+ if ( n_digest ) {
+ _hash( temp, digest, _HASH_LEN );
+ for (size_t i = 0; i < n_digest; i++) {
+ digest[_HASH_LEN + i] = temp[i];
+ }
+ }
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg(unsigned char *digest,
+ size_t len_digest,
+ const unsigned char *m,
+ size_t mlen) {
+ unsigned char buf[_HASH_LEN];
+ _hash(buf, m, mlen);
+ return expand_hash(digest, len_digest, buf);
+}
+
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/utils_hash.h b/crypto_sign/rainbowVc-cyclic/clean/utils_hash.h
new file mode 100644
index 00000000..0653740a
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/utils_hash.h
@@ -0,0 +1,14 @@
+#ifndef _UTILS_HASH_H_
+#define _UTILS_HASH_H_
+/// @file utils_hash.h
+/// @brief the interface for adapting hash functions.
+///
+
+#include
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen );
+
+
+
+#endif // _UTILS_HASH_H_
+
diff --git a/crypto_sign/rainbowVc-cyclic/clean/utils_prng.c b/crypto_sign/rainbowVc-cyclic/clean/utils_prng.c
new file mode 100644
index 00000000..d53d6e05
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/utils_prng.c
@@ -0,0 +1,96 @@
+/// @file utils_prng.c
+/// @brief The implementation of PRNG related functions.
+///
+
+#include "aes.h"
+#include "randombytes.h"
+#include "utils_hash.h"
+#include "utils_prng.h"
+#include
+#include
+
+static void prng_update(const unsigned char *provided_data,
+ unsigned char *Key,
+ unsigned char *V) {
+ unsigned char temp[48];
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, Key);
+ for (int i = 0; i < 3; i++) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( V[j] == 0xff) {
+ V[j] = 0x00;
+ } else {
+ V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(temp + 16 * i, V, 1, &ctx);
+ }
+ if ( provided_data != NULL ) {
+ for (int i = 0; i < 48; i++) {
+ temp[i] ^= provided_data[i];
+ }
+ }
+ memcpy(Key, temp, 32);
+ memcpy(V, temp + 32, 16);
+}
+static void randombytes_init_with_state(prng_t *state,
+ unsigned char *entropy_input_48bytes ) {
+ memset(state->Key, 0x00, 32);
+ memset(state->V, 0x00, 16);
+ prng_update(entropy_input_48bytes, state->Key, state->V);
+}
+
+static int randombytes_with_state(prng_t *state,
+ unsigned char *x,
+ size_t xlen) {
+
+ unsigned char block[16];
+ int i = 0;
+
+ aes256ctx ctx;
+ aes256_keyexp(&ctx, state->Key);
+
+
+ while ( xlen > 0 ) {
+ //increment V
+ for (int j = 15; j >= 0; j--) {
+ if ( state->V[j] == 0xff ) {
+ state->V[j] = 0x00;
+ } else {
+ state->V[j]++;
+ break;
+ }
+ }
+ aes256_ecb(block, state->V, 1, &ctx);
+ if ( xlen > 15 ) {
+ memcpy(x + i, block, 16);
+ i += 16;
+ xlen -= 16;
+ } else {
+ memcpy(x + i, block, xlen);
+ xlen = 0;
+ }
+ }
+ prng_update(NULL, state->Key, state->V);
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) {
+ unsigned char seed[48];
+ if ( prng_seedlen >= 48 ) {
+ memcpy( seed, prng_seed, 48 );
+ } else {
+ memcpy( seed, prng_seed, prng_seedlen );
+ PQCLEAN_RAINBOWVCCYCLIC_CLEAN_hash_msg( seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen);
+ }
+
+ randombytes_init_with_state( ctx, seed );
+
+ return 0;
+}
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) {
+ return randombytes_with_state( ctx, out, outlen);
+}
diff --git a/crypto_sign/rainbowVc-cyclic/clean/utils_prng.h b/crypto_sign/rainbowVc-cyclic/clean/utils_prng.h
new file mode 100644
index 00000000..18987e11
--- /dev/null
+++ b/crypto_sign/rainbowVc-cyclic/clean/utils_prng.h
@@ -0,0 +1,22 @@
+#ifndef _UTILS_PRNG_H_
+#define _UTILS_PRNG_H_
+/// @file utils_prng.h
+/// @brief the interface for adapting PRNG functions.
+///
+///
+
+
+#include "randombytes.h"
+
+typedef struct {
+ unsigned char Key[32];
+ unsigned char V[16];
+} prng_t;
+
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen);
+int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen);
+
+
+#endif // _UTILS_PRNG_H_
+
+