diff --git a/crypto_kem/ledakemlt12/clean/bf_decoding.c b/crypto_kem/ledakemlt12/clean/bf_decoding.c index 977eb6ea..070771dd 100644 --- a/crypto_kem/ledakemlt12/clean/bf_decoding.c +++ b/crypto_kem/ledakemlt12/clean/bf_decoding.c @@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], int iteration = 0; do { - gf2x_copy(currSyndrome, privateSyndrome); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); for (int i = 0; i < N0; i++) { for (int valueIdx = 0; valueIdx < P; valueIdx++) { for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); - if (gf2x_get_coeff(currSyndrome, tmp)) { + if (PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { unsatParityChecks[i * P + valueIdx]++; } } @@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], } /* Correlation based flipping */ if (correlation >= corrt_syndrome_based) { - gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); for (int v = 0; v < M; v++) { unsigned syndromePosToFlip; for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; - gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); } } // end for v } // end if diff --git a/crypto_kem/ledakemlt12/clean/dfr_test.c b/crypto_kem/ledakemlt12/clean/dfr_test.c index 157e77d8..522a98f3 100644 --- a/crypto_kem/ledakemlt12/clean/dfr_test.c +++ b/crypto_kem/ledakemlt12/clean/dfr_test.c @@ -38,7 +38,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { LSparse_loc[i][j] = (P - LSparse[i][j]); } } - quicksort_sparse(LSparse_loc[i]); + PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(LSparse_loc[i]); } for (int i = 0; i < N0; i++ ) { @@ -48,7 +48,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; } - quicksort_sparse(rotated_column); + PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(rotated_column); /* compute the intersection amount */ firstidx = 0, secondidx = 0; intersectionval = 0; diff --git a/crypto_kem/ledakemlt12/clean/gf2x_arith.c b/crypto_kem/ledakemlt12/clean/gf2x_arith.c index a26aa99f..980c22de 100644 --- a/crypto_kem/ledakemlt12/clean/gf2x_arith.c +++ b/crypto_kem/ledakemlt12/clean/gf2x_arith.c @@ -3,6 +3,12 @@ #include #include // memset(...) +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { + for (int i = 0; i < nr; i++) { + Res[i] = A[i] ^ B[i]; + } +} + /* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { assert(amount < DIGIT_SIZE_b); diff --git a/crypto_kem/ledakemlt12/clean/gf2x_arith.h b/crypto_kem/ledakemlt12/clean/gf2x_arith.h index 9cb10569..8f890ab1 100644 --- a/crypto_kem/ledakemlt12/clean/gf2x_arith.h +++ b/crypto_kem/ledakemlt12/clean/gf2x_arith.h @@ -50,12 +50,7 @@ typedef uint64_t DIGIT; #define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb -static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { - for (int i = 0; i < nr; i++) { - Res[i] = A[i] ^ B[i]; - } -} - +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); diff --git a/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.c b/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.c index 217b24f1..d56b18a0 100644 --- a/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.c +++ b/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.c @@ -4,6 +4,103 @@ #include #include // memcpy(...), memset(...) +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { + for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { + dest[i] = in[i]; + } +} + +/* returns the coefficient of the x^exponent term as the LSB of a digit */ +DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; +} + +/* sets the coefficient of the x^exponent term as the LSB of a digit */ +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + + /* clear given coefficient */ + DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); + poly[digitIdx] = poly[digitIdx] & mask; + poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); +} + +/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + + /* clear given coefficient */ + DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); + poly[digitIdx] = poly[digitIdx] ^ mask; +} + +/* population count for an unsigned 64-bit integer + Source: Hacker's delight, p.66 */ +static int popcount_uint64t(uint64_t x) { + x -= (x >> 1) & 0x5555555555555555; + x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); + x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; + return (int)((x * 0x0101010101010101) >> 56); +} + +/* population count for a single polynomial */ +int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) { + int ret = 0; + for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { + ret += popcount_uint64t(poly[i]); + } + return ret; +} + +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); +} + +static int partition(POSITION_T arr[], int lo, int hi) { + POSITION_T x = arr[hi]; + POSITION_T tmp; + int i = (lo - 1); + for (int j = lo; j <= hi - 1; j++) { + if (arr[j] <= x) { + i++; + tmp = arr[i]; + arr[i] = arr[j]; + arr[j] = tmp; + } + } + tmp = arr[i + 1]; + arr[i + 1] = arr[hi]; + arr[hi] = tmp; + + return i + 1; +} + +void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]) { + int stack[DV * M]; + int hi, lo, pivot, tos = -1; + stack[++tos] = 0; + stack[++tos] = (DV * M) - 1; + while (tos >= 0 ) { + hi = stack[tos--]; + lo = stack[tos--]; + pivot = partition(Res, lo, hi); + if ( (pivot - 1) > lo) { + stack[++tos] = lo; + stack[++tos] = pivot - 1; + } + if ( (pivot + 1) < hi) { + stack[++tos] = pivot + 1; + stack[++tos] = hi; + } + } +} static void gf2x_mod(DIGIT out[], const DIGIT in[]) { @@ -65,7 +162,7 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { /* shifts by whole digits */ -static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { +static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { unsigned int j; for (j = 0; (j + amount) < length; j++) { in[j] = in[j + amount]; @@ -75,7 +172,6 @@ static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned } } - /* may shift by an arbitrary amount*/ static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); @@ -115,7 +211,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; } - A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // reverse middle digit + A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); if (slack_bits_amount) { PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); @@ -143,9 +239,7 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ in[0] |= rotated_bit; } -static void gf2x_swap(const int length, - DIGIT f[], - DIGIT s[]) { +static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { DIGIT t; for (int i = length - 1; i >= 0; i--) { t = f[i]; @@ -174,7 +268,7 @@ static void gf2x_swap(const int length, int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ int i; - long int delta = 0; + int delta = 0; DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; @@ -205,8 +299,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { delta += 1; } else { if ( (s[0] & mask) != 0) { - gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); - gf2x_mod_add(v, v, u); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(v, v, u); } left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); if ( delta == 0 ) { @@ -258,7 +352,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse( for (unsigned int i = 1; i < nPos; i++) { if (sparse[i] != INVALID_POS_VALUE) { left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); - gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); } } } @@ -312,7 +406,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ Res[lastFilledPos] = INVALID_POS_VALUE; lastFilledPos++; } - quicksort_sparse(Res); + PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(Res); /* eliminate duplicates */ POSITION_T lastReadPos = Res[0]; int duplicateCount; @@ -438,8 +532,9 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, } /* Returns random weight-t circulant block */ -void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], - AES_XOF_struct *seed_expander_ctx) { +void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence( + DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], + AES_XOF_struct *seed_expander_ctx) { int rndPos[NUM_ERRORS_T], duplicated, counter = 0; int p, polyIndex, exponent; @@ -463,8 +558,8 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT sequence[N0 for (int j = 0; j < counter; j++) { polyIndex = rndPos[j] / P; exponent = rndPos[j] % P; - gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, - ( (DIGIT) 1)); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, + ( (DIGIT) 1)); } } diff --git a/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.h b/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.h index af42422f..cfae3dc6 100644 --- a/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.h +++ b/crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.h @@ -15,105 +15,13 @@ #define INVALID_POS_VALUE (P) #define P_BITS (16) // log_2(p) = 15.6703 - -static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { - for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { - dest[i] = in[i]; - } -} - -/* returns the coefficient of the x^exponent term as the LSB of a digit */ -static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; -} - -/* sets the coefficient of the x^exponent term as the LSB of a digit */ -static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - - /* clear given coefficient */ - DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); - poly[digitIdx] = poly[digitIdx] & mask; - poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); -} - -/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ -static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - - /* clear given coefficient */ - DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); - poly[digitIdx] = poly[digitIdx] ^ mask; -} - -/* population count for an unsigned 64-bit integer - Source: Hacker's delight, p.66 */ -static int popcount_uint64t(uint64_t x) { - x -= (x >> 1) & 0x5555555555555555; - x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); - x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; - return (int)((x * 0x0101010101010101) >> 56); -} - -/* population count for a single polynomial */ -static inline int population_count(DIGIT *poly) { - int ret = 0; - for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { - ret += popcount_uint64t(poly[i]); - } - return ret; -} - -static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { - gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); -} - -static inline int partition(POSITION_T arr[], int lo, int hi) { - POSITION_T x = arr[hi]; - POSITION_T tmp; - int i = (lo - 1); - for (int j = lo; j <= hi - 1; j++) { - if (arr[j] <= x) { - i++; - tmp = arr[i]; - arr[i] = arr[j]; - arr[j] = tmp; - } - } - tmp = arr[i + 1]; - arr[i + 1] = arr[hi]; - arr[hi] = tmp; - - return i + 1; -} - -static inline void quicksort_sparse(POSITION_T Res[]) { - int stack[DV * M]; - int hi, lo, pivot, tos = -1; - stack[++tos] = 0; - stack[++tos] = (DV * M) - 1; - while (tos >= 0 ) { - hi = stack[tos--]; - lo = stack[tos--]; - pivot = partition(Res, lo, hi); - if ( (pivot - 1) > lo) { - stack[++tos] = lo; - stack[++tos] = pivot - 1; - } - if ( (pivot + 1) < hi) { - stack[++tos] = pivot + 1; - stack[++tos] = hi; - } - } -} - +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); +DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); +int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly); +void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); +void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]); void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]); void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); @@ -123,7 +31,6 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); - int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); #endif diff --git a/crypto_kem/ledakemlt12/clean/niederreiter.c b/crypto_kem/ledakemlt12/clean/niederreiter.c index e2326bd4..1cb3ea51 100644 --- a/crypto_kem/ledakemlt12/clean/niederreiter.c +++ b/crypto_kem/ledakemlt12/clean/niederreiter.c @@ -58,7 +58,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, memset(Ln0dense, 0x00, sizeof(Ln0dense)); for (int j = 0; j < DV * M; j++) { if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { - gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); } } @@ -86,9 +86,9 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publi PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(saux, pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, err + i * NUM_DIGITS_GF2X_ELEMENT); - gf2x_mod_add(syndrome, syndrome, saux); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); } - gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); + PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); } @@ -180,7 +180,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN err_weight = 0; for (int i = 0 ; i < N0; i++) { - err_weight += population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); + err_weight += PQCLEAN_LEDAKEMLT12_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); } decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); diff --git a/crypto_kem/ledakemlt32/clean/bf_decoding.c b/crypto_kem/ledakemlt32/clean/bf_decoding.c index 3ed29fb1..f2eb85aa 100644 --- a/crypto_kem/ledakemlt32/clean/bf_decoding.c +++ b/crypto_kem/ledakemlt32/clean/bf_decoding.c @@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], int iteration = 0; do { - gf2x_copy(currSyndrome, privateSyndrome); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); for (int i = 0; i < N0; i++) { for (int valueIdx = 0; valueIdx < P; valueIdx++) { for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); - if (gf2x_get_coeff(currSyndrome, tmp)) { + if (PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { unsatParityChecks[i * P + valueIdx]++; } } @@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], } /* Correlation based flipping */ if (correlation >= corrt_syndrome_based) { - gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); for (int v = 0; v < M; v++) { unsigned syndromePosToFlip; for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; - gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); } } // end for v } // end if diff --git a/crypto_kem/ledakemlt32/clean/dfr_test.c b/crypto_kem/ledakemlt32/clean/dfr_test.c index da61675c..99571cf5 100644 --- a/crypto_kem/ledakemlt32/clean/dfr_test.c +++ b/crypto_kem/ledakemlt32/clean/dfr_test.c @@ -38,7 +38,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { LSparse_loc[i][j] = (P - LSparse[i][j]); } } - quicksort_sparse(LSparse_loc[i]); + PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(LSparse_loc[i]); } for (int i = 0; i < N0; i++ ) { @@ -48,7 +48,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; } - quicksort_sparse(rotated_column); + PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(rotated_column); /* compute the intersection amount */ firstidx = 0, secondidx = 0; intersectionval = 0; diff --git a/crypto_kem/ledakemlt32/clean/gf2x_arith.c b/crypto_kem/ledakemlt32/clean/gf2x_arith.c index 99caa7ec..713e9cc5 100644 --- a/crypto_kem/ledakemlt32/clean/gf2x_arith.c +++ b/crypto_kem/ledakemlt32/clean/gf2x_arith.c @@ -3,6 +3,12 @@ #include #include // memset(...) +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { + for (int i = 0; i < nr; i++) { + Res[i] = A[i] ^ B[i]; + } +} + /* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { assert(amount < DIGIT_SIZE_b); diff --git a/crypto_kem/ledakemlt32/clean/gf2x_arith.h b/crypto_kem/ledakemlt32/clean/gf2x_arith.h index d55b4eb3..720d6fde 100644 --- a/crypto_kem/ledakemlt32/clean/gf2x_arith.h +++ b/crypto_kem/ledakemlt32/clean/gf2x_arith.h @@ -50,12 +50,7 @@ typedef uint64_t DIGIT; #define GF2X_MUL PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb -static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { - for (int i = 0; i < nr; i++) { - Res[i] = A[i] ^ B[i]; - } -} - +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); diff --git a/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.c b/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.c index a81d5aeb..39067248 100644 --- a/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.c +++ b/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.c @@ -4,6 +4,103 @@ #include #include // memcpy(...), memset(...) +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { + for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { + dest[i] = in[i]; + } +} + +/* returns the coefficient of the x^exponent term as the LSB of a digit */ +DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; +} + +/* sets the coefficient of the x^exponent term as the LSB of a digit */ +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + + /* clear given coefficient */ + DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); + poly[digitIdx] = poly[digitIdx] & mask; + poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); +} + +/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + + /* clear given coefficient */ + DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); + poly[digitIdx] = poly[digitIdx] ^ mask; +} + +/* population count for an unsigned 64-bit integer + Source: Hacker's delight, p.66 */ +static int popcount_uint64t(uint64_t x) { + x -= (x >> 1) & 0x5555555555555555; + x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); + x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; + return (int)((x * 0x0101010101010101) >> 56); +} + +/* population count for a single polynomial */ +int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) { + int ret = 0; + for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { + ret += popcount_uint64t(poly[i]); + } + return ret; +} + +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); +} + +static int partition(POSITION_T arr[], int lo, int hi) { + POSITION_T x = arr[hi]; + POSITION_T tmp; + int i = (lo - 1); + for (int j = lo; j <= hi - 1; j++) { + if (arr[j] <= x) { + i++; + tmp = arr[i]; + arr[i] = arr[j]; + arr[j] = tmp; + } + } + tmp = arr[i + 1]; + arr[i + 1] = arr[hi]; + arr[hi] = tmp; + + return i + 1; +} + +void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]) { + int stack[DV * M]; + int hi, lo, pivot, tos = -1; + stack[++tos] = 0; + stack[++tos] = (DV * M) - 1; + while (tos >= 0 ) { + hi = stack[tos--]; + lo = stack[tos--]; + pivot = partition(Res, lo, hi); + if ( (pivot - 1) > lo) { + stack[++tos] = lo; + stack[++tos] = pivot - 1; + } + if ( (pivot + 1) < hi) { + stack[++tos] = pivot + 1; + stack[++tos] = hi; + } + } +} static void gf2x_mod(DIGIT out[], const DIGIT in[]) { @@ -65,7 +162,7 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { /* shifts by whole digits */ -static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { +static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { unsigned int j; for (j = 0; (j + amount) < length; j++) { in[j] = in[j + amount]; @@ -75,7 +172,6 @@ static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned } } - /* may shift by an arbitrary amount*/ static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); @@ -115,7 +211,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; } - // A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // reverse middle digit + // A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit if (slack_bits_amount) { PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); @@ -143,9 +239,7 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ in[0] |= rotated_bit; } -static void gf2x_swap(const int length, - DIGIT f[], - DIGIT s[]) { +static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { DIGIT t; for (int i = length - 1; i >= 0; i--) { t = f[i]; @@ -174,7 +268,7 @@ static void gf2x_swap(const int length, int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ int i; - long int delta = 0; + int delta = 0; DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; @@ -205,8 +299,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { delta += 1; } else { if ( (s[0] & mask) != 0) { - gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); - gf2x_mod_add(v, v, u); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(v, v, u); } left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); if ( delta == 0 ) { @@ -258,7 +352,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse( for (unsigned int i = 1; i < nPos; i++) { if (sparse[i] != INVALID_POS_VALUE) { left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); - gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); } } } @@ -312,7 +406,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ Res[lastFilledPos] = INVALID_POS_VALUE; lastFilledPos++; } - quicksort_sparse(Res); + PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(Res); /* eliminate duplicates */ POSITION_T lastReadPos = Res[0]; int duplicateCount; @@ -464,8 +558,8 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence( for (int j = 0; j < counter; j++) { polyIndex = rndPos[j] / P; exponent = rndPos[j] % P; - gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, - ( (DIGIT) 1)); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, + ( (DIGIT) 1)); } } diff --git a/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.h b/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.h index 2e1a266a..8f7a1f53 100644 --- a/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.h +++ b/crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.h @@ -15,105 +15,13 @@ #define INVALID_POS_VALUE (P) #define P_BITS (17) // log_2(p) = 16.55406417 - -static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { - for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { - dest[i] = in[i]; - } -} - -/* returns the coefficient of the x^exponent term as the LSB of a digit */ -static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; -} - -/* sets the coefficient of the x^exponent term as the LSB of a digit */ -static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - - /* clear given coefficient */ - DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); - poly[digitIdx] = poly[digitIdx] & mask; - poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); -} - -/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ -static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - - /* clear given coefficient */ - DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); - poly[digitIdx] = poly[digitIdx] ^ mask; -} - -/* population count for an unsigned 64-bit integer - Source: Hacker's delight, p.66 */ -static int popcount_uint64t(uint64_t x) { - x -= (x >> 1) & 0x5555555555555555; - x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); - x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; - return (int)((x * 0x0101010101010101) >> 56); -} - -/* population count for a single polynomial */ -static inline int population_count(DIGIT *poly) { - int ret = 0; - for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { - ret += popcount_uint64t(poly[i]); - } - return ret; -} - -static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { - gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); -} - -static inline int partition(POSITION_T arr[], int lo, int hi) { - POSITION_T x = arr[hi]; - POSITION_T tmp; - int i = (lo - 1); - for (int j = lo; j <= hi - 1; j++) { - if (arr[j] <= x) { - i++; - tmp = arr[i]; - arr[i] = arr[j]; - arr[j] = tmp; - } - } - tmp = arr[i + 1]; - arr[i + 1] = arr[hi]; - arr[hi] = tmp; - - return i + 1; -} - -static inline void quicksort_sparse(POSITION_T Res[]) { - int stack[DV * M]; - int hi, lo, pivot, tos = -1; - stack[++tos] = 0; - stack[++tos] = (DV * M) - 1; - while (tos >= 0 ) { - hi = stack[tos--]; - lo = stack[tos--]; - pivot = partition(Res, lo, hi); - if ( (pivot - 1) > lo) { - stack[++tos] = lo; - stack[++tos] = pivot - 1; - } - if ( (pivot + 1) < hi) { - stack[++tos] = pivot + 1; - stack[++tos] = hi; - } - } -} - +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); +DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); +int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly); +void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); +void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]); void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]); void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); @@ -123,7 +31,6 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); - int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); #endif diff --git a/crypto_kem/ledakemlt32/clean/niederreiter.c b/crypto_kem/ledakemlt32/clean/niederreiter.c index 9b72c104..3d524800 100644 --- a/crypto_kem/ledakemlt32/clean/niederreiter.c +++ b/crypto_kem/ledakemlt32/clean/niederreiter.c @@ -58,7 +58,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, memset(Ln0dense, 0x00, sizeof(Ln0dense)); for (int j = 0; j < DV * M; j++) { if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { - gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); } } @@ -86,9 +86,9 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publi PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(saux, pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, err + i * NUM_DIGITS_GF2X_ELEMENT); - gf2x_mod_add(syndrome, syndrome, saux); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); } - gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); + PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); } @@ -180,7 +180,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN err_weight = 0; for (int i = 0 ; i < N0; i++) { - err_weight += population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); + err_weight += PQCLEAN_LEDAKEMLT32_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); } decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); diff --git a/crypto_kem/ledakemlt52/clean/bf_decoding.c b/crypto_kem/ledakemlt52/clean/bf_decoding.c index f52060f8..2b90c00a 100644 --- a/crypto_kem/ledakemlt52/clean/bf_decoding.c +++ b/crypto_kem/ledakemlt52/clean/bf_decoding.c @@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], int iteration = 0; do { - gf2x_copy(currSyndrome, privateSyndrome); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); for (int i = 0; i < N0; i++) { for (int valueIdx = 0; valueIdx < P; valueIdx++) { for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); - if (gf2x_get_coeff(currSyndrome, tmp)) { + if (PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { unsatParityChecks[i * P + valueIdx]++; } } @@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], } /* Correlation based flipping */ if (correlation >= corrt_syndrome_based) { - gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); for (int v = 0; v < M; v++) { unsigned syndromePosToFlip; for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; - gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); } } // end for v } // end if diff --git a/crypto_kem/ledakemlt52/clean/dfr_test.c b/crypto_kem/ledakemlt52/clean/dfr_test.c index f5ff3a13..e8de098e 100644 --- a/crypto_kem/ledakemlt52/clean/dfr_test.c +++ b/crypto_kem/ledakemlt52/clean/dfr_test.c @@ -38,7 +38,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { LSparse_loc[i][j] = (P - LSparse[i][j]); } } - quicksort_sparse(LSparse_loc[i]); + PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(LSparse_loc[i]); } for (int i = 0; i < N0; i++ ) { @@ -48,7 +48,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; } - quicksort_sparse(rotated_column); + PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(rotated_column); /* compute the intersection amount */ firstidx = 0, secondidx = 0; intersectionval = 0; diff --git a/crypto_kem/ledakemlt52/clean/gf2x_arith.c b/crypto_kem/ledakemlt52/clean/gf2x_arith.c index 9e450a81..73652552 100644 --- a/crypto_kem/ledakemlt52/clean/gf2x_arith.c +++ b/crypto_kem/ledakemlt52/clean/gf2x_arith.c @@ -3,6 +3,12 @@ #include #include // memset(...) +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { + for (int i = 0; i < nr; i++) { + Res[i] = A[i] ^ B[i]; + } +} + /* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { assert(amount < DIGIT_SIZE_b); diff --git a/crypto_kem/ledakemlt52/clean/gf2x_arith.h b/crypto_kem/ledakemlt52/clean/gf2x_arith.h index c3b6cb4a..cdb6b303 100644 --- a/crypto_kem/ledakemlt52/clean/gf2x_arith.h +++ b/crypto_kem/ledakemlt52/clean/gf2x_arith.h @@ -50,12 +50,7 @@ typedef uint64_t DIGIT; #define GF2X_MUL PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb -static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { - for (int i = 0; i < nr; i++) { - Res[i] = A[i] ^ B[i]; - } -} - +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); diff --git a/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.c b/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.c index cade74dd..d48c804d 100644 --- a/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.c +++ b/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.c @@ -5,6 +5,104 @@ #include // memcpy(...), memset(...) +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { + for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { + dest[i] = in[i]; + } +} + +/* returns the coefficient of the x^exponent term as the LSB of a digit */ +DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; +} + +/* sets the coefficient of the x^exponent term as the LSB of a digit */ +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + + /* clear given coefficient */ + DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); + poly[digitIdx] = poly[digitIdx] & mask; + poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); +} + +/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { + unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; + unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; + unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; + + /* clear given coefficient */ + DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); + poly[digitIdx] = poly[digitIdx] ^ mask; +} + +/* population count for an unsigned 64-bit integer + Source: Hacker's delight, p.66 */ +static int popcount_uint64t(uint64_t x) { + x -= (x >> 1) & 0x5555555555555555; + x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); + x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; + return (int)((x * 0x0101010101010101) >> 56); +} + +/* population count for a single polynomial */ +int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) { + int ret = 0; + for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { + ret += popcount_uint64t(poly[i]); + } + return ret; +} + +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); +} + +static int partition(POSITION_T arr[], int lo, int hi) { + POSITION_T x = arr[hi]; + POSITION_T tmp; + int i = (lo - 1); + for (int j = lo; j <= hi - 1; j++) { + if (arr[j] <= x) { + i++; + tmp = arr[i]; + arr[i] = arr[j]; + arr[j] = tmp; + } + } + tmp = arr[i + 1]; + arr[i + 1] = arr[hi]; + arr[hi] = tmp; + + return i + 1; +} + +void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]) { + int stack[DV * M]; + int hi, lo, pivot, tos = -1; + stack[++tos] = 0; + stack[++tos] = (DV * M) - 1; + while (tos >= 0 ) { + hi = stack[tos--]; + lo = stack[tos--]; + pivot = partition(Res, lo, hi); + if ( (pivot - 1) > lo) { + stack[++tos] = lo; + stack[++tos] = pivot - 1; + } + if ( (pivot + 1) < hi) { + stack[++tos] = pivot + 1; + stack[++tos] = hi; + } + } +} + static void gf2x_mod(DIGIT out[], const DIGIT in[]) { int i, j, posTrailingBit, maskOffset; @@ -65,7 +163,7 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { /* shifts by whole digits */ -static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { +static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { unsigned int j; for (j = 0; (j + amount) < length; j++) { in[j] = in[j + amount]; @@ -75,7 +173,6 @@ static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned } } - /* may shift by an arbitrary amount*/ static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); @@ -143,9 +240,7 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ in[0] |= rotated_bit; } -static void gf2x_swap(const int length, - DIGIT f[], - DIGIT s[]) { +static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { DIGIT t; for (int i = length - 1; i >= 0; i--) { t = f[i]; @@ -174,7 +269,7 @@ static void gf2x_swap(const int length, int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ int i; - long int delta = 0; + int delta = 0; DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; @@ -205,8 +300,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { delta += 1; } else { if ( (s[0] & mask) != 0) { - gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); - gf2x_mod_add(v, v, u); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(v, v, u); } left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); if ( delta == 0 ) { @@ -258,7 +353,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse( for (unsigned int i = 1; i < nPos; i++) { if (sparse[i] != INVALID_POS_VALUE) { left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); - gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); } } } @@ -312,7 +407,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ Res[lastFilledPos] = INVALID_POS_VALUE; lastFilledPos++; } - quicksort_sparse(Res); + PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(Res); /* eliminate duplicates */ POSITION_T lastReadPos = Res[0]; int duplicateCount; @@ -464,8 +559,8 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence( for (int j = 0; j < counter; j++) { polyIndex = rndPos[j] / P; exponent = rndPos[j] % P; - gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, - ( (DIGIT) 1)); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, + ( (DIGIT) 1)); } } diff --git a/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.h b/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.h index e514c53d..f730ed41 100644 --- a/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.h +++ b/crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.h @@ -15,105 +15,13 @@ #define INVALID_POS_VALUE (P) #define P_BITS (18) // log_2(p) = 17.216243783 - -static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { - for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { - dest[i] = in[i]; - } -} - -/* returns the coefficient of the x^exponent term as the LSB of a digit */ -static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; -} - -/* sets the coefficient of the x^exponent term as the LSB of a digit */ -static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - - /* clear given coefficient */ - DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); - poly[digitIdx] = poly[digitIdx] & mask; - poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); -} - -/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ -static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { - unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; - unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; - unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; - - /* clear given coefficient */ - DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); - poly[digitIdx] = poly[digitIdx] ^ mask; -} - -/* population count for an unsigned 64-bit integer - Source: Hacker's delight, p.66 */ -static int popcount_uint64t(uint64_t x) { - x -= (x >> 1) & 0x5555555555555555; - x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); - x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; - return (int)((x * 0x0101010101010101) >> 56); -} - -/* population count for a single polynomial */ -static inline int population_count(DIGIT *poly) { - int ret = 0; - for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { - ret += popcount_uint64t(poly[i]); - } - return ret; -} - -static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { - gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); -} - -static inline int partition(POSITION_T arr[], int lo, int hi) { - POSITION_T x = arr[hi]; - POSITION_T tmp; - int i = (lo - 1); - for (int j = lo; j <= hi - 1; j++) { - if (arr[j] <= x) { - i++; - tmp = arr[i]; - arr[i] = arr[j]; - arr[j] = tmp; - } - } - tmp = arr[i + 1]; - arr[i + 1] = arr[hi]; - arr[hi] = tmp; - - return i + 1; -} - -static inline void quicksort_sparse(POSITION_T Res[]) { - int stack[DV * M]; - int hi, lo, pivot, tos = -1; - stack[++tos] = 0; - stack[++tos] = (DV * M) - 1; - while (tos >= 0 ) { - hi = stack[tos--]; - lo = stack[tos--]; - pivot = partition(Res, lo, hi); - if ( (pivot - 1) > lo) { - stack[++tos] = lo; - stack[++tos] = pivot - 1; - } - if ( (pivot + 1) < hi) { - stack[++tos] = pivot + 1; - stack[++tos] = hi; - } - } -} - +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); +DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); +int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly); +void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); +void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]); void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); @@ -123,7 +31,6 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); - int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); #endif diff --git a/crypto_kem/ledakemlt52/clean/niederreiter.c b/crypto_kem/ledakemlt52/clean/niederreiter.c index 6827af13..e811f1e2 100644 --- a/crypto_kem/ledakemlt52/clean/niederreiter.c +++ b/crypto_kem/ledakemlt52/clean/niederreiter.c @@ -58,7 +58,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, memset(Ln0dense, 0x00, sizeof(Ln0dense)); for (int j = 0; j < DV * M; j++) { if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { - gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); } } @@ -86,9 +86,9 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publi PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(saux, pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, err + i * NUM_DIGITS_GF2X_ELEMENT); - gf2x_mod_add(syndrome, syndrome, saux); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); } - gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); + PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); } @@ -180,7 +180,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN err_weight = 0; for (int i = 0 ; i < N0; i++) { - err_weight += population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); + err_weight += PQCLEAN_LEDAKEMLT52_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); } decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);