diff --git a/crypto_kem/saber/META.yml b/crypto_kem/saber/META.yml new file mode 100644 index 00000000..5cb3bb48 --- /dev/null +++ b/crypto_kem/saber/META.yml @@ -0,0 +1,13 @@ +name: Saber +type: kem +claimed-nist-level: 3 +claimed-security: IND-CCA2 +length-public-key: 992 +length-ciphertext: 1088 +length-secret-key: 2304 +length-shared-secret: 32 +nistkat-sha256: c9e2c16f41f162c607a1d5704107159e5e12713b9bb8c356b1d68b216e79096e +principal-submitter: Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren +implementations: + - name: clean + version: https://github.com/KULeuven-COSIC/SABER/commit/14ede83f1ff3bcc41f0464543542366c68b55871 diff --git a/crypto_kem/saber/clean/LICENSE b/crypto_kem/saber/clean/LICENSE new file mode 100644 index 00000000..1333ed77 --- /dev/null +++ b/crypto_kem/saber/clean/LICENSE @@ -0,0 +1 @@ +TODO diff --git a/crypto_kem/saber/clean/Makefile b/crypto_kem/saber/clean/Makefile new file mode 100644 index 00000000..2052d200 --- /dev/null +++ b/crypto_kem/saber/clean/Makefile @@ -0,0 +1,19 @@ +# This Makefile can be used with GNU Make or BSD Make + +LIB=libsaber_clean.a +HEADERS=api.h cbd.h poly.h poly_mul.h SABER_indcpa.h SABER_params.h verify.h pack_unpack.h +OBJECTS=cbd.o kem.o pack_unpack.o poly.o poly_mul.o SABER_indcpa.o verify.o + +CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) + +all: $(LIB) + +%.o: %.c $(HEADERS) + $(CC) $(CFLAGS) -c -o $@ $< + +$(LIB): $(OBJECTS) + $(AR) -r $@ $(OBJECTS) + +clean: + $(RM) $(OBJECTS) + $(RM) $(LIB) diff --git a/crypto_kem/saber/clean/Makefile.Microsoft_nmake b/crypto_kem/saber/clean/Makefile.Microsoft_nmake new file mode 100644 index 00000000..8dff5705 --- /dev/null +++ b/crypto_kem/saber/clean/Makefile.Microsoft_nmake @@ -0,0 +1,19 @@ +# This Makefile can be used with Microsoft Visual Studio's nmake using the command: +# nmake /f Makefile.Microsoft_nmake + +LIBRARY=libsaber_clean.lib +OBJECTS=cbd.obj kem.obj pack_unpack.obj poly.obj poly_mul.obj SABER_indcpa.obj verify.obj + +CFLAGS=/nologo /I ..\..\..\common /W4 /WX + +all: $(LIBRARY) + +# Make sure objects are recompiled if headers change. +$(OBJECTS): *.h + +$(LIBRARY): $(OBJECTS) + LIB.EXE /NOLOGO /WX /OUT:$@ $** + +clean: + -DEL $(OBJECTS) + -DEL $(LIBRARY) diff --git a/crypto_kem/saber/clean/SABER_indcpa.c b/crypto_kem/saber/clean/SABER_indcpa.c new file mode 100644 index 00000000..ed62635f --- /dev/null +++ b/crypto_kem/saber/clean/SABER_indcpa.c @@ -0,0 +1,351 @@ +#include "SABER_indcpa.h" +#include "SABER_params.h" +#include "fips202.h" +#include "pack_unpack.h" +#include "poly.h" +#include "poly_mul.h" +#include "randombytes.h" +#include +#include + + + +/*----------------------------------------------------------------------------------- + This routine generates a=[Matrix K x K] of 256-coefficient polynomials +-------------------------------------------------------------------------------------*/ + +#define h1 4 //2^(EQ-EP-1) + +#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) ) + +static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]); +static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose); + +static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec); + +static void GenMatrix(polyvec *a, const unsigned char *seed) { + unsigned int one_vector = 13 * SABER_N / 8; + unsigned int byte_bank_length = SABER_K * SABER_K * one_vector; + unsigned char buf[byte_bank_length]; + + uint16_t temp_ar[SABER_N]; + + int i, j, k; + uint16_t mod = (SABER_Q - 1); + + shake128(buf, byte_bank_length, seed, SABER_SEEDBYTES); + + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_K; j++) { + PQCLEAN_SABER_CLEAN_BS2POL(buf + (i * SABER_K + j)*one_vector, temp_ar); + for (k = 0; k < SABER_N; k++) { + a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ; + } + } + } + + +} + + +void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { + polyvec a[SABER_K];// skpv; + + uint16_t skpv[SABER_K][SABER_N]; + + unsigned char seed[SABER_SEEDBYTES]; + unsigned char noiseseed[SABER_COINBYTES]; + int32_t i, j; + uint16_t mod_q = SABER_Q - 1; + + + uint16_t res[SABER_K][SABER_N]; + + randombytes(seed, SABER_SEEDBYTES); + shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); // for not revealing system RNG state + randombytes(noiseseed, SABER_COINBYTES); + + GenMatrix(a, seed); //sample matrix A + + PQCLEAN_SABER_CLEAN_GenSecret(skpv, noiseseed); //generate secret from constant-time binomial distribution + + //------------------------do the matrix vector multiplication and rounding------------ + + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_N; j++) { + res[i][j] = 0; + } + } + + MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); + + //-----now rounding + for (i = 0; i < SABER_K; i++) { //shift right 3 bits + for (j = 0; j < SABER_N; j++) { + res[i][j] = (res[i][j] + h1) & (mod_q); + res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); + } + } + + //------------------unload and pack sk=3 x (256 coefficients of 14 bits)------- + + PQCLEAN_SABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); + + //------------------unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)------- + + + PQCLEAN_SABER_CLEAN_POLVEC2BS(pk, res, SABER_P); // load the public-key coefficients + + + + for (i = 0; i < SABER_SEEDBYTES; i++) { // now load the seedbytes in PK. Easy since seed bytes are kept in byte format. + pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; + } + +} + + +void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { + uint32_t i, j, k; + polyvec a[SABER_K]; // skpv; + unsigned char seed[SABER_SEEDBYTES]; + uint16_t pkcl[SABER_K][SABER_N]; //public key of received by the client + + + + uint16_t skpv1[SABER_K][SABER_N]; + + uint16_t message[SABER_KEYBYTES * 8]; + + uint16_t res[SABER_K][SABER_N]; + uint16_t mod_p = SABER_P - 1; + uint16_t mod_q = SABER_Q - 1; + + uint16_t vprime[SABER_N]; + + + + unsigned char msk_c[SABER_SCALEBYTES_KEM]; + + for (i = 0; i < SABER_SEEDBYTES; i++) { // extract the seedbytes from Public Key. + seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; + } + + GenMatrix(a, seed); + + PQCLEAN_SABER_CLEAN_GenSecret(skpv1, noiseseed); //generate secret from constant-time binomial distribution + + //-----------------matrix-vector multiplication and rounding + + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_N; j++) { + res[i][j] = 0; + } + } + + MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); + + //-----now rounding + + for (i = 0; i < SABER_K; i++) { //shift right 3 bits + for (j = 0; j < SABER_N; j++) { + res[i][j] = ( res[i][j] + h1 ) & mod_q; + res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); + } + } + + PQCLEAN_SABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); + +//*******************client matrix-vector multiplication ends************************************ + + //------now calculate the v' + + //-------unpack the public_key + + //pkcl is the b in the protocol + PQCLEAN_SABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); + + + + for (i = 0; i < SABER_N; i++) { + vprime[i] = 0; + } + + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_N; j++) { + skpv1[i][j] = skpv1[i][j] & (mod_p); + } + } + + // vector-vector scalar multiplication with mod p + InnerProd(pkcl, skpv1, mod_p, vprime); + + //addition of h1 to vprime + for (i = 0; i < SABER_N; i++) { + vprime[i] = vprime[i] + h1; + } + + + // unpack message_received; + for (j = 0; j < SABER_KEYBYTES; j++) { + for (i = 0; i < 8; i++) { + message[8 * j + i] = ((message_received[j] >> i) & 0x01); + } + } + + // message encoding + for (i = 0; i < SABER_N; i++) { + message[i] = (message[i] << (SABER_EP - 1)); + } + + + + + for (k = 0; k < SABER_N; k++) { + vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); + } + + + #if Saber_type == 1 + PQCLEAN_SABER_CLEAN_pack_3bit(msk_c, vprime); + #elif Saber_type == 2 + PQCLEAN_SABER_CLEAN_pack_4bit(msk_c, vprime); + #elif Saber_type == 3 + PQCLEAN_SABER_CLEAN_pack_6bit(msk_c, vprime); + #endif + + + for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { + ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; + } +} + + +void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { + + uint32_t i, j; + + + uint16_t sksv[SABER_K][SABER_N]; //secret key of the server + + + uint16_t pksv[SABER_K][SABER_N]; + + uint8_t scale_ar[SABER_SCALEBYTES_KEM]; + + uint16_t mod_p = SABER_P - 1; + + uint16_t v[SABER_N]; + + uint16_t op[SABER_N]; + + + PQCLEAN_SABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); //sksv is the secret-key + PQCLEAN_SABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); //pksv is the ciphertext + + // vector-vector scalar multiplication with mod p + for (i = 0; i < SABER_N; i++) { + v[i] = 0; + } + + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_N; j++) { + sksv[i][j] = sksv[i][j] & (mod_p); + } + } + + InnerProd(pksv, sksv, mod_p, v); + + + //Extraction + for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { + scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; + } + + #if Saber_type == 1 + PQCLEAN_SABER_CLEAN_un_pack3bit(scale_ar, op); + #elif Saber_type == 2 + PQCLEAN_SABER_CLEAN_un_pack4bit(scale_ar, op); + #elif Saber_type == 3 + PQCLEAN_SABER_CLEAN_un_pack6bit(scale_ar, op); + #endif + + + //addition of h1 + for (i = 0; i < SABER_N; i++) { + v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); + } + + // pack decrypted message + + POL2MSG(v, message_dec); + + +} +static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { + + uint16_t acc[SABER_N]; + int32_t i, j, k; + + if (transpose == 1) { + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_K; j++) { + PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N); + + for (k = 0; k < SABER_N; k++) { + res[i][k] = res[i][k] + acc[k]; + res[i][k] = (res[i][k] & mod); //reduction mod p + acc[k] = 0; //clear the accumulator + } + + } + } + } else { + + for (i = 0; i < SABER_K; i++) { + for (j = 0; j < SABER_K; j++) { + PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); + for (k = 0; k < SABER_N; k++) { + res[i][k] = res[i][k] + acc[k]; + res[i][k] = res[i][k] & mod; //reduction + acc[k] = 0; //clear the accumulator + } + + } + } + } + + +} + +static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { + + int32_t i, j; + + for (j = 0; j < SABER_KEYBYTES; j++) { + message_dec[j] = 0; + for (i = 0; i < 8; i++) { + message_dec[j] = message_dec[j] | (message_dec_unpacked[j * 8 + i] << i); + } + } + +} + + +static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { + + + uint32_t j, k; + uint16_t acc[SABER_N]; + + // vector-vector scalar multiplication with mod p + for (j = 0; j < SABER_K; j++) { + PQCLEAN_SABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N); + + for (k = 0; k < SABER_N; k++) { + res[k] = res[k] + acc[k]; + res[k] = res[k] & mod; //reduction + acc[k] = 0; //clear the accumulator + } + } +} diff --git a/crypto_kem/saber/clean/SABER_indcpa.h b/crypto_kem/saber/clean/SABER_indcpa.h new file mode 100644 index 00000000..f8503f66 --- /dev/null +++ b/crypto_kem/saber/clean/SABER_indcpa.h @@ -0,0 +1,9 @@ +#ifndef INDCPA_H +#define INDCPA_H + +void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk); +void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext); +void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char *message_dec); + +#endif + diff --git a/crypto_kem/saber/clean/SABER_params.h b/crypto_kem/saber/clean/SABER_params.h new file mode 100644 index 00000000..7d9ebf3b --- /dev/null +++ b/crypto_kem/saber/clean/SABER_params.h @@ -0,0 +1,63 @@ +#include "api.h" + +#ifndef PARAMS_H +#define PARAMS_H + + + +#if Saber_type == 1 +#define SABER_K 2 +#define SABER_MU 10 +#define SABER_ET 3 + +#elif Saber_type == 2 +#define SABER_K 3 +#define SABER_MU 8 +#define SABER_ET 4 + +#elif Saber_type == 3 +#define SABER_K 4 +#define SABER_MU 6 +#define SABER_ET 6 +#endif + +#define SABER_EQ 13 +#define SABER_EP 10 + +#define SABER_N 256 +#define SABER_Q 8192 +#define SABER_P 1024 + +#define SABER_SEEDBYTES 32 +#define SABER_NOISESEEDBYTES 32 +#define SABER_COINBYTES 32 +#define SABER_KEYBYTES 32 + +#define SABER_HASHBYTES 32 + +#define SABER_POLYBYTES 416 //13*256/8 + +#define SABER_POLYVECBYTES (SABER_K * SABER_POLYBYTES) + +#define SABER_POLYVECCOMPRESSEDBYTES (SABER_K * 320) //10*256/8 NOTE : changed till here due to parameter adaptation + +#define SABER_CIPHERTEXTBYTES (SABER_POLYVECCOMPRESSEDBYTES) + +#define SABER_SCALEBYTES (SABER_DELTA*SABER_N/8) + +#define SABER_SCALEBYTES_KEM ((SABER_ET)*SABER_N/8) + +#define SABER_INDCPA_PUBLICKEYBYTES (SABER_POLYVECCOMPRESSEDBYTES + SABER_SEEDBYTES) +#define SABER_INDCPA_SECRETKEYBYTES (SABER_POLYVECBYTES) + +#define SABER_PUBLICKEYBYTES (SABER_INDCPA_PUBLICKEYBYTES) + +#define SABER_SECRETKEYBYTES (SABER_INDCPA_SECRETKEYBYTES + SABER_INDCPA_PUBLICKEYBYTES + SABER_HASHBYTES + SABER_KEYBYTES) + +#define SABER_BYTES_CCA_DEC (SABER_POLYVECCOMPRESSEDBYTES + SABER_SCALEBYTES_KEM) /* Second part is for Targhi-Unruh */ + + + + +#endif + diff --git a/crypto_kem/saber/clean/api.h b/crypto_kem/saber/clean/api.h new file mode 100644 index 00000000..f54078a5 --- /dev/null +++ b/crypto_kem/saber/clean/api.h @@ -0,0 +1,16 @@ +#ifndef PQCLEAN_SABER_CLEAN_API_H +#define PQCLEAN_SABER_CLEAN_API_H + +#define PQCLEAN_SABER_CLEAN_CRYPTO_ALGNAME "Saber" +#define PQCLEAN_SABER_CLEAN_CRYPTO_SECRETKEYBYTES 2304 +#define PQCLEAN_SABER_CLEAN_CRYPTO_PUBLICKEYBYTES (3*320+32) +#define PQCLEAN_SABER_CLEAN_CRYPTO_BYTES 32 +#define PQCLEAN_SABER_CLEAN_CRYPTO_CIPHERTEXTBYTES 1088 + +#define Saber_type 2 + +int PQCLEAN_SABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk); +int PQCLEAN_SABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk); +int PQCLEAN_SABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk); + +#endif /* api_h */ diff --git a/crypto_kem/saber/clean/cbd.c b/crypto_kem/saber/clean/cbd.c new file mode 100644 index 00000000..f5d02deb --- /dev/null +++ b/crypto_kem/saber/clean/cbd.c @@ -0,0 +1,106 @@ +/*--------------------------------------------------------------------- +This file has been adapted from the implementation +(available at, Public Domain https://github.com/pq-crystals/kyber) +of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" +by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, +Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle +----------------------------------------------------------------------*/ + +#include "SABER_params.h" +#include "api.h" +#include "cbd.h" +#include + +static uint64_t load_littleendian(const unsigned char *x, int bytes) { + int i; + uint64_t r = x[0]; + for (i = 1; i < bytes; i++) { + r |= (uint64_t)x[i] << (8 * i); + } + return r; +} + + +void PQCLEAN_SABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf) { + uint16_t Qmod_minus1 = SABER_Q - 1; + + #if Saber_type == 3 + uint32_t t, d, a[4], b[4]; + int i, j; + + for (i = 0; i < SABER_N / 4; i++) { + t = load_littleendian(buf + 3 * i, 3); + d = 0; + for (j = 0; j < 3; j++) { + d += (t >> j) & 0x249249; + } + + a[0] = d & 0x7; + b[0] = (d >> 3) & 0x7; + a[1] = (d >> 6) & 0x7; + b[1] = (d >> 9) & 0x7; + a[2] = (d >> 12) & 0x7; + b[2] = (d >> 15) & 0x7; + a[3] = (d >> 18) & 0x7; + b[3] = (d >> 21); + + r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; + r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; + r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; + r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; + + } + #elif Saber_type == 2 + uint32_t t, d, a[4], b[4]; + int i, j; + + for (i = 0; i < SABER_N / 4; i++) { + t = load_littleendian(buf + 4 * i, 4); + d = 0; + for (j = 0; j < 4; j++) { + d += (t >> j) & 0x11111111; + } + + a[0] = d & 0xf; + b[0] = (d >> 4) & 0xf; + a[1] = (d >> 8) & 0xf; + b[1] = (d >> 12) & 0xf; + a[2] = (d >> 16) & 0xf; + b[2] = (d >> 20) & 0xf; + a[3] = (d >> 24) & 0xf; + b[3] = (d >> 28); + + r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; + r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; + r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; + r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; + } + #elif Saber_type == 1 + uint64_t t, d, a[4], b[4]; + int i, j; + + for (i = 0; i < SABER_N / 4; i++) { + t = load_littleendian(buf + 5 * i, 5); + d = 0; + for (j = 0; j < 5; j++) { + d += (t >> j) & 0x0842108421UL; + } + + a[0] = d & 0x1f; + b[0] = (d >> 5) & 0x1f; + a[1] = (d >> 10) & 0x1f; + b[1] = (d >> 15) & 0x1f; + a[2] = (d >> 20) & 0x1f; + b[2] = (d >> 25) & 0x1f; + a[3] = (d >> 30) & 0x1f; + b[3] = (d >> 35); + + r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; + r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; + r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; + r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; + } + #else +#error "Unsupported SABER parameter." + #endif +} diff --git a/crypto_kem/saber/clean/cbd.h b/crypto_kem/saber/clean/cbd.h new file mode 100644 index 00000000..bfa975e6 --- /dev/null +++ b/crypto_kem/saber/clean/cbd.h @@ -0,0 +1,16 @@ +/*--------------------------------------------------------------------- +This file has been adapted from the implementation +(available at, Public Domain https://github.com/pq-crystals/kyber) +of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" +by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, +Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle +----------------------------------------------------------------------*/ +#ifndef CBD_H +#define CBD_H + +#include "poly.h" +#include + +void PQCLEAN_SABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf); + +#endif diff --git a/crypto_kem/saber/clean/kem.c b/crypto_kem/saber/clean/kem.c new file mode 100644 index 00000000..5ee4a856 --- /dev/null +++ b/crypto_kem/saber/clean/kem.c @@ -0,0 +1,78 @@ +#include "SABER_indcpa.h" +#include "SABER_params.h" +#include "fips202.h" +#include "randombytes.h" +#include "verify.h" +#include +#include +#include + +int PQCLEAN_SABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { + int i; + + PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(pk, sk); // sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk + for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { + sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; // sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk + } + + sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); // Then hash(pk) is appended. + + randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); // Remaining part of sk contains a pseudo-random number. + // This is output when check in crypto_kem_dec() fails. + return (0); +} + +int PQCLEAN_SABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { + + unsigned char kr[64]; // Will contain key, coins + unsigned char buf[64]; + + randombytes(buf, 32); + + sha3_256(buf, buf, 32); // BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output + + sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); // BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM + + sha3_512(kr, buf, 64); // kr[0:63] <-- Hash(buf[0:63]); + // K^ <-- kr[0:31] + // noiseseed (r) <-- kr[32:63]; + PQCLEAN_SABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); // buf[0:31] contains message; kr[32:63] contains randomness r; + + sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); + + sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k + + return (0); +} + + +int PQCLEAN_SABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { + int i, fail; + unsigned char cmp[SABER_BYTES_CCA_DEC]; + unsigned char buf[64]; + unsigned char kr[64]; // Will contain key, coins + const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; + + PQCLEAN_SABER_CLEAN_indcpa_kem_dec(sk, ct, buf); // buf[0:31] <-- message + + + // Multitarget countermeasure for coins + contributory KEM + for (i = 0; i < 32; i++) { // Save hash by storing h(pk) in sk + buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; + } + + sha3_512(kr, buf, 64); + + PQCLEAN_SABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, cmp); + + + fail = PQCLEAN_SABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); + + sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); // overwrite coins in kr with h(c) + + PQCLEAN_SABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); + + sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k + + return (0); +} diff --git a/crypto_kem/saber/clean/pack_unpack.c b/crypto_kem/saber/clean/pack_unpack.c new file mode 100644 index 00000000..fa210fcc --- /dev/null +++ b/crypto_kem/saber/clean/pack_unpack.c @@ -0,0 +1,242 @@ +#include "pack_unpack.h" + +void PQCLEAN_SABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { + + uint32_t j; + uint32_t offset_data, offset_byte; + + for (j = 0; j < SABER_N / 8; j++) { + offset_byte = 3 * j; + offset_data = 8 * j; + bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | ( (data[offset_data + 1] & 0x7) << 3 ) | ((data[offset_data + 2] & 0x3) << 6); + bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | ( (data[offset_data + 3] & 0x7) << 1 ) | ( (data[offset_data + 4] & 0x7) << 4 ) | (((data[offset_data + 5]) & 0x01) << 7); + bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | ( (data[offset_data + 6] & 0x7) << 2 ) | ( (data[offset_data + 7] & 0x7) << 5 ); + } +} + +void PQCLEAN_SABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { + + uint32_t j; + uint32_t offset_data, offset_byte; + + for (j = 0; j < SABER_N / 8; j++) { + offset_byte = 3 * j; + offset_data = 8 * j; + data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; + data[offset_data + 1] = ( (bytes[offset_byte + 0]) >> 3 ) & 0x07; + data[offset_data + 2] = ( ( (bytes[offset_byte + 0]) >> 6 ) & 0x03) | ( ( (bytes[offset_byte + 1]) & 0x01) << 2 ); + data[offset_data + 3] = ( (bytes[offset_byte + 1]) >> 1 ) & 0x07; + data[offset_data + 4] = ( (bytes[offset_byte + 1]) >> 4 ) & 0x07; + data[offset_data + 5] = ( ( (bytes[offset_byte + 1]) >> 7 ) & 0x01) | ( ( (bytes[offset_byte + 2]) & 0x03) << 1 ); + data[offset_data + 6] = ( (bytes[offset_byte + 2] >> 2) & 0x07 ); + data[offset_data + 7] = ( (bytes[offset_byte + 2] >> 5) & 0x07 ); + } + +} + +void PQCLEAN_SABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { + + uint32_t j; + uint32_t offset_data; + + for (j = 0; j < SABER_N / 2; j++) { + offset_data = 2 * j; + bytes[j] = (data[offset_data] & 0x0f) | ( (data[offset_data + 1] & 0x0f) << 4 ); + } +} + +void PQCLEAN_SABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { + + uint32_t j; + uint32_t offset_data; + + for (j = 0; j < SABER_N / 2; j++) { + offset_data = 2 * j; + ar[offset_data] = bytes[j] & 0x0f; + ar[offset_data + 1] = (bytes[j] >> 4) & 0x0f; + } +} + +void PQCLEAN_SABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { + uint32_t j; + uint32_t offset_data, offset_byte; + + for (j = 0; j < SABER_N / 4; j++) { + offset_byte = 3 * j; + offset_data = 4 * j; + bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | ((data[offset_data + 1] & 0x03) << 6); + bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | ((data[offset_data + 2] & 0x0f) << 4); + bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | ((data[offset_data + 3] & 0x3f) << 2); + } +} + + +void PQCLEAN_SABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data) { + uint32_t j; + uint32_t offset_data, offset_byte; + + for (j = 0; j < SABER_N / 4; j++) { + offset_byte = 3 * j; + offset_data = 4 * j; + data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; + data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | ((bytes[offset_byte + 1] & 0x0f) << 2) ; + data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | ((bytes[offset_byte + 2] & 0x03) << 4) ; + data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); + } + +} + + +static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { + uint32_t i, j; + uint32_t offset_data, offset_byte, offset_byte1; + + for (i = 0; i < SABER_K; i++) { + offset_byte1 = i * (SABER_N * 10) / 8; + for (j = 0; j < SABER_N / 4; j++) { + offset_byte = offset_byte1 + 5 * j; + offset_data = 4 * j; + bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); + + bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x03 ) | ((data[i][ offset_data + 1 ] & 0x3f) << 2); + + bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 6) & 0x0f ) | ( (data[i][ offset_data + 2 ] & 0x0f) << 4); + + bytes[offset_byte + 3] = ( (data[i][ offset_data + 2 ] >> 4) & 0x3f ) | ((data[i][ offset_data + 3 ] & 0x03) << 6); + + bytes[offset_byte + 4] = ( (data[i][ offset_data + 3 ] >> 2) & 0xff ); + } + } + + +} + +static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { + + uint32_t i, j; + uint32_t offset_data, offset_byte, offset_byte1; + + for (i = 0; i < SABER_K; i++) { + offset_byte1 = i * (SABER_N * 10) / 8; + for (j = 0; j < SABER_N / 4; j++) { + offset_byte = offset_byte1 + 5 * j; + offset_data = 4 * j; + data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[ offset_byte + 1 ] & 0x03) << 8); + data[i][offset_data + 1] = ( (bytes[ offset_byte + 1 ] >> 2) & (0x3f)) | ((bytes[ offset_byte + 2 ] & 0x0f) << 6); + data[i][offset_data + 2] = ( (bytes[ offset_byte + 2 ] >> 4) & (0x0f)) | ((bytes[ offset_byte + 3 ] & 0x3f) << 4); + data[i][offset_data + 3] = ( (bytes[ offset_byte + 3 ] >> 6) & (0x03)) | ((bytes[ offset_byte + 4 ] & 0xff) << 2); + + } + } + + +} + + + +static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { + + uint32_t i, j; + uint32_t offset_data, offset_byte, offset_byte1; + + for (i = 0; i < SABER_K; i++) { + offset_byte1 = i * (SABER_N * 13) / 8; + for (j = 0; j < SABER_N / 8; j++) { + offset_byte = offset_byte1 + 13 * j; + offset_data = 8 * j; + bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); + + bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x1f ) | ((data[i][ offset_data + 1 ] & 0x07) << 5); + + bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 3) & 0xff ); + + bytes[offset_byte + 3] = ( (data[i][ offset_data + 1 ] >> 11) & 0x03 ) | ((data[i][ offset_data + 2 ] & 0x3f) << 2); + + bytes[offset_byte + 4] = ( (data[i][ offset_data + 2 ] >> 6) & 0x7f ) | ( (data[i][ offset_data + 3 ] & 0x01) << 7 ); + + bytes[offset_byte + 5] = ( (data[i][ offset_data + 3 ] >> 1) & 0xff ); + + bytes[offset_byte + 6] = ( (data[i][ offset_data + 3 ] >> 9) & 0x0f ) | ( (data[i][ offset_data + 4 ] & 0x0f) << 4 ); + + bytes[offset_byte + 7] = ( (data[i][ offset_data + 4] >> 4) & 0xff ); + + bytes[offset_byte + 8] = ( (data[i][ offset_data + 4 ] >> 12) & 0x01 ) | ( (data[i][ offset_data + 5 ] & 0x7f) << 1 ); + + bytes[offset_byte + 9] = ( (data[i][ offset_data + 5 ] >> 7) & 0x3f ) | ( (data[i][ offset_data + 6 ] & 0x03) << 6 ); + + bytes[offset_byte + 10] = ( (data[i][ offset_data + 6 ] >> 2) & 0xff ); + + bytes[offset_byte + 11] = ( (data[i][ offset_data + 6 ] >> 10) & 0x07 ) | ( (data[i][ offset_data + 7 ] & 0x1f) << 3 ); + + bytes[offset_byte + 12] = ( (data[i][ offset_data + 7 ] >> 5) & 0xff ); + + } + } + + +} + +static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { + + uint32_t i, j; + uint32_t offset_data, offset_byte, offset_byte1; + + for (i = 0; i < SABER_K; i++) { + offset_byte1 = i * (SABER_N * 13) / 8; + for (j = 0; j < SABER_N / 8; j++) { + offset_byte = offset_byte1 + 13 * j; + offset_data = 8 * j; + data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); + data[i][offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); + data[i][offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); + data[i][offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); + data[i][offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); + data[i][offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); + data[i][offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); + data[i][offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); + } + } + + +} + +void PQCLEAN_SABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { //only BS2POLq no BS2POLp + + uint32_t j; + uint32_t offset_data, offset_byte; + + for (j = 0; j < SABER_N / 8; j++) { + offset_byte = 13 * j; + offset_data = 8 * j; + data[offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); + data[offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); + data[offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); + data[offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); + data[offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); + data[offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); + data[offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); + data[offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); + } + + +} + + +void PQCLEAN_SABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { + + if (modulus == 1024) { + POLVECp2BS(bytes, data); + } else if (modulus == 8192) { + POLVECq2BS(bytes, data); + } +} + +void PQCLEAN_SABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { + + if (modulus == 1024) { + BS2POLVECp(bytes, data); + } else if (modulus == 8192) { + BS2POLVECq(bytes, data); + } + +} diff --git a/crypto_kem/saber/clean/pack_unpack.h b/crypto_kem/saber/clean/pack_unpack.h new file mode 100644 index 00000000..2431a217 --- /dev/null +++ b/crypto_kem/saber/clean/pack_unpack.h @@ -0,0 +1,28 @@ +#ifndef PACK_UNPACK_H +#define PACK_UNPACK_H + +#include "SABER_params.h" +#include +#include + + +void PQCLEAN_SABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data); + +void PQCLEAN_SABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data); + +void PQCLEAN_SABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data); + +void PQCLEAN_SABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar); + +void PQCLEAN_SABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data); + +void PQCLEAN_SABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data); + + +void PQCLEAN_SABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]); + +void PQCLEAN_SABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); + +void PQCLEAN_SABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); + +#endif diff --git a/crypto_kem/saber/clean/poly.c b/crypto_kem/saber/clean/poly.c new file mode 100644 index 00000000..6004529d --- /dev/null +++ b/crypto_kem/saber/clean/poly.c @@ -0,0 +1,27 @@ +/*--------------------------------------------------------------------- +This file has been adapted from the implementation +(available at, Public Domain https://github.com/pq-crystals/kyber) +of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" +by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, +Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle +----------------------------------------------------------------------*/ +#include "api.h" +#include "cbd.h" +#include "fips202.h" +#include "poly.h" + +void PQCLEAN_SABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed) { + + + uint32_t i; + + int32_t buf_size = SABER_MU * SABER_N * SABER_K / 8; + + uint8_t buf[buf_size]; + + shake128(buf, buf_size, seed, SABER_NOISESEEDBYTES); + + for (i = 0; i < SABER_K; i++) { + PQCLEAN_SABER_CLEAN_cbd(r[i], buf + i * SABER_MU * SABER_N / 8); + } +} diff --git a/crypto_kem/saber/clean/poly.h b/crypto_kem/saber/clean/poly.h new file mode 100644 index 00000000..cfd7d9df --- /dev/null +++ b/crypto_kem/saber/clean/poly.h @@ -0,0 +1,25 @@ +/*--------------------------------------------------------------------- +This file has been adapted from the implementation +(available at, Public Domain https://github.com/pq-crystals/kyber) +of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" +by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, +Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle +----------------------------------------------------------------------*/ + +#ifndef POLY_H +#define POLY_H + +#include "SABER_params.h" +#include + +typedef struct { + uint16_t coeffs[SABER_N]; +} poly; + +typedef struct { + poly vec[SABER_K]; +} polyvec; + +void PQCLEAN_SABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed); + +#endif diff --git a/crypto_kem/saber/clean/poly_mul.c b/crypto_kem/saber/clean/poly_mul.c new file mode 100644 index 00000000..60ff22de --- /dev/null +++ b/crypto_kem/saber/clean/poly_mul.c @@ -0,0 +1,240 @@ +#include "poly_mul.h" +#include +#include +#include +#include + +#define SCHB_N 16 + +#define N_RES (SABER_N << 1) +#define N_SB (SABER_N >> 2) +#define N_SB_RES (2*N_SB-1) + +static void karatsuba_simple(const uint16_t *a_1, const uint16_t *b_1, uint16_t *result_final) { //uses 10 registers + + uint16_t N = 64; + uint16_t d01[N / 2 - 1]; + uint16_t d0123[N / 2 - 1]; + uint16_t d23[N / 2 - 1]; + uint16_t result_d01[N - 1]; + + int32_t i, j; + + memset(result_d01, 0, (N - 1)*sizeof(uint16_t)); + memset(d01, 0, (N / 2 - 1)*sizeof(uint16_t)); + memset(d0123, 0, (N / 2 - 1)*sizeof(uint16_t)); + memset(d23, 0, (N / 2 - 1)*sizeof(uint16_t)); + memset(result_final, 0, (2 * N - 1)*sizeof(uint16_t)); + + uint16_t acc1, acc2, acc3, acc4, acc5, acc6, acc7, acc8, acc9, acc10; + + + for (i = 0; i < N / 4; i++) { + acc1 = a_1[i]; //a0 + acc2 = a_1[i + N / 4]; //a1 + acc3 = a_1[i + 2 * N / 4]; //a2 + acc4 = a_1[i + 3 * N / 4]; //a3 + for (j = 0; j < N / 4; j++) { + + acc5 = b_1[j]; //b0 + acc6 = b_1[j + N / 4]; //b1 + + result_final[i + j + 0 * N / 4] = result_final[i + j + 0 * N / 4] + acc1 * acc5; + result_final[i + j + 2 * N / 4] = result_final[i + j + 2 * N / 4] + acc2 * acc6; + + acc7 = acc5 + acc6; //b01 + acc8 = acc1 + acc2; //a01 + d01[i + j] = d01[i + j] + acc7 * acc8; + //-------------------------------------------------------- + + acc7 = b_1[j + 2 * N / 4]; //b2 + acc8 = b_1[j + 3 * N / 4]; //b3 + result_final[i + j + 4 * N / 4] = result_final[i + j + 4 * N / 4] + acc7 * acc3; + + result_final[i + j + 6 * N / 4] = result_final[i + j + 6 * N / 4] + acc8 * acc4; + + acc9 = acc3 + acc4; + acc10 = acc7 + acc8; + d23[i + j] = d23[i + j] + acc9 * acc10; + //-------------------------------------------------------- + + acc5 = acc5 + acc7; //b02 + acc7 = acc1 + acc3; //a02 + result_d01[i + j + 0 * N / 4] = result_d01[i + j + 0 * N / 4] + acc5 * acc7; + + acc6 = acc6 + acc8; //b13 + acc8 = acc2 + acc4; + result_d01[i + j + 2 * N / 4] = result_d01[i + j + 2 * N / 4] + acc6 * acc8; + + acc5 = acc5 + acc6; + acc7 = acc7 + acc8; + d0123[i + j] = d0123[i + j] + acc5 * acc7; + } + } + +//------------------2nd last stage------------------------- + + for (i = 0; i < N / 2 - 1; i++) { + d0123[i] = d0123[i] - result_d01[i + 0 * N / 4] - result_d01[i + 2 * N / 4]; + d01[i] = d01[i] - result_final[i + 0 * N / 4] - result_final[i + 2 * N / 4]; + d23[i] = d23[i] - result_final[i + 4 * N / 4] - result_final[i + 6 * N / 4]; + } + + for (i = 0; i < N / 2 - 1; i++) { + result_d01[i + 1 * N / 4] = result_d01[i + 1 * N / 4] + d0123[i]; + result_final[i + 1 * N / 4] = result_final[i + 1 * N / 4] + d01[i]; + result_final[i + 5 * N / 4] = result_final[i + 5 * N / 4] + d23[i]; + } + +//------------Last stage--------------------------- + for (i = 0; i < N - 1; i++) { + result_d01[i] = result_d01[i] - result_final[i] - result_final[i + N]; + } + + for (i = 0; i < N - 1; i++) { + result_final[i + 1 * N / 2] = result_final[i + 1 * N / 2] + result_d01[i]; //-result_d0[i]-result_d1[i]; + } + +} + +static void toom_cook_4way (const uint16_t *a1, const uint16_t *b1, uint16_t *result) { + uint16_t inv3 = 43691, inv9 = 36409, inv15 = 61167; + + uint16_t aw1[N_SB], aw2[N_SB], aw3[N_SB], aw4[N_SB], aw5[N_SB], aw6[N_SB], aw7[N_SB]; + uint16_t bw1[N_SB], bw2[N_SB], bw3[N_SB], bw4[N_SB], bw5[N_SB], bw6[N_SB], bw7[N_SB]; + uint16_t w1[N_SB_RES] = {0}, w2[N_SB_RES] = {0}, w3[N_SB_RES] = {0}, w4[N_SB_RES] = {0}, + w5[N_SB_RES] = {0}, w6[N_SB_RES] = {0}, w7[N_SB_RES] = {0}; + uint16_t r0, r1, r2, r3, r4, r5, r6, r7; + uint16_t *A0, *A1, *A2, *A3, *B0, *B1, *B2, *B3; + A0 = (uint16_t *)a1; + A1 = (uint16_t *)&a1[N_SB]; + A2 = (uint16_t *)&a1[2 * N_SB]; + A3 = (uint16_t *)&a1[3 * N_SB]; + B0 = (uint16_t *)b1; + B1 = (uint16_t *)&b1[N_SB]; + B2 = (uint16_t *)&b1[2 * N_SB]; + B3 = (uint16_t *)&b1[3 * N_SB]; + + uint16_t *C; + C = result; + + int i, j; + +// EVALUATION + for (j = 0; j < N_SB; ++j) { + r0 = A0[j]; + r1 = A1[j]; + r2 = A2[j]; + r3 = A3[j]; + r4 = r0 + r2; + r5 = r1 + r3; + r6 = r4 + r5; + r7 = r4 - r5; + aw3[j] = r6; + aw4[j] = r7; + r4 = ((r0 << 2) + r2) << 1; + r5 = (r1 << 2) + r3; + r6 = r4 + r5; + r7 = r4 - r5; + aw5[j] = r6; + aw6[j] = r7; + r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; + aw2[j] = r4; + aw7[j] = r0; + aw1[j] = r3; + } + for (j = 0; j < N_SB; ++j) { + r0 = B0[j]; + r1 = B1[j]; + r2 = B2[j]; + r3 = B3[j]; + r4 = r0 + r2; + r5 = r1 + r3; + r6 = r4 + r5; + r7 = r4 - r5; + bw3[j] = r6; + bw4[j] = r7; + r4 = ((r0 << 2) + r2) << 1; + r5 = (r1 << 2) + r3; + r6 = r4 + r5; + r7 = r4 - r5; + bw5[j] = r6; + bw6[j] = r7; + r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; + bw2[j] = r4; + bw7[j] = r0; + bw1[j] = r3; + } + +// MULTIPLICATION + + karatsuba_simple(aw1, bw1, w1); + karatsuba_simple(aw2, bw2, w2); + karatsuba_simple(aw3, bw3, w3); + karatsuba_simple(aw4, bw4, w4); + karatsuba_simple(aw5, bw5, w5); + karatsuba_simple(aw6, bw6, w6); + karatsuba_simple(aw7, bw7, w7); + +// INTERPOLATION + for (i = 0; i < N_SB_RES; ++i) { + r0 = w1[i]; + r1 = w2[i]; + r2 = w3[i]; + r3 = w4[i]; + r4 = w5[i]; + r5 = w6[i]; + r6 = w7[i]; + + r1 = r1 + r4; + r5 = r5 - r4; + r3 = ((r3 - r2) >> 1); + r4 = r4 - r0; + r4 = r4 - (r6 << 6); + r4 = (r4 << 1) + r5; + r2 = r2 + r3; + r1 = r1 - (r2 << 6) - r2; + r2 = r2 - r6; + r2 = r2 - r0; + r1 = r1 + 45 * r2; + r4 = (((r4 - (r2 << 3)) * inv3) >> 3); + r5 = r5 + r1; + r1 = (((r1 + (r3 << 4)) * inv9) >> 1); + r3 = -(r3 + r1); + r5 = (((30 * r1 - r5) * inv15) >> 2); + r2 = r2 - r4; + r1 = r1 - r5; + + C[i] += r6; + C[i + 64] += r5; + C[i + 128] += r4; + C[i + 192] += r3; + C[i + 256] += r2; + C[i + 320] += r1; + C[i + 384] += r0; + } +} + +void PQCLEAN_SABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n) { + // Polynomial multiplication using the schoolbook method, c[x] = a[x]*b[x] + // SECURITY NOTE: TO BE USED FOR TESTING ONLY. + + uint32_t i; + + //-------------------normal multiplication----------------- + + uint16_t c[512]; + + for (i = 0; i < 512; i++) { + c[i] = 0; + } + + toom_cook_4way(a, b, c); + + //---------------reduction------- + for (i = n; i < 2 * n; i++) { + res[i - n] = (c[i - n] - c[i]) & (p - 1); + } + + +} diff --git a/crypto_kem/saber/clean/poly_mul.h b/crypto_kem/saber/clean/poly_mul.h new file mode 100644 index 00000000..f813be10 --- /dev/null +++ b/crypto_kem/saber/clean/poly_mul.h @@ -0,0 +1,9 @@ +#ifndef POLYMUL_H +#define POLYMUL_H + +#include "SABER_params.h" +#include + +void PQCLEAN_SABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n); + +#endif diff --git a/crypto_kem/saber/clean/verify.c b/crypto_kem/saber/clean/verify.c new file mode 100644 index 00000000..2c0f3e07 --- /dev/null +++ b/crypto_kem/saber/clean/verify.c @@ -0,0 +1,33 @@ +/*------------------------------------------------- +This file has been adapted from the implementation +(available at https://github.com/pq-crystals/kyber) of +"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" + by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, +Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle +----------------------------------------------------*/ +#include "verify.h" +#include + +/* returns 0 for equal strings, 1 for non-equal strings */ +int PQCLEAN_SABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len) { + uint64_t r; + size_t i; + r = 0; + + for (i = 0; i < len; i++) { + r |= a[i] ^ b[i]; + } + + r = (-r) >> 63; + return r; +} + +/* b = 1 means mov, b = 0 means don't mov*/ +void PQCLEAN_SABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b) { + size_t i; + + b = -b; + for (i = 0; i < len; i++) { + r[i] ^= b & (x[i] ^ r[i]); + } +} diff --git a/crypto_kem/saber/clean/verify.h b/crypto_kem/saber/clean/verify.h new file mode 100644 index 00000000..8c0450a4 --- /dev/null +++ b/crypto_kem/saber/clean/verify.h @@ -0,0 +1,19 @@ +/*------------------------------------------------- +This file has been adapted from the implementation +(available at https://github.com/pq-crystals/kyber) of +"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" + by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, +Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle +----------------------------------------------------*/ +#ifndef VERIFY_H +#define VERIFY_H + +#include + +/* returns 0 for equal strings, 1 for non-equal strings */ +int PQCLEAN_SABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len); + +/* b = 1 means mov, b = 0 means don't mov*/ +void PQCLEAN_SABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b); + +#endif