/* Implementation by Gilles Van Assche and Ronny Van Keer, hereby denoted as "the implementer". For more information, feedback or questions, please refer to our website: https://keccak.team/ To the extent possible under law, the implementer has waived all copyright and related or neighboring rights to the source code in this file. http://creativecommons.org/publicdomain/zero/1.0/ --- This file implements Keccak-p[1600]×4 in a PlSnP-compatible way. Please refer to PlSnP-documentation.h for more details. This implementation comes with KeccakP-1600-times4-SnP.h in the same folder. Please refer to LowLevel.build for the exact list of other files it must be combined with. */ #include #include #include #include #include #include "align.h" #include "KeccakP-1600-times4-SnP.h" #include "SIMD256-config.h" #include "brg_endian.h" #if (PLATFORM_BYTE_ORDER != IS_LITTLE_ENDIAN) #error Expecting a little-endian platform #endif typedef unsigned char UINT8; typedef unsigned long long int UINT64; typedef __m128i V128; typedef __m256i V256; //#define UseGatherScatter #define laneIndex(instanceIndex, lanePosition) ((lanePosition)*4 + instanceIndex) #if defined(KeccakP1600times4_useAVX2) #define ANDnu256(a, b) _mm256_andnot_si256(a, b) #define CONST256(a) _mm256_load_si256((const V256 *)&(a)) #define CONST256_64(a) _mm256_set1_epi64x(a) #define LOAD256(a) _mm256_load_si256((const V256 *)&(a)) #define LOAD256u(a) _mm256_loadu_si256((const V256 *)&(a)) #define LOAD4_64(a, b, c, d) _mm256_set_epi64x((UINT64)(a), (UINT64)(b), (UINT64)(c), (UINT64)(d)) #define ROL64in256(d, a, o) d = _mm256_or_si256(_mm256_slli_epi64(a, o), _mm256_srli_epi64(a, 64-(o))) #define ROL64in256_8(d, a) d = _mm256_shuffle_epi8(a, CONST256(rho8)) #define ROL64in256_56(d, a) d = _mm256_shuffle_epi8(a, CONST256(rho56)) static const UINT64 rho8[4] = {0x0605040302010007, 0x0E0D0C0B0A09080F, 0x1615141312111017, 0x1E1D1C1B1A19181F}; static const UINT64 rho56[4] = {0x0007060504030201, 0x080F0E0D0C0B0A09, 0x1017161514131211, 0x181F1E1D1C1B1A19}; #define STORE256(a, b) _mm256_store_si256((V256 *)&(a), b) #define STORE256u(a, b) _mm256_storeu_si256((V256 *)&(a), b) #define STORE2_128(ah, al, v) _mm256_storeu2_m128i(&(ah), &(al), v) #define XOR256(a, b) _mm256_xor_si256(a, b) #define XOReq256(a, b) a = _mm256_xor_si256(a, b) #define UNPACKL( a, b ) _mm256_unpacklo_epi64((a), (b)) #define UNPACKH( a, b ) _mm256_unpackhi_epi64((a), (b)) #define PERM128( a, b, c ) _mm256_permute2f128_si256((a), (b), c) #define SHUFFLE64( a, b, c ) _mm256_castpd_si256(_mm256_shuffle_pd(_mm256_castsi256_pd(a), _mm256_castsi256_pd(b), c)) #define UNINTLEAVE() lanesL01 = UNPACKL( lanes0, lanes1 ), \ lanesH01 = UNPACKH( lanes0, lanes1 ), \ lanesL23 = UNPACKL( lanes2, lanes3 ), \ lanesH23 = UNPACKH( lanes2, lanes3 ), \ lanes0 = PERM128( lanesL01, lanesL23, 0x20 ), \ lanes2 = PERM128( lanesL01, lanesL23, 0x31 ), \ lanes1 = PERM128( lanesH01, lanesH23, 0x20 ), \ lanes3 = PERM128( lanesH01, lanesH23, 0x31 ) #define INTLEAVE() lanesL01 = PERM128( lanes0, lanes2, 0x20 ), \ lanesH01 = PERM128( lanes1, lanes3, 0x20 ), \ lanesL23 = PERM128( lanes0, lanes2, 0x31 ), \ lanesH23 = PERM128( lanes1, lanes3, 0x31 ), \ lanes0 = SHUFFLE64( lanesL01, lanesH01, 0x00 ), \ lanes1 = SHUFFLE64( lanesL01, lanesH01, 0x0F ), \ lanes2 = SHUFFLE64( lanesL23, lanesH23, 0x00 ), \ lanes3 = SHUFFLE64( lanesL23, lanesH23, 0x0F ) #endif #define SnP_laneLengthInBytes 8 void KeccakP1600times4_InitializeAll(void *states) { memset(states, 0, KeccakP1600times4_statesSizeInBytes); } void KeccakP1600times4_AddBytes(void *states, unsigned int instanceIndex, const unsigned char *data, unsigned int offset, unsigned int length) { unsigned int sizeLeft = length; unsigned int lanePosition = offset/SnP_laneLengthInBytes; unsigned int offsetInLane = offset%SnP_laneLengthInBytes; const unsigned char *curData = data; UINT64 *statesAsLanes = (UINT64 *)states; if ((sizeLeft > 0) && (offsetInLane != 0)) { unsigned int bytesInLane = SnP_laneLengthInBytes - offsetInLane; UINT64 lane = 0; if (bytesInLane > sizeLeft) bytesInLane = sizeLeft; memcpy((unsigned char*)&lane + offsetInLane, curData, bytesInLane); statesAsLanes[laneIndex(instanceIndex, lanePosition)] ^= lane; sizeLeft -= bytesInLane; lanePosition++; curData += bytesInLane; } while(sizeLeft >= SnP_laneLengthInBytes) { UINT64 lane = *((const UINT64*)curData); statesAsLanes[laneIndex(instanceIndex, lanePosition)] ^= lane; sizeLeft -= SnP_laneLengthInBytes; lanePosition++; curData += SnP_laneLengthInBytes; } if (sizeLeft > 0) { UINT64 lane = 0; memcpy(&lane, curData, sizeLeft); statesAsLanes[laneIndex(instanceIndex, lanePosition)] ^= lane; } } void KeccakP1600times4_AddLanesAll(void *states, const unsigned char *data, unsigned int laneCount, unsigned int laneOffset) { V256 *stateAsLanes = (V256 *)states; unsigned int i; const UINT64 *curData0 = (const UINT64 *)data; const UINT64 *curData1 = (const UINT64 *)(data+laneOffset*SnP_laneLengthInBytes); const UINT64 *curData2 = (const UINT64 *)(data+laneOffset*2*SnP_laneLengthInBytes); const UINT64 *curData3 = (const UINT64 *)(data+laneOffset*3*SnP_laneLengthInBytes); V256 lanes0, lanes1, lanes2, lanes3, lanesL01, lanesL23, lanesH01, lanesH23; #define Xor_In( argIndex ) XOReq256(stateAsLanes[argIndex], LOAD4_64(curData3[argIndex], curData2[argIndex], curData1[argIndex], curData0[argIndex])) #define Xor_In4( argIndex ) lanes0 = LOAD256u( curData0[argIndex]),\ lanes1 = LOAD256u( curData1[argIndex]),\ lanes2 = LOAD256u( curData2[argIndex]),\ lanes3 = LOAD256u( curData3[argIndex]),\ INTLEAVE(),\ XOReq256( stateAsLanes[argIndex+0], lanes0 ),\ XOReq256( stateAsLanes[argIndex+1], lanes1 ),\ XOReq256( stateAsLanes[argIndex+2], lanes2 ),\ XOReq256( stateAsLanes[argIndex+3], lanes3 ) if ( laneCount >= 16 ) { Xor_In4( 0 ); Xor_In4( 4 ); Xor_In4( 8 ); Xor_In4( 12 ); if ( laneCount >= 20 ) { Xor_In4( 16 ); for(i=20; i 0) && (offsetInLane != 0)) { unsigned int bytesInLane = SnP_laneLengthInBytes - offsetInLane; if (bytesInLane > sizeLeft) bytesInLane = sizeLeft; memcpy( ((unsigned char *)&statesAsLanes[laneIndex(instanceIndex, lanePosition)]) + offsetInLane, curData, bytesInLane); sizeLeft -= bytesInLane; lanePosition++; curData += bytesInLane; } while(sizeLeft >= SnP_laneLengthInBytes) { UINT64 lane = *((const UINT64*)curData); statesAsLanes[laneIndex(instanceIndex, lanePosition)] = lane; sizeLeft -= SnP_laneLengthInBytes; lanePosition++; curData += SnP_laneLengthInBytes; } if (sizeLeft > 0) { memcpy(&statesAsLanes[laneIndex(instanceIndex, lanePosition)], curData, sizeLeft); } } void KeccakP1600times4_OverwriteLanesAll(void *states, const unsigned char *data, unsigned int laneCount, unsigned int laneOffset) { V256 *stateAsLanes = (V256 *)states; unsigned int i; const UINT64 *curData0 = (const UINT64 *)data; const UINT64 *curData1 = (const UINT64 *)(data+laneOffset*SnP_laneLengthInBytes); const UINT64 *curData2 = (const UINT64 *)(data+laneOffset*2*SnP_laneLengthInBytes); const UINT64 *curData3 = (const UINT64 *)(data+laneOffset*3*SnP_laneLengthInBytes); V256 lanes0, lanes1, lanes2, lanes3, lanesL01, lanesL23, lanesH01, lanesH23; #define OverWr( argIndex ) STORE256(stateAsLanes[argIndex], LOAD4_64(curData3[argIndex], curData2[argIndex], curData1[argIndex], curData0[argIndex])) #define OverWr4( argIndex ) lanes0 = LOAD256u( curData0[argIndex]),\ lanes1 = LOAD256u( curData1[argIndex]),\ lanes2 = LOAD256u( curData2[argIndex]),\ lanes3 = LOAD256u( curData3[argIndex]),\ INTLEAVE(),\ STORE256( stateAsLanes[argIndex+0], lanes0 ),\ STORE256( stateAsLanes[argIndex+1], lanes1 ),\ STORE256( stateAsLanes[argIndex+2], lanes2 ),\ STORE256( stateAsLanes[argIndex+3], lanes3 ) if ( laneCount >= 16 ) { OverWr4( 0 ); OverWr4( 4 ); OverWr4( 8 ); OverWr4( 12 ); if ( laneCount >= 20 ) { OverWr4( 16 ); for(i=20; i= SnP_laneLengthInBytes) { statesAsLanes[laneIndex(instanceIndex, lanePosition)] = 0; sizeLeft -= SnP_laneLengthInBytes; lanePosition++; } if (sizeLeft > 0) { memset(&statesAsLanes[laneIndex(instanceIndex, lanePosition)], 0, sizeLeft); } } void KeccakP1600times4_ExtractBytes(const void *states, unsigned int instanceIndex, unsigned char *data, unsigned int offset, unsigned int length) { unsigned int sizeLeft = length; unsigned int lanePosition = offset/SnP_laneLengthInBytes; unsigned int offsetInLane = offset%SnP_laneLengthInBytes; unsigned char *curData = data; const UINT64 *statesAsLanes = (const UINT64 *)states; if ((sizeLeft > 0) && (offsetInLane != 0)) { unsigned int bytesInLane = SnP_laneLengthInBytes - offsetInLane; if (bytesInLane > sizeLeft) bytesInLane = sizeLeft; memcpy( curData, ((unsigned char *)&statesAsLanes[laneIndex(instanceIndex, lanePosition)]) + offsetInLane, bytesInLane); sizeLeft -= bytesInLane; lanePosition++; curData += bytesInLane; } while(sizeLeft >= SnP_laneLengthInBytes) { *(UINT64*)curData = statesAsLanes[laneIndex(instanceIndex, lanePosition)]; sizeLeft -= SnP_laneLengthInBytes; lanePosition++; curData += SnP_laneLengthInBytes; } if (sizeLeft > 0) { memcpy( curData, &statesAsLanes[laneIndex(instanceIndex, lanePosition)], sizeLeft); } } void KeccakP1600times4_ExtractLanesAll(const void *states, unsigned char *data, unsigned int laneCount, unsigned int laneOffset) { UINT64 *curData0 = (UINT64 *)data; UINT64 *curData1 = (UINT64 *)(data+laneOffset*1*SnP_laneLengthInBytes); UINT64 *curData2 = (UINT64 *)(data+laneOffset*2*SnP_laneLengthInBytes); UINT64 *curData3 = (UINT64 *)(data+laneOffset*3*SnP_laneLengthInBytes); const V256 *stateAsLanes = (const V256 *)states; const UINT64 *stateAsLanes64 = (const UINT64*)states; V256 lanes0, lanes1, lanes2, lanes3, lanesL01, lanesL23, lanesH01, lanesH23; unsigned int i; #define Extr( argIndex ) curData0[argIndex] = stateAsLanes64[4*(argIndex)], \ curData1[argIndex] = stateAsLanes64[4*(argIndex)+1], \ curData2[argIndex] = stateAsLanes64[4*(argIndex)+2], \ curData3[argIndex] = stateAsLanes64[4*(argIndex)+3] #define Extr4( argIndex ) lanes0 = LOAD256( stateAsLanes[argIndex+0] ), \ lanes1 = LOAD256( stateAsLanes[argIndex+1] ), \ lanes2 = LOAD256( stateAsLanes[argIndex+2] ), \ lanes3 = LOAD256( stateAsLanes[argIndex+3] ), \ UNINTLEAVE(), \ STORE256u( curData0[argIndex], lanes0 ), \ STORE256u( curData1[argIndex], lanes1 ), \ STORE256u( curData2[argIndex], lanes2 ), \ STORE256u( curData3[argIndex], lanes3 ) if ( laneCount >= 16 ) { Extr4( 0 ); Extr4( 4 ); Extr4( 8 ); Extr4( 12 ); if ( laneCount >= 20 ) { Extr4( 16 ); for(i=20; i 0) && (offsetInLane != 0)) { unsigned int bytesInLane = SnP_laneLengthInBytes - offsetInLane; UINT64 lane = statesAsLanes[laneIndex(instanceIndex, lanePosition)] >> (8 * offsetInLane); if (bytesInLane > sizeLeft) bytesInLane = sizeLeft; sizeLeft -= bytesInLane; do { *(curOutput++) = *(curInput++) ^ (unsigned char)lane; lane >>= 8; } while ( --bytesInLane != 0); lanePosition++; } while(sizeLeft >= SnP_laneLengthInBytes) { *((UINT64*)curOutput) = *((UINT64*)curInput) ^ statesAsLanes[laneIndex(instanceIndex, lanePosition)]; sizeLeft -= SnP_laneLengthInBytes; lanePosition++; curInput += SnP_laneLengthInBytes; curOutput += SnP_laneLengthInBytes; } if (sizeLeft != 0) { UINT64 lane = statesAsLanes[laneIndex(instanceIndex, lanePosition)]; do { *(curOutput++) = *(curInput++) ^ (unsigned char)lane; lane >>= 8; } while ( --sizeLeft != 0); } } void KeccakP1600times4_ExtractAndAddLanesAll(const void *states, const unsigned char *input, unsigned char *output, unsigned int laneCount, unsigned int laneOffset) { const UINT64 *curInput0 = (UINT64 *)input; const UINT64 *curInput1 = (UINT64 *)(input+laneOffset*1*SnP_laneLengthInBytes); const UINT64 *curInput2 = (UINT64 *)(input+laneOffset*2*SnP_laneLengthInBytes); const UINT64 *curInput3 = (UINT64 *)(input+laneOffset*3*SnP_laneLengthInBytes); UINT64 *curOutput0 = (UINT64 *)output; UINT64 *curOutput1 = (UINT64 *)(output+laneOffset*1*SnP_laneLengthInBytes); UINT64 *curOutput2 = (UINT64 *)(output+laneOffset*2*SnP_laneLengthInBytes); UINT64 *curOutput3 = (UINT64 *)(output+laneOffset*3*SnP_laneLengthInBytes); const V256 *stateAsLanes = (const V256 *)states; const UINT64 *stateAsLanes64 = (const UINT64*)states; V256 lanes0, lanes1, lanes2, lanes3, lanesL01, lanesL23, lanesH01, lanesH23; unsigned int i; #define ExtrXor( argIndex ) \ curOutput0[argIndex] = curInput0[argIndex] ^ stateAsLanes64[4*(argIndex)],\ curOutput1[argIndex] = curInput1[argIndex] ^ stateAsLanes64[4*(argIndex)+1],\ curOutput2[argIndex] = curInput2[argIndex] ^ stateAsLanes64[4*(argIndex)+2],\ curOutput3[argIndex] = curInput3[argIndex] ^ stateAsLanes64[4*(argIndex)+3] #define ExtrXor4( argIndex ) \ lanes0 = LOAD256( stateAsLanes[argIndex+0] ),\ lanes1 = LOAD256( stateAsLanes[argIndex+1] ),\ lanes2 = LOAD256( stateAsLanes[argIndex+2] ),\ lanes3 = LOAD256( stateAsLanes[argIndex+3] ),\ UNINTLEAVE(),\ lanesL01 = LOAD256u( curInput0[argIndex]),\ lanesH01 = LOAD256u( curInput1[argIndex]),\ lanesL23 = LOAD256u( curInput2[argIndex]),\ lanesH23 = LOAD256u( curInput3[argIndex]),\ XOReq256( lanes0, lanesL01 ),\ XOReq256( lanes1, lanesH01 ),\ XOReq256( lanes2, lanesL23 ),\ XOReq256( lanes3, lanesH23 ),\ STORE256u( curOutput0[argIndex], lanes0 ),\ STORE256u( curOutput1[argIndex], lanes1 ),\ STORE256u( curOutput2[argIndex], lanes2 ),\ STORE256u( curOutput3[argIndex], lanes3 ) if ( laneCount >= 16 ) { ExtrXor4( 0 ); ExtrXor4( 4 ); ExtrXor4( 8 ); ExtrXor4( 12 ); if ( laneCount >= 20 ) { ExtrXor4( 16 ); for(i=20; i= (laneOffsetParallel*3 + laneCount)*8) { V256 *stateAsLanes = (V256 *)states; V256 lanes0, lanes1, lanes2, lanes3, lanesL01, lanesL23, lanesH01, lanesH23; #define Xor_In( argIndex ) \ XOReq256(stateAsLanes[argIndex], LOAD4_64(curData3[argIndex], curData2[argIndex], curData1[argIndex], curData0[argIndex])) #define Xor_In4( argIndex ) \ lanes0 = LOAD256u( curData0[argIndex]),\ lanes1 = LOAD256u( curData1[argIndex]),\ lanes2 = LOAD256u( curData2[argIndex]),\ lanes3 = LOAD256u( curData3[argIndex]),\ INTLEAVE(),\ XOReq256( stateAsLanes[argIndex+0], lanes0 ),\ XOReq256( stateAsLanes[argIndex+1], lanes1 ),\ XOReq256( stateAsLanes[argIndex+2], lanes2 ),\ XOReq256( stateAsLanes[argIndex+3], lanes3 ) Xor_In4( 0 ); Xor_In4( 4 ); Xor_In4( 8 ); Xor_In4( 12 ); Xor_In4( 16 ); Xor_In( 20 ); #undef Xor_In #undef Xor_In4 KeccakP1600times4_PermuteAll_24rounds(states); curData0 += laneOffsetSerial; curData1 += laneOffsetSerial; curData2 += laneOffsetSerial; curData3 += laneOffsetSerial; dataByteLen -= laneOffsetSerial*8; } return (const unsigned char *)curData0 - dataStart; #else // unsigned int i; const unsigned char *dataStart = data; const UINT64 *curData0 = (const UINT64 *)data; const UINT64 *curData1 = (const UINT64 *)(data+laneOffsetParallel*1*SnP_laneLengthInBytes); const UINT64 *curData2 = (const UINT64 *)(data+laneOffsetParallel*2*SnP_laneLengthInBytes); const UINT64 *curData3 = (const UINT64 *)(data+laneOffsetParallel*3*SnP_laneLengthInBytes); V256 *statesAsLanes = (V256 *)states; declareABCDE copyFromState(A, statesAsLanes) while(dataByteLen >= (laneOffsetParallel*3 + laneCount)*8) { #define XOR_In( Xxx, argIndex ) \ XOReq256(Xxx, LOAD4_64(curData3[argIndex], curData2[argIndex], curData1[argIndex], curData0[argIndex])) XOR_In( Aba, 0 ); XOR_In( Abe, 1 ); XOR_In( Abi, 2 ); XOR_In( Abo, 3 ); XOR_In( Abu, 4 ); XOR_In( Aga, 5 ); XOR_In( Age, 6 ); XOR_In( Agi, 7 ); XOR_In( Ago, 8 ); XOR_In( Agu, 9 ); XOR_In( Aka, 10 ); XOR_In( Ake, 11 ); XOR_In( Aki, 12 ); XOR_In( Ako, 13 ); XOR_In( Aku, 14 ); XOR_In( Ama, 15 ); XOR_In( Ame, 16 ); XOR_In( Ami, 17 ); XOR_In( Amo, 18 ); XOR_In( Amu, 19 ); XOR_In( Asa, 20 ); #undef XOR_In rounds24 curData0 += laneOffsetSerial; curData1 += laneOffsetSerial; curData2 += laneOffsetSerial; curData3 += laneOffsetSerial; dataByteLen -= laneOffsetSerial*8; } copyToState(statesAsLanes, A) return (const unsigned char *)curData0 - dataStart; #endif } else { // unsigned int i; const unsigned char *dataStart = data; while(dataByteLen >= (laneOffsetParallel*3 + laneCount)*8) { KeccakP1600times4_AddLanesAll(states, data, laneCount, laneOffsetParallel); KeccakP1600times4_PermuteAll_24rounds(states); data += laneOffsetSerial*8; dataByteLen -= laneOffsetSerial*8; } return data - dataStart; } } size_t KeccakP1600times4_12rounds_FastLoop_Absorb(void *states, unsigned int laneCount, unsigned int laneOffsetParallel, unsigned int laneOffsetSerial, const unsigned char *data, size_t dataByteLen) { if (laneCount == 21) { #if 0 const unsigned char *dataStart = data; const UINT64 *curData0 = (const UINT64 *)data; const UINT64 *curData1 = (const UINT64 *)(data+laneOffsetParallel*1*SnP_laneLengthInBytes); const UINT64 *curData2 = (const UINT64 *)(data+laneOffsetParallel*2*SnP_laneLengthInBytes); const UINT64 *curData3 = (const UINT64 *)(data+laneOffsetParallel*3*SnP_laneLengthInBytes); while(dataByteLen >= (laneOffsetParallel*3 + laneCount)*8) { V256 *stateAsLanes = states; V256 lanes0, lanes1, lanes2, lanes3, lanesL01, lanesL23, lanesH01, lanesH23; #define Xor_In( argIndex ) \ XOReq256(stateAsLanes[argIndex], LOAD4_64(curData3[argIndex], curData2[argIndex], curData1[argIndex], curData0[argIndex])) #define Xor_In4( argIndex ) \ lanes0 = LOAD256u( curData0[argIndex]),\ lanes1 = LOAD256u( curData1[argIndex]),\ lanes2 = LOAD256u( curData2[argIndex]),\ lanes3 = LOAD256u( curData3[argIndex]),\ INTLEAVE(),\ XOReq256( stateAsLanes[argIndex+0], lanes0 ),\ XOReq256( stateAsLanes[argIndex+1], lanes1 ),\ XOReq256( stateAsLanes[argIndex+2], lanes2 ),\ XOReq256( stateAsLanes[argIndex+3], lanes3 ) Xor_In4( 0 ); Xor_In4( 4 ); Xor_In4( 8 ); Xor_In4( 12 ); Xor_In4( 16 ); Xor_In( 20 ); #undef Xor_In #undef Xor_In4 KeccakP1600times4_PermuteAll_12rounds(states); curData0 += laneOffsetSerial; curData1 += laneOffsetSerial; curData2 += laneOffsetSerial; curData3 += laneOffsetSerial; dataByteLen -= laneOffsetSerial*8; } return (const unsigned char *)curData0 - dataStart; #else // unsigned int i; const unsigned char *dataStart = data; const UINT64 *curData0 = (const UINT64 *)data; const UINT64 *curData1 = (const UINT64 *)(data+laneOffsetParallel*1*SnP_laneLengthInBytes); const UINT64 *curData2 = (const UINT64 *)(data+laneOffsetParallel*2*SnP_laneLengthInBytes); const UINT64 *curData3 = (const UINT64 *)(data+laneOffsetParallel*3*SnP_laneLengthInBytes); V256 *statesAsLanes = states; declareABCDE copyFromState(A, statesAsLanes) while(dataByteLen >= (laneOffsetParallel*3 + laneCount)*8) { #define XOR_In( Xxx, argIndex ) \ XOReq256(Xxx, LOAD4_64(curData3[argIndex], curData2[argIndex], curData1[argIndex], curData0[argIndex])) XOR_In( Aba, 0 ); XOR_In( Abe, 1 ); XOR_In( Abi, 2 ); XOR_In( Abo, 3 ); XOR_In( Abu, 4 ); XOR_In( Aga, 5 ); XOR_In( Age, 6 ); XOR_In( Agi, 7 ); XOR_In( Ago, 8 ); XOR_In( Agu, 9 ); XOR_In( Aka, 10 ); XOR_In( Ake, 11 ); XOR_In( Aki, 12 ); XOR_In( Ako, 13 ); XOR_In( Aku, 14 ); XOR_In( Ama, 15 ); XOR_In( Ame, 16 ); XOR_In( Ami, 17 ); XOR_In( Amo, 18 ); XOR_In( Amu, 19 ); XOR_In( Asa, 20 ); #undef XOR_In rounds12 curData0 += laneOffsetSerial; curData1 += laneOffsetSerial; curData2 += laneOffsetSerial; curData3 += laneOffsetSerial; dataByteLen -= laneOffsetSerial*8; } copyToState(statesAsLanes, A) return (const unsigned char *)curData0 - dataStart; #endif } else { // unsigned int i; const unsigned char *dataStart = data; while(dataByteLen >= (laneOffsetParallel*3 + laneCount)*8) { KeccakP1600times4_AddLanesAll(states, data, laneCount, laneOffsetParallel); KeccakP1600times4_PermuteAll_12rounds(states); data += laneOffsetSerial*8; dataByteLen -= laneOffsetSerial*8; } return data - dataStart; } }