/* This file is for the Gao-Mateer FFT sse http://www.math.clemson.edu/~sgao/papers/GM10.pdf */ #include "fft.h" #include "vec.h" /* input: in, polynomial in bitsliced form */ /* output: in, result of applying the radix conversions on in */ static void radix_conversions(uint64_t *in) { int i, j, k; const uint64_t mask[5][2] = { {0x8888888888888888, 0x4444444444444444}, {0xC0C0C0C0C0C0C0C0, 0x3030303030303030}, {0xF000F000F000F000, 0x0F000F000F000F00}, {0xFF000000FF000000, 0x00FF000000FF0000}, {0xFFFF000000000000, 0x0000FFFF00000000} }; const uint64_t s[5][GFBITS] = { #include "scalars.inc" }; // for (j = 0; j <= 4; j++) { for (i = 0; i < GFBITS; i++) { for (k = 4; k >= j; k--) { in[i] ^= (in[i] & mask[k][0]) >> (1 << k); in[i] ^= (in[i] & mask[k][1]) >> (1 << k); } } PQCLEAN_MCELIECE348864F_AVX_vec_mul(in, in, s[j]); // scaling } } /* input: in, result of applying the radix conversions to the input polynomial */ /* output: out, evaluation results (by applying the FFT butterflies) */ static void butterflies(vec256 out[][ GFBITS ], const uint64_t *in) { int i, j, k, s, b; uint64_t t0, t1, t2, t3; const vec256 consts[ 17 ][ GFBITS ] = { #include "consts.inc" }; uint64_t consts_ptr = 0; const unsigned char reversal[64] = { 0, 32, 16, 48, 8, 40, 24, 56, 4, 36, 20, 52, 12, 44, 28, 60, 2, 34, 18, 50, 10, 42, 26, 58, 6, 38, 22, 54, 14, 46, 30, 62, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63 }; // boradcast vec256 tmp256[ GFBITS ]; vec256 x[ GFBITS ], y[ GFBITS ]; for (j = 0; j < 64; j += 8) { for (i = 0; i < GFBITS; i++) { t0 = (in[i] >> reversal[j + 0]) & 1; t0 = -t0; t1 = (in[i] >> reversal[j + 2]) & 1; t1 = -t1; t2 = (in[i] >> reversal[j + 4]) & 1; t2 = -t2; t3 = (in[i] >> reversal[j + 6]) & 1; t3 = -t3; out[j / 4 + 0][i] = PQCLEAN_MCELIECE348864F_AVX_vec256_set4x(t0, t1, t2, t3); t0 = (in[i] >> reversal[j + 1]) & 1; t0 = -t0; t1 = (in[i] >> reversal[j + 3]) & 1; t1 = -t1; t2 = (in[i] >> reversal[j + 5]) & 1; t2 = -t2; t3 = (in[i] >> reversal[j + 7]) & 1; t3 = -t3; out[j / 4 + 1][i] = PQCLEAN_MCELIECE348864F_AVX_vec256_set4x(t0, t1, t2, t3); } } // for (i = 0; i < 16; i += 2) { PQCLEAN_MCELIECE348864F_AVX_vec256_mul(tmp256, out[i + 1], consts[ 0 ]); for (b = 0; b < GFBITS; b++) { out[i + 0][b] ^= tmp256[b]; } for (b = 0; b < GFBITS; b++) { out[i + 1][b] ^= out[i + 0][b]; } } for (i = 0; i < 16; i += 2) { for (b = 0; b < GFBITS; b++) { x[b] = PQCLEAN_MCELIECE348864F_AVX_vec256_unpack_low_2x(out[i + 0][b], out[i + 1][b]); } for (b = 0; b < GFBITS; b++) { y[b] = PQCLEAN_MCELIECE348864F_AVX_vec256_unpack_high_2x(out[i + 0][b], out[i + 1][b]); } PQCLEAN_MCELIECE348864F_AVX_vec256_mul(tmp256, y, consts[ 1 ]); for (b = 0; b < GFBITS; b++) { x[b] ^= tmp256[b]; } for (b = 0; b < GFBITS; b++) { y[b] ^= x[b]; } for (b = 0; b < GFBITS; b++) { out[i + 0][b] = PQCLEAN_MCELIECE348864F_AVX_vec256_unpack_low(x[b], y[b]); } for (b = 0; b < GFBITS; b++) { out[i + 1][b] = PQCLEAN_MCELIECE348864F_AVX_vec256_unpack_high(x[b], y[b]); } } consts_ptr = 2; for (i = 0; i <= 3; i++) { s = 1 << i; for (j = 0; j < 16; j += 2 * s) { for (k = j; k < j + s; k++) { PQCLEAN_MCELIECE348864F_AVX_vec256_mul(tmp256, out[k + s], consts[ consts_ptr + (k - j) ]); for (b = 0; b < GFBITS; b++) { out[k][b] ^= tmp256[b]; } for (b = 0; b < GFBITS; b++) { out[k + s][b] ^= out[k][b]; } } } consts_ptr += s; } // adding the part contributed by x^64 vec256 powers[16][GFBITS] = { #include "powers.inc" }; for (i = 0; i < 16; i++) { for (b = 0; b < GFBITS; b++) { out[i][b] = PQCLEAN_MCELIECE348864F_AVX_vec256_xor(out[i][b], powers[i][b]); } } } void PQCLEAN_MCELIECE348864F_AVX_fft(vec256 out[][ GFBITS ], uint64_t *in) { radix_conversions(in); butterflies(out, in); }