/* This file is for public-key generation */ #include "pk_gen.h" #include "benes.h" #include "controlbits.h" #include "fft.h" #include "params.h" #include "util.h" #include static void de_bitslicing(uint64_t *out, vec128 in[][GFBITS]) { int i, j, r; uint64_t u = 0; for (i = 0; i < (1 << GFBITS); i++) { out[i] = 0 ; } for (i = 0; i < 64; i++) { for (j = GFBITS - 1; j >= 0; j--) { u = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(in[i][j], 0); for (r = 0; r < 64; r++) { out[i * 128 + 0 * 64 + r] <<= 1; out[i * 128 + 0 * 64 + r] |= (u >> r) & 1; } u = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(in[i][j], 1); for (r = 0; r < 64; r++) { out[i * 128 + 1 * 64 + r] <<= 1; out[i * 128 + 1 * 64 + r] |= (u >> r) & 1; } } } } static void to_bitslicing_2x(vec128 out0[][GFBITS], vec128 out1[][GFBITS], const uint64_t *in) { int i, j, k, r; uint64_t u[2] = {0}; for (i = 0; i < 64; i++) { for (j = GFBITS - 1; j >= 0; j--) { for (k = 0; k < 2; k++) { for (r = 63; r >= 0; r--) { u[k] <<= 1; u[k] |= (in[i * 128 + k * 64 + r] >> (j + GFBITS)) & 1; } } out1[i][j] = PQCLEAN_MCELIECE8192128_SSE_vec128_set2x(u[0], u[1]); } for (j = GFBITS - 1; j >= 0; j--) { for (k = 0; k < 2; k++) { for (r = 63; r >= 0; r--) { u[k] <<= 1; u[k] |= (in[i * 128 + k * 64 + r] >> j) & 1; } } out0[i][GFBITS - 1 - j] = PQCLEAN_MCELIECE8192128_SSE_vec128_set2x(u[0], u[1]); } } } int PQCLEAN_MCELIECE8192128_SSE_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) { int i, j, k; int row, c, d; uint64_t mat[ GFBITS * SYS_T ][ 128 ]; uint64_t ops[ GFBITS * SYS_T ][ GFBITS * SYS_T / 64 ]; uint64_t mask; vec128 irr_int[ GFBITS ]; vec128 consts[ 64 ][ GFBITS ]; vec128 eval[ 64 ][ GFBITS ]; vec128 prod[ 64 ][ GFBITS ]; vec128 tmp[ GFBITS ]; uint64_t list[1 << GFBITS]; uint64_t one_row[ (SYS_N - GFBITS * SYS_T) / 64 ]; // compute the inverses PQCLEAN_MCELIECE8192128_SSE_irr_load(irr_int, sk); PQCLEAN_MCELIECE8192128_SSE_fft(eval, irr_int); PQCLEAN_MCELIECE8192128_SSE_vec128_copy(prod[0], eval[0]); for (i = 1; i < 64; i++) { PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[i], prod[i - 1], eval[i]); } PQCLEAN_MCELIECE8192128_SSE_vec128_inv(tmp, prod[63]); for (i = 62; i >= 0; i--) { PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[i + 1], prod[i], tmp); PQCLEAN_MCELIECE8192128_SSE_vec128_mul(tmp, tmp, eval[i + 1]); } PQCLEAN_MCELIECE8192128_SSE_vec128_copy(prod[0], tmp); // fill matrix de_bitslicing(list, prod); for (i = 0; i < (1 << GFBITS); i++) { list[i] <<= GFBITS; list[i] |= i; list[i] |= ((uint64_t) perm[i]) << 31; } PQCLEAN_MCELIECE8192128_SSE_sort_63b(1 << GFBITS, list); to_bitslicing_2x(consts, prod, list); for (i = 0; i < (1 << GFBITS); i++) { perm[i] = list[i] & GFMASK; } for (j = 0; j < (GFBITS * SYS_T + 127) / 128; j++) { for (k = 0; k < GFBITS; k++) { mat[ k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0); mat[ k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1); } } for (i = 1; i < SYS_T; i++) { for (j = 0; j < (GFBITS * SYS_T + 127) / 128; j++) { PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) { mat[ i * GFBITS + k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0); mat[ i * GFBITS + k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1); } } } // gaussian elimination to obtain an upper triangular matrix // and keep track of the operations in ops for (i = 0; i < (GFBITS * SYS_T) / 64; i++) { for (j = 0; j < 64; j++) { row = i * 64 + j; for (c = 0; c < (GFBITS * SYS_T) / 64; c++) { ops[ row ][ c ] = 0; } } } for (i = 0; i < (GFBITS * SYS_T) / 64; i++) { for (j = 0; j < 64; j++) { row = i * 64 + j; ops[ row ][ i ] = 1; ops[ row ][ i ] <<= j; } } for (i = 0; i < (GFBITS * SYS_T) / 64; i++) { for (j = 0; j < 64; j++) { row = i * 64 + j; for (k = row + 1; k < GFBITS * SYS_T; k++) { mask = mat[ row ][ i ] >> j; mask &= 1; mask -= 1; for (c = 0; c < (GFBITS * SYS_T) / 64; c++) { mat[ row ][ c ] ^= mat[ k ][ c ] & mask; ops[ row ][ c ] ^= ops[ k ][ c ] & mask; } } if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic return -1; } for (k = row + 1; k < GFBITS * SYS_T; k++) { mask = mat[ k ][ i ] >> j; mask &= 1; mask = -mask; for (c = 0; c < (GFBITS * SYS_T) / 64; c++) { mat[ k ][ c ] ^= mat[ row ][ c ] & mask; ops[ k ][ c ] ^= ops[ row ][ c ] & mask; } } } } // computing the lineaer map required to obatin the systematic form for (i = (GFBITS * SYS_T) / 64 - 1; i >= 0; i--) { for (j = 63; j >= 0; j--) { row = i * 64 + j; for (k = 0; k < row; k++) { { mask = mat[ k ][ i ] >> j; mask &= 1; mask = -mask; for (c = 0; c < (GFBITS * SYS_T) / 64; c++) { ops[ k ][ c ] ^= ops[ row ][ c ] & mask; } } } } } // apply the linear map to the non-systematic part for (j = (GFBITS * SYS_T + 127) / 128; j < 64; j++) { for (k = 0; k < GFBITS; k++) { mat[ k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0); mat[ k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1); } } for (i = 1; i < SYS_T; i++) { for (j = (GFBITS * SYS_T + 127) / 128; j < 64; j++) { PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) { mat[ i * GFBITS + k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0); mat[ i * GFBITS + k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1); } } } for (i = 0; i < (GFBITS * SYS_T) / 64; i++) { for (j = 0; j < 64; j++) { row = i * 64 + j; for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) { one_row[ k ] = 0; } for (c = 0; c < (GFBITS * SYS_T) / 64; c++) { for (d = 0; d < 64; d++) { mask = ops[ row ][ c ] >> d; mask &= 1; mask = -mask; for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) { one_row[ k ] ^= mat[ c * 64 + d ][ k + (GFBITS * SYS_T) / 64 ] & mask; } } } for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) { PQCLEAN_MCELIECE8192128_SSE_store8(pk, one_row[ k ]); pk += 8; } } } // return 0; }