#include "poly.h" static uint16_t mod3(uint16_t a) { uint16_t r; int16_t t, c; r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255 r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3 t = r - 3; c = t >> 15; return (c & r) ^ (~c & t); } void PQCLEAN_NTRUHRSS701_CLEAN_poly_lift(poly *r, const poly *a) { /* NOTE: Assumes input is in {0,1,2}^N */ /* Produces output in [0,Q-1]^N */ int i; poly b; uint16_t t, zj; /* Define z by = delta_{i,0} mod 3: */ /* t = -1/N mod p = -N mod 3 */ /* z[0] = 2 - t mod 3 */ /* z[1] = 0 mod 3 */ /* z[j] = z[j-1] + t mod 3 */ /* We'll compute b = a/(x-1) mod (3, Phi) using */ /* b[0] = , b[1] = , b[2] = */ /* b[i] = b[i-3] - (a[i] + a[i-1] + a[i-2]) */ t = 3 - (NTRU_N % 3); b.coeffs[0] = a->coeffs[0] * (2 - t) + a->coeffs[1] * 0 + a->coeffs[2] * t; b.coeffs[1] = a->coeffs[1] * (2 - t) + a->coeffs[2] * 0; b.coeffs[2] = a->coeffs[2] * (2 - t); zj = 0; /* z[1] */ for (i = 3; i < NTRU_N; i++) { b.coeffs[0] += a->coeffs[i] * (zj + 2 * t); b.coeffs[1] += a->coeffs[i] * (zj + t); b.coeffs[2] += a->coeffs[i] * zj; zj = (zj + t) % 3; } b.coeffs[1] += a->coeffs[0] * (zj + t); b.coeffs[2] += a->coeffs[0] * zj; b.coeffs[2] += a->coeffs[1] * (zj + t); b.coeffs[0] = b.coeffs[0]; b.coeffs[1] = b.coeffs[1]; b.coeffs[2] = b.coeffs[2]; for (i = 3; i < NTRU_N; i++) { b.coeffs[i] = b.coeffs[i - 3] + 2 * (a->coeffs[i] + a->coeffs[i - 1] + a->coeffs[i - 2]); } /* Finish reduction mod Phi by subtracting Phi * b[N-1] */ for (i = 0; i < NTRU_N; i++) { b.coeffs[i] = mod3(b.coeffs[i] + 2 * b.coeffs[NTRU_N - 1]); } /* Switch from {0,1,2} to {0,1,q-1} coefficient representation */ PQCLEAN_NTRUHRSS701_CLEAN_poly_Z3_to_Zq(&b); /* Multiply by (x-1) */ r->coeffs[0] = -(b.coeffs[0]); for (i = 0; i < NTRU_N - 1; i++) { r->coeffs[i + 1] = b.coeffs[i] - b.coeffs[i + 1]; } }